- Apr 25, 2017
-
-
Patrick Wendell authored
-
- Apr 14, 2017
-
-
Patrick Wendell authored
-
Patrick Wendell authored
-
- Apr 09, 2017
-
-
Vijay Ramesh authored
## What changes were proposed in this pull request? This error message doesn't get properly formatted because of a missing `s`. Currently the error looks like: ``` Caused by: java.lang.IllegalArgumentException: requirement failed: indices should be one-based and in ascending order; found current=$current, previous=$previous; line="$line" ``` (note the literal `$current` instead of the interpolated value) Please review http://spark.apache.org/contributing.html before opening a pull request. Author: Vijay Ramesh <vramesh@demandbase.com> Closes #17572 from vijaykramesh/master. (cherry picked from commit 261eaf51) Signed-off-by:
Sean Owen <sowen@cloudera.com>
-
- Mar 28, 2017
-
-
颜发才(Yan Facai) authored
[SPARK-20043][ML] DecisionTreeModel: ImpurityCalculator builder fails for uppercase impurity type Gini Fix bug: DecisionTreeModel can't recongnize Impurity "Gini" when loading TODO: + [x] add unit test + [x] fix the bug Author: 颜发才(Yan Facai) <facai.yan@gmail.com> Closes #17407 from facaiy/BUG/decision_tree_loader_failer_with_Gini_impurity. (cherry picked from commit 7d432af8) Signed-off-by:
Joseph K. Bradley <joseph@databricks.com>
-
Patrick Wendell authored
-
Patrick Wendell authored
-
- Mar 21, 2017
-
-
Patrick Wendell authored
-
Patrick Wendell authored
-
- Feb 12, 2017
-
-
wm624@hotmail.com authored
[SPARK-19319][BACKPORT-2.1][SPARKR] SparkR Kmeans summary returns error when the cluster size doesn't equal to k ## What changes were proposed in this pull request? Backport fix of #16666 ## How was this patch tested? Backport unit tests Author: wm624@hotmail.com <wm624@hotmail.com> Closes #16761 from wangmiao1981/kmeansport.
-
- Jan 24, 2017
-
-
Ilya Matiach authored
[SPARK-16473][MLLIB] Fix BisectingKMeans Algorithm failing in edge case where no children exist in updateAssignments ## What changes were proposed in this pull request? Fix a bug in which BisectingKMeans fails with error: java.util.NoSuchElementException: key not found: 166 at scala.collection.MapLike$class.default(MapLike.scala:228) at scala.collection.AbstractMap.default(Map.scala:58) at scala.collection.MapLike$class.apply(MapLike.scala:141) at scala.collection.AbstractMap.apply(Map.scala:58) at org.apache.spark.mllib.clustering.BisectingKMeans$$anonfun$org$apache$spark$mllib$clustering$BisectingKMeans$$updateAssignments$1$$anonfun$2.apply$mcDJ$sp(BisectingKMeans.scala:338) at org.apache.spark.mllib.clustering.BisectingKMeans$$anonfun$org$apache$spark$mllib$clustering$BisectingKMeans$$updateAssignments$1$$anonfun$2.apply(BisectingKMeans.scala:337) at org.apache.spark.mllib.clustering.BisectingKMeans$$anonfun$org$apache$spark$mllib$clustering$BisectingKMeans$$updateAssignments$1$$anonfun$2.apply(BisectingKMeans.scala:337) at scala.collection.TraversableOnce$$anonfun$minBy$1.apply(TraversableOnce.scala:231) at scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:111) at scala.collection.immutable.List.foldLeft(List.scala:84) at scala.collection.LinearSeqOptimized$class.reduceLeft(LinearSeqOptimized.scala:125) at scala.collection.immutable.List.reduceLeft(List.scala:84) at scala.collection.TraversableOnce$class.minBy(TraversableOnce.scala:231) at scala.collection.AbstractTraversable.minBy(Traversable.scala:105) at org.apache.spark.mllib.clustering.BisectingKMeans$$anonfun$org$apache$spark$mllib$clustering$BisectingKMeans$$updateAssignments$1.apply(BisectingKMeans.scala:337) at org.apache.spark.mllib.clustering.BisectingKMeans$$anonfun$org$apache$spark$mllib$clustering$BisectingKMeans$$updateAssignments$1.apply(BisectingKMeans.scala:334) at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) at scala.collection.Iterator$$anon$14.hasNext(Iterator.scala:389) ## How was this patch tested? The dataset was run against the code change to verify that the code works. I will try to add unit tests to the code. (Please explain how this patch was tested. E.g. unit tests, integration tests, manual tests) (If this patch involves UI changes, please attach a screenshot; otherwise, remove this) Please review http://spark.apache.org/contributing.html before opening a pull request. Author: Ilya Matiach <ilmat@microsoft.com> Closes #16355 from imatiach-msft/ilmat/fix-kmeans.
