- Aug 25, 2016
-
-
jiangxingbo authored
## What changes were proposed in this pull request? Method `SQLContext.parseDataType(dataTypeString: String)` could be removed, we should use `SparkSession.parseDataType(dataTypeString: String)` instead. This require updating PySpark. ## How was this patch tested? Existing test cases. Author: jiangxingbo <jiangxb1987@gmail.com> Closes #14790 from jiangxb1987/parseDataType.
-
- Aug 10, 2016
-
-
Sean Owen authored
## What changes were proposed in this pull request? Doc that regexp_extract returns empty string when regex or group does not match ## How was this patch tested? Jenkins test, with a few new test cases Author: Sean Owen <sowen@cloudera.com> Closes #14525 from srowen/SPARK-16324.
-
- Aug 07, 2016
-
-
Sean Owen authored
## What changes were proposed in this pull request? regexp_extract actually returns null when it shouldn't when a regex matches but the requested optional group did not. This makes it return an empty string, as apparently designed. ## How was this patch tested? Additional unit test Author: Sean Owen <sowen@cloudera.com> Closes #14504 from srowen/SPARK-16409.
-
- Jul 28, 2016
-
-
Nicholas Chammas authored
## What's Been Changed The PR corrects several broken or missing class references in the Python API docs. It also correct formatting problems. For example, you can see [here](http://spark.apache.org/docs/2.0.0/api/python/pyspark.sql.html#pyspark.sql.SQLContext.registerFunction) how Sphinx is not picking up the reference to `DataType`. That's because the reference is relative to the current module, whereas `DataType` is in a different module. You can also see [here](http://spark.apache.org/docs/2.0.0/api/python/pyspark.sql.html#pyspark.sql.SQLContext.createDataFrame) how the formatting for byte, tinyint, and so on is italic instead of monospace. That's because in ReST single backticks just make things italic, unlike in Markdown. ## Testing I tested this PR by [building the Python docs](https://github.com/apache/spark/tree/master/docs#generating-the-documentation-html) and reviewing the results locally in my browser. I confirmed that the broken or missing class references were resolved, and that the formatting was corrected. Author: Nicholas Chammas <nicholas.chammas@gmail.com> Closes #14393 from nchammas/python-docstring-fixes.
-
- Jul 06, 2016
-
-
hyukjinkwon authored
## What changes were proposed in this pull request? This PR fixes wrongly formatted examples in PySpark documentation as below: - **`SparkSession`** - **Before**  - **After**  - **`Builder`** - **Before**  - **After**  This PR also fixes several similar instances across the documentation in `sql` PySpark module. ## How was this patch tested? N/A Author: hyukjinkwon <gurwls223@gmail.com> Closes #14063 from HyukjinKwon/minor-pyspark-builder.
-
- Jun 30, 2016
-
-
Dongjoon Hyun authored
## What changes were proposed in this pull request? This PR implements `posexplode` table generating function. Currently, master branch raises the following exception for `map` argument. It's different from Hive. **Before** ```scala scala> sql("select posexplode(map('a', 1, 'b', 2))").show org.apache.spark.sql.AnalysisException: No handler for Hive UDF ... posexplode() takes an array as a parameter; line 1 pos 7 ``` **After** ```scala scala> sql("select posexplode(map('a', 1, 'b', 2))").show +---+---+-----+ |pos|key|value| +---+---+-----+ | 0| a| 1| | 1| b| 2| +---+---+-----+ ``` For `array` argument, `after` is the same with `before`. ``` scala> sql("select posexplode(array(1, 2, 3))").show +---+---+ |pos|col| +---+---+ | 0| 1| | 1| 2| | 2| 3| +---+---+ ``` ## How was this patch tested? Pass the Jenkins tests with newly added testcases. Author: Dongjoon Hyun <dongjoon@apache.org> Closes #13971 from dongjoon-hyun/SPARK-16289.
-
- May 27, 2016
-
-
Zheng RuiFeng authored
## What changes were proposed in this pull request? `a` -> `an` I use regex to generate potential error lines: `grep -in ' a [aeiou]' mllib/src/main/scala/org/apache/spark/ml/*/*scala` and review them line by line. ## How was this patch tested? local build `lint-java` checking Author: Zheng RuiFeng <ruifengz@foxmail.com> Closes #13317 from zhengruifeng/a_an.