-
- Jan 23, 2017
-
-
actuaryzhang authored
## What changes were proposed in this pull request? This is a supplement to PR #16516 which did not make the value from `getFamily` case insensitive. Current tests of poisson/binomial glm with weight fail when specifying 'Poisson' or 'Binomial', because the calculation of `dispersion` and `pValue` checks the value of family retrieved from `getFamily` ``` model.getFamily == Binomial.name || model.getFamily == Poisson.name ``` ## How was this patch tested? Update existing tests for 'Poisson' and 'Binomial'. yanboliang felixcheung imatiach-msft Author: actuaryzhang <actuaryzhang10@gmail.com> Closes #16675 from actuaryzhang/family. (cherry picked from commit f067acef) Signed-off-by:
Yanbo Liang <ybliang8@gmail.com>
-
- Jan 21, 2017
-
-
Yanbo Liang authored
## What changes were proposed in this pull request? MLlib ```GeneralizedLinearRegression``` ```family``` and ```link``` should be case insensitive. This is consistent with some other MLlib params such as [```featureSubsetStrategy```](https://github.com/apache/spark/blob/master/mllib/src/main/scala/org/apache/spark/ml/tree/treeParams.scala#L415 ). ## How was this patch tested? Update corresponding tests. Author: Yanbo Liang <ybliang8@gmail.com> Closes #16516 from yanboliang/spark-19133. (cherry picked from commit 3dcad9fa) Signed-off-by:
Yanbo Liang <ybliang8@gmail.com>
-
- Jan 17, 2017
-
-
wm624@hotmail.com authored
## What changes were proposed in this pull request? Back port the fix to SPARK-19066 to 2.1 branch. ## How was this patch tested? Unit tests Author: wm624@hotmail.com <wm624@hotmail.com> Closes #16623 from wangmiao1981/bugport.
-
- Jan 07, 2017
-
-
wm624@hotmail.com authored
[SPARK-19110][ML][MLLIB] DistributedLDAModel returns different logPrior for original and loaded model ## What changes were proposed in this pull request? While adding DistributedLDAModel training summary for SparkR, I found that the logPrior for original and loaded model is different. For example, in the test("read/write DistributedLDAModel"), I add the test: val logPrior = model.asInstanceOf[DistributedLDAModel].logPrior val logPrior2 = model2.asInstanceOf[DistributedLDAModel].logPrior assert(logPrior === logPrior2) The test fails: -4.394180878889078 did not equal -4.294290536919573 The reason is that `graph.vertices.aggregate(0.0)(seqOp, _ + _)` only returns the value of a single vertex instead of the aggregation of all vertices. Therefore, when the loaded model does the aggregation in a different order, it returns different `logPrior`. Please refer to #16464 for details. ## How was this patch tested? Add a new unit test for testing logPrior. Author: wm624@hotmail.com <wm624@hotmail.com> Closes #16491 from wangmiao1981/ldabug. (cherry picked from commit 036b5034) Signed-off-by:
Joseph K. Bradley <joseph@databricks.com>
-
- Dec 22, 2016
-
-
Ryan Williams authored
Remove spark-tag's compile-scope dependency (and, indirectly, spark-core's compile-scope transitive-dependency) on scalatest by splitting test-oriented tags into spark-tags' test JAR. Alternative to #16303. Author: Ryan Williams <ryan.blake.williams@gmail.com> Closes #16311 from ryan-williams/tt. (cherry picked from commit afd9bc1d) Signed-off-by:
Marcelo Vanzin <vanzin@cloudera.com>
-
- Dec 15, 2016
-
-
Patrick Wendell authored
-
Patrick Wendell authored
-
Patrick Wendell authored
-
Patrick Wendell authored
-
Patrick Wendell authored
-
- Dec 11, 2016
-
-
krishnakalyan3 authored
## What changes were proposed in this pull request? Updated Scala param and Python param to have quotes around the options making it easier for users to read. ## How was this patch tested? Manually checked the docstrings Author: krishnakalyan3 <krishnakalyan3@gmail.com> Closes #16242 from krishnakalyan3/doc-string. (cherry picked from commit c802ad87) Signed-off-by:
Sean Owen <sowen@cloudera.com>
-
- Dec 10, 2016
-
-
Michal Senkyr authored