-
- May 24, 2016
-
-
Daoyuan Wang authored
## What changes were proposed in this pull request? in hive, `locate("aa", "aaa", 0)` would yield 0, `locate("aa", "aaa", 1)` would yield 1 and `locate("aa", "aaa", 2)` would yield 2, while in Spark, `locate("aa", "aaa", 0)` would yield 1, `locate("aa", "aaa", 1)` would yield 2 and `locate("aa", "aaa", 2)` would yield 0. This results from the different understanding of the third parameter in udf `locate`. It means the starting index and starts from 1, so when we use 0, the return would always be 0. ## How was this patch tested? tested with modified `StringExpressionsSuite` and `StringFunctionsSuite` Author: Daoyuan Wang <daoyuan.wang@intel.com> Closes #13186 from adrian-wang/locate.
-
- May 23, 2016
-
-
WeichenXu authored
[SPARK-15464][ML][MLLIB][SQL][TESTS] Replace SQLContext and SparkContext with SparkSession using builder pattern in python test code ## What changes were proposed in this pull request? Replace SQLContext and SparkContext with SparkSession using builder pattern in python test code. ## How was this patch tested? Existing test. Author: WeichenXu <WeichenXu123@outlook.com> Closes #13242 from WeichenXu123/python_doctest_update_sparksession.
-
Dongjoon Hyun authored
## What changes were proposed in this pull request? Spark assumes that UDF functions are deterministic. This PR adds explicit notes about that. ## How was this patch tested? It's only about docs. Author: Dongjoon Hyun <dongjoon@apache.org> Closes #13087 from dongjoon-hyun/SPARK-15282.
-
- Apr 20, 2016
-
-
Dongjoon Hyun authored
## What changes were proposed in this pull request? This issue aims to expose Scala `bround` function in Python/R API. `bround` function is implemented in SPARK-14614 by extending current `round` function. We used the following semantics from Hive. ```java public static double bround(double input, int scale) { if (Double.isNaN(input) || Double.isInfinite(input)) { return input; } return BigDecimal.valueOf(input).setScale(scale, RoundingMode.HALF_EVEN).doubleValue(); } ``` After this PR, `pyspark` and `sparkR` also support `bround` function. **PySpark** ```python >>> from pyspark.sql.functions import bround >>> sqlContext.createDataFrame([(2.5,)], ['a']).select(bround('a', 0).alias('r')).collect() [Row(r=2.0)] ``` **SparkR** ```r > df = createDataFrame(sqlContext, data.frame(x = c(2.5, 3.5))) > head(collect(select(df, bround(df$x, 0)))) bround(x, 0) 1 2 2 4 ``` ## How was this patch tested? Pass the Jenkins tests (including new testcases). Author: Dongjoon Hyun <dongjoon@apache.org> Closes #12509 from dongjoon-hyun/SPARK-14639.
-
- Apr 05, 2016
-
-
Burak Yavuz authored
## What changes were proposed in this pull request? The `window` function was added to Dataset with [this PR](https://github.com/apache/spark/pull/12008). This PR adds the Python, and SQL, API for this function. With this PR, SQL, Java, and Scala will share the same APIs as in users can use: - `window(timeColumn, windowDuration)` - `window(timeColumn, windowDuration, slideDuration)` - `window(timeColumn, windowDuration, slideDuration, startTime)` In Python, users can access all APIs above, but in addition they can do - In Python: `window(timeColumn, windowDuration, startTime=...)` that is, they can provide the startTime without providing the `slideDuration`. In this case, we will generate tumbling windows. ## How was this patch tested? Unit tests + manual tests Author: Burak Yavuz <brkyvz@gmail.com> Closes #12136 from brkyvz/python-windows.
-
- Mar 31, 2016
-
-
Davies Liu authored
## What changes were proposed in this pull request? This PR support multiple Python UDFs within single batch, also improve the performance. ```python >>> from pyspark.sql.types import IntegerType >>> sqlContext.registerFunction("double", lambda x: x * 2, IntegerType()) >>> sqlContext.registerFunction("add", lambda x, y: x + y, IntegerType()) >>> sqlContext.sql("SELECT double(add(1, 2)), add(double(2), 1)").explain(True) == Parsed Logical Plan == 'Project [unresolvedalias('double('add(1, 2)), None),unresolvedalias('add('double(2), 1), None)] +- OneRowRelation$ == Analyzed Logical Plan == double(add(1, 2)): int, add(double(2), 1): int Project [double(add(1, 2))#14,add(double(2), 1)#15] +- Project [double(add(1, 2))#14,add(double(2), 1)#15] +- Project [pythonUDF0#16 AS double(add(1, 2))#14,pythonUDF0#18 AS add(double(2), 1)#15] +- EvaluatePython [add(pythonUDF1#17, 1)], [pythonUDF0#18] +- EvaluatePython [double(add(1, 2)),double(2)], [pythonUDF0#16,pythonUDF1#17] +- OneRowRelation$ == Optimized Logical Plan == Project [pythonUDF0#16 AS double(add(1, 