## What changes were proposed in this pull request? The API documentation build was failing when using Java 8 due to incorrect character `>` in Javadoc. Replace `>` with literals in Javadoc to allow the build to pass. ## How was this patch tested? Documentation was built and inspected manually to ensure it still displays correctly in the browser ``` cd docs && jekyll serve ``` Author: Michal Senkyr <mike.senkyr@gmail.com> Closes #16201 from michalsenkyr/javadoc8-gt-fix. (cherry picked from commit 11432483) Signed-off-by:
Sean Owen <sowen@cloudera.com>
-
- Dec 08, 2016
-
-
Patrick Wendell authored
-
Patrick Wendell authored
-
- Dec 07, 2016
-
-
Yanbo Liang authored
## What changes were proposed in this pull request? Reviewing SparkR ML wrappers API for 2.1 release, mainly two issues: * Remove ```probabilityCol``` from the argument list of ```spark.logit``` and ```spark.randomForest```. Since it was used when making prediction and should be an argument of ```predict```, and we will work on this at [SPARK-18618](https://issues.apache.org/jira/browse/SPARK-18618 ) in the next release cycle. * Fix ```spark.als``` params to make it consistent with MLlib. ## How was this patch tested? Existing tests. Author: Yanbo Liang <ybliang8@gmail.com> Closes #16169 from yanboliang/spark-18326. (cherry picked from commit 97255497) Signed-off-by:
Yanbo Liang <ybliang8@gmail.com>
-
actuaryzhang authored
Poisson GLM fails for many standard data sets (see example in test or JIRA). The issue is incorrect initialization leading to almost zero probability and weights. Specifically, the mean is initialized as the response, which could be zero. Applying the log link results in very negative numbers (protected against -Inf), which again leads to close to zero probability and weights in the weighted least squares. Fix and test are included in the commits. ## What changes were proposed in this pull request? Update initialization in Poisson GLM ## How was this patch tested? Add test in GeneralizedLinearRegressionSuite srowen sethah yanboliang HyukjinKwon mengxr Author: actuaryzhang <actuaryzhang10@gmail.com> Closes #16131 from actuaryzhang/master. (cherry picked from commit b8280271) Signed-off-by:
Sean Owen <sowen@cloudera.com>
-
Yanbo Liang authored
## What changes were proposed in this pull request? Several cleanup and improvements for ```spark.logit```: * ```summary``` should return coefficients matrix, and should output labels for each class if the model is multinomial logistic regression model. * ```summary``` should not return ```areaUnderROC, roc, pr, ...```, since most of them are DataFrame which are less important for R users. Meanwhile, these metrics ignore instance weights (setting all to 1.0) which will be changed in later Spark version. In case it will introduce breaking changes, we do not expose them currently. * SparkR test improvement: comparing the training result with native R glmnet. * Remove argument ```aggregationDepth``` from ```spark.logit```, since it's an expert Param(related with Spark architecture and job execution) that would be used rarely by R users. ## How was this patch tested? Unit tests. The ```summary``` output after this change: multinomial logistic regression: ``` > df <- suppressWarnings(createDataFrame(iris)) > model <- spark.logit(df, Species ~ ., regParam = 0.5) > summary(model) $coefficients versicolor virginica setosa (Intercept) 1.514031 -2.609108 1.095077 Sepal_Length 0.02511006 0.2649821 -0.2900921 Sepal_Width -0.5291215 -0.02016446 0.549286 Petal_Length 0.03647411 0.1544119 -0.190886 Petal_Width 0.000236092 0.4195804 -0.4198165 ``` binomial logistic regression: ``` > df <- suppressWarnings(createDataFrame(iris)) > training <- df[df$Species %in% c("versicolor", "virginica"), ] > model <- spark.logit(training, Species ~ ., regParam = 0.5) > summary(model) $coefficients Estimate (Intercept) -6.053815 Sepal_Length 0.2449379 Sepal_Width 0.1648321 Petal_Length 0.4730718 Petal_Width 1.031947 ``` Author: Yanbo Liang <ybliang8@gmail.com> Closes #16117 from yanboliang/spark-18686. (cherry picked from commit 90b59d1b) Signed-off-by:
Yanbo Liang <ybliang8@gmail.com>
-
- Dec 05, 2016
-
-
Zheng RuiFeng authored
## What changes were proposed in this pull request? add `setFeaturesCol` and `setPredictionCol` for `OneVsRestModel` ## How was this patch tested? added tests Author: Zheng RuiFeng <ruifengz@foxmail.com> Closes #16059 from zhengruifeng/ovrm_setCol. (cherry picked from commit bdfe7f67) Signed-off-by:
Yanbo Liang <ybliang8@gmail.com>
-
- Dec 02, 2016
-
-
Yanbo Liang authored
[SPARK-18291][SPARKR][ML] Revert "[SPARK-18291][SPARKR][ML] SparkR glm predict should output original label when family = binomial." ## What changes were proposed in this pull request? It's better we can fix this issue by providing an option ```type``` for users to change the ```predict``` output schema, then they could output probabilities, log-space predictions, or original labels. In order to not involve breaking API change for 2.1, so revert this change firstly and will add it back after [SPARK-18618](https://issues.apache.org/jira/browse/SPARK-18618 ) resolved. ## How was this patch tested? Existing unit tests. This reverts commit daa975f4. Author: Yanbo Liang <ybliang8@gmail.com> Closes #16118 from yanboliang/spark-18291-revert. (cherry picked from commit a985dd8e) Signed-off-by:
Joseph K. Bradley <joseph@databricks.com>
-
- Nov 30, 2016
-
-
wm624@hotmail.com authored
## What changes were proposed in this pull request? Similar to SPARK-18401, as a classification algorithm, logistic regression should support output original label instead of supporting index label. In this PR, original label output is supported and test cases are modified and added. Document is also modified. ## How was this patch tested? Unit tests. Author: wm624@hotmail.com <wm624@hotmail.com> Closes #15910 from wangmiao1981/audit. (cherry picked from commit 2eb6764f) Signed-off-by:
Yanbo Liang <ybliang8@gmail.com>
-
Yanbo Liang authored
## What changes were proposed in this pull request? API review for 2.1, except ```LSH``` related classes which are still under development. ## How was this patch tested? Only doc changes, no new tests. Author: Yanbo Liang <ybliang8@gmail.com> Closes #16009 from yanboliang/spark-18318. (cherry picked from commit 60022bfd) Signed-off-by:
Joseph K. Bradley <joseph@databricks.com>
-
Anthony Truchet authored
## What changes were proposed in this pull request? Fix a broadcasted variable leak occurring at each invocation of CostFun in L-BFGS. ## How was this patch tested? UTests + check that fixed fatal memory consumption on Criteo's use cases. This contribution is made on behalf of Criteo S.A. (http://labs.criteo.com/ ) under the terms of the Apache v2 License. Author: Anthony Truchet <a.truchet@criteo.com> Closes #16040 from AnthonyTruchet/SPARK-18612-lbfgs-cost-fun. (cherry picked from commit c5a64d76) Signed-off-by:
Sean Owen <sowen@cloudera.com>
-
- Nov 29, 2016
-
-
Yuhao authored
## What changes were proposed in this pull request? make a pass through the items marked as Experimental or DeveloperApi and see if any are stable enough to be unmarked. Also check for items marked final or sealed to see if they are stable enough to be opened up as APIs. Some discussions in the jira: https://issues.apache.org/jira/browse/SPARK-18319 ## How was this patch tested? existing ut Author: Yuhao <yuhao.yang@intel.com> Author: Yuhao Yang <hhbyyh@gmail.com> Closes #15972 from hhbyyh/experimental21. (cherry picked from commit 9b670bca) Signed-off-by:
Joseph K. Bradley <joseph@databricks.com>
-
Yanbo Liang authored
## What changes were proposed in this pull request? Mainly two changes: * Move DT/RF/GBT Param setter methods to subclasses. * Deprecate corresponding setter methods in the model classes. See discussion here https://github.com/apache/spark/pull/15913#discussion_r89662469 . ## How was this patch tested? Existing tests. Author: Yanbo Liang <ybliang8@gmail.com> Closes #16017 from yanboliang/spark-18592. (cherry picked from commit 95f79850) Signed-off-by:
Joseph K. Bradley <joseph@databricks.com>
-
hyukjinkwon authored