2))#14,pythonUDF0#18 AS add(double(2), 1)#15] +- EvaluatePython [add(pythonUDF1#17, 1)], [pythonUDF0#18] +- EvaluatePython [double(add(1, 2)),double(2)], [pythonUDF0#16,pythonUDF1#17] +- OneRowRelation$ == Physical Plan == WholeStageCodegen : +- Project [pythonUDF0#16 AS double(add(1, 2))#14,pythonUDF0#18 AS add(double(2), 1)#15] : +- INPUT +- !BatchPythonEvaluation [add(pythonUDF1#17, 1)], [pythonUDF0#16,pythonUDF1#17,pythonUDF0#18] +- !BatchPythonEvaluation [double(add(1, 2)),double(2)], [pythonUDF0#16,pythonUDF1#17] +- Scan OneRowRelation[] ``` ## How was this patch tested? Added new tests. Using the following script to benchmark 1, 2 and 3 udfs, ``` df = sqlContext.range(1, 1 << 23, 1, 4) double = F.udf(lambda x: x * 2, LongType()) print df.select(double(df.id)).count() print df.select(double(df.id), double(df.id + 1)).count() print df.select(double(df.id), double(df.id + 1), double(df.id + 2)).count() ``` Here is the results: N | Before | After | speed up ---- |------------ | -------------|------ 1 | 22 s | 7 s | 3.1X 2 | 38 s | 13 s | 2.9X 3 | 58 s | 16 s | 3.6X This benchmark ran locally with 4 CPUs. For 3 UDFs, it launched 12 Python before before this patch, 4 process after this patch. After this patch, it will use less memory for multiple UDFs than before (less buffering). Author: Davies Liu <davies@databricks.com> Closes #12057 from davies/multi_udfs.
-
- Mar 29, 2016
-
-
Davies Liu authored
## What changes were proposed in this pull request? This PR brings the support for chained Python UDFs, for example ```sql select udf1(udf2(a)) select udf1(udf2(a) + 3) select udf1(udf2(a) + udf3(b)) ``` Also directly chained unary Python UDFs are put in single batch of Python UDFs, others may require multiple batches. For example, ```python >>> sqlContext.sql("select double(double(1))").explain() == Physical Plan == WholeStageCodegen : +- Project [pythonUDF#10 AS double(double(1))#9] : +- INPUT +- !BatchPythonEvaluation double(double(1)), [pythonUDF#10] +- Scan OneRowRelation[] >>> sqlContext.sql("select double(double(1) + double(2))").explain() == Physical Plan == WholeStageCodegen : +- Project [pythonUDF#19 AS double((double(1) + double(2)))#16] : +- INPUT +- !BatchPythonEvaluation double((pythonUDF#17 + pythonUDF#18)), [pythonUDF#17,pythonUDF#18,pythonUDF#19] +- !BatchPythonEvaluation double(2), [pythonUDF#17,pythonUDF#18] +- !BatchPythonEvaluation double(1), [pythonUDF#17] +- Scan OneRowRelation[] ``` TODO: will support multiple unrelated Python UDFs in one batch (another PR). ## How was this patch tested? Added new unit tests for chained UDFs. Author: Davies Liu <davies@databricks.com> Closes #12014 from davies/py_udfs.
-
- Mar 25, 2016
-
-
Wenchen Fan authored
## What changes were proposed in this pull request? As we have `CreateArray` and `CreateStruct`, we should also have `CreateMap`. This PR adds the `CreateMap` expression, and the DataFrame API, and python API. ## How was this patch tested? various new tests. Author: Wenchen Fan <wenchen@databricks.com> Closes #11879 from cloud-fan/create_map.
-
- Mar 09, 2016
-
-
Tristan Reid authored
Minor typo: docstring for pyspark.sql.functions: hypot has extra characters N/A Author: Tristan Reid <treid@netflix.com> Closes #11616 from tristanreid/master.
-
- Mar 05, 2016
-
-
gatorsmile authored
#### What changes were proposed in this pull request? This PR is for supporting SQL generation for cube, rollup and grouping sets. For example, a query using rollup: ```SQL SELECT count(*) as cnt, key % 5, grouping_id() FROM t1 GROUP BY key % 5 WITH ROLLUP ``` Original logical plan: ``` Aggregate [(key#17L % cast(5 as bigint))#47L,grouping__id#46], [(count(1),mode=Complete,isDistinct=false) AS cnt#43L, (key#17L % cast(5 as bigint))#47L AS _c1#45L, grouping__id#46 AS _c2#44] +- Expand [List(key#17L, value#18, (key#17L % cast(5 as bigint))#47L, 0), List(key#17L, value#18, null, 1)], [key#17L,value#18,(key#17L % cast(5 as bigint))#47L,grouping__id#46] +- Project [key#17L, value#18, (key#17L % cast(5 as bigint)) AS (key#17L % cast(5 as bigint))#47L] +- Subquery t1 +- Relation[key#17L,value#18] ParquetRelation ``` Converted SQL: ```SQL SELECT count( 1) AS `cnt`, (`t1`.`key` % CAST(5 AS BIGINT)), grouping_id() AS `_c2` FROM `default`.`t1` GROUP BY (`t1`.`key` % CAST(5 AS BIGINT)) GROUPING SETS (((`t1`.`key` % CAST(5 AS BIGINT))), ()) ``` #### How was the this patch tested? Added eight test cases in `LogicalPlanToSQLSuite`. Author: gatorsmile <gatorsmile@gmail.com> Author: xiaoli <lixiao1983@gmail.com> Author: Xiao Li <xiaoli@Xiaos-MacBook-Pro.local> Closes #11283 from gatorsmile/groupingSetsToSQL.