## What changes were proposed in this pull request? Currently, single line comment does not mark down backticks to `<code>..</code>` but prints as they are (`` `..` ``). For example, the line below: ```scala /** Return an RDD with the pairs from `this` whose keys are not in `other`. */ ``` So, we could work around this as below: ```scala /** * Return an RDD with the pairs from `this` whose keys are not in `other`. */ ``` - javadoc - **Before**  - **After**  - scaladoc (this one looks fine either way) - **Before**  - **After**  I suspect this is related with SPARK-16153 and genjavadoc issue in ` typesafehub/genjavadoc#85`. ## How was this patch tested? I found them via ``` grep -r "\/\*\*.*\`" . | grep .scala ```` and then checked if each is in the public API documentation with manually built docs (`jekyll build`) with Java 7. Author: hyukjinkwon <gurwls223@gmail.com> Closes #16050 from HyukjinKwon/javadoc-markdown. (cherry picked from commit 1a870090) Signed-off-by:
Sean Owen <sowen@cloudera.com>
-
hyukjinkwon authored
[SPARK-3359][DOCS] Make javadoc8 working for unidoc/genjavadoc compatibility in Java API documentation ## What changes were proposed in this pull request? This PR make `sbt unidoc` complete with Java 8. This PR roughly includes several fixes as below: - Fix unrecognisable class and method links in javadoc by changing it from `[[..]]` to `` `...` `` ```diff - * A column that will be computed based on the data in a [[DataFrame]]. + * A column that will be computed based on the data in a `DataFrame`. ``` - Fix throws annotations so that they are recognisable in javadoc - Fix URL links to `<a href="http..."></a>`. ```diff - * [[http://en.wikipedia.org/wiki/Decision_tree_learning Decision tree]] model for regression. + * <a href="http://en.wikipedia.org/wiki/Decision_tree_learning"> + * Decision tree (Wikipedia)</a> model for regression. ``` ```diff - * see http://en.wikipedia.org/wiki/Receiver_operating_characteristic + * see <a href="http://en.wikipedia.org/wiki/Receiver_operating_characteristic"> + * Receiver operating characteristic (Wikipedia)</a> ``` - Fix < to > to - `greater than`/`greater than or equal to` or `less than`/`less than or equal to` where applicable. - Wrap it with `{{{...}}}` to print them in javadoc or use `{code ...}` or `{literal ..}`. Please refer https://github.com/apache/spark/pull/16013#discussion_r89665558 - Fix `</p>` complaint ## How was this patch tested? Manually tested by `jekyll build` with Java 7 and 8 ``` java version "1.7.0_80" Java(TM) SE Runtime Environment (build 1.7.0_80-b15) Java HotSpot(TM) 64-Bit Server VM (build 24.80-b11, mixed mode) ``` ``` java version "1.8.0_45" Java(TM) SE Runtime Environment (build 1.8.0_45-b14) Java HotSpot(TM) 64-Bit Server VM (build 25.45-b02, mixed mode) ``` Author: hyukjinkwon <gurwls223@gmail.com> Closes #16013 from HyukjinKwon/SPARK-3359-errors-more. (cherry picked from commit f830bb91) Signed-off-by:
Sean Owen <sowen@cloudera.com>
-
- Nov 28, 2016
-
-
Yun Ni authored
## What changes were proposed in this pull request? (1) Change output schema to `Array of Vector` instead of `Vectors` (2) Use `numHashTables` as the dimension of Array (3) Rename `RandomProjection` to `BucketedRandomProjectionLSH`, `MinHash` to `MinHashLSH` (4) Make `randUnitVectors/randCoefficients` private (5) Make Multi-Probe NN Search and `hashDistance` private for future discussion Saved for future PRs: (1) AND-amplification and `numHashFunctions` as the dimension of Vector are saved for a future PR. (2) `hashDistance` and MultiProbe NN Search needs more discussion. The current implementation is just a backward compatible one. ## How was this patch tested? Related unit tests are modified to make sure the performance of LSH are ensured, and the outputs of the APIs meets expectation. Author: Yun Ni <yunn@uber.com> Author: Yunni <Euler57721@gmail.com> Closes #15874 from Yunni/SPARK-18408-yunn-api-improvements. (cherry picked from commit 05f7c6ff) Signed-off-by:
Joseph K. Bradley <joseph@databricks.com>
-