-
- Mar 02, 2016
-
-
Wenchen Fan authored
## What changes were proposed in this pull request? Remove `map`, `flatMap`, `mapPartitions` from python DataFrame, to prepare for Dataset API in the future. ## How was this patch tested? existing tests Author: Wenchen Fan <wenchen@databricks.com> Closes #11445 from cloud-fan/python-clean.
-
- Feb 24, 2016
-
-
Wenchen Fan authored
## What changes were proposed in this pull request? When we pass a Python function to JVM side, we also need to send its context, e.g. `envVars`, `pythonIncludes`, `pythonExec`, etc. However, it's annoying to pass around so many parameters at many places. This PR abstract python function along with its context, to simplify some pyspark code and make the logic more clear. ## How was the this patch tested? by existing unit tests. Author: Wenchen Fan <wenchen@databricks.com> Closes #11342 from cloud-fan/python-clean.
-
- Feb 22, 2016
-
-
Dongjoon Hyun authored
## What changes were proposed in this pull request? This PR tries to fix all typos in all markdown files under `docs` module, and fixes similar typos in other comments, too. ## How was the this patch tested? manual tests. Author: Dongjoon Hyun <dongjoon@apache.org> Closes #11300 from dongjoon-hyun/minor_fix_typos.
-
- Feb 21, 2016
-
-
Cheng Lian authored
This PR introduces several major changes: 1. Replacing `Expression.prettyString` with `Expression.sql` The `prettyString` method is mostly an internal, developer faced facility for debugging purposes, and shouldn't be exposed to users. 1. Using SQL-like representation as column names for selected fields that are not named expression (back-ticks and double quotes should be removed) Before, we were using `prettyString` as column names when possible, and sometimes the result column names can be weird. Here are several examples: Expression | `prettyString` | `sql` | Note ------------------ | -------------- | ---------- | --------------- `a && b` | `a && b` | `a AND b` | `a.getField("f")` | `a[f]` | `a.f` | `a` is a struct 1. Adding trait `NonSQLExpression` extending from `Expression` for expressions that don't have a SQL representation (e.g. Scala UDF/UDAF and Java/Scala object expressions used for encoders) `NonSQLExpression.sql` may return an arbitrary user facing string representation of the expression. Author: Cheng Lian <lian@databricks.com> Closes #10757 from liancheng/spark-12799.simplify-expression-string-methods.
-
- Feb 20, 2016
-
-
Reynold Xin authored
This reverts commit 4f9a6648.
-
Kai Jiang authored
Author: Kai Jiang <jiangkai@gmail.com> Closes #10527 from vectorijk/spark-12567.
-
- Feb 13, 2016
-
-
Reynold Xin authored
This pull request has the following changes: 1. Moved UserDefinedFunction into expressions package. This is more consistent with how we structure the packages for window functions and UDAFs. 2. Moved UserDefinedPythonFunction into execution.python package, so we don't have a random private class in the top level sql package. 3. Move everything in execution/python.scala into the newly created execution.python package. Most of the diffs are just straight copy-paste. Author: Reynold Xin <rxin@databricks.com> Closes #11181 from rxin/SPARK-13296.
-
- Feb 12, 2016
-
-
Yanbo Liang authored
PySpark support ```covar_samp``` and ```covar_pop```. cc rxin davies marmbrus Author: Yanbo Liang <ybliang8@gmail.com> Closes #10876 from yanboliang/spark-12962.
-
- Feb 10, 2016
-
-
Davies Liu authored
Grouping() returns a column is aggregated or not, grouping_id() returns the aggregation levels. grouping()/grouping_id() could be used with window function, but does not work in having/sort clause, will be fixed by another PR. The GROUPING__ID/grouping_id() in Hive is wrong (according to docs), we also did it wrongly, this PR change that to match the behavior in most databases (also the docs of Hive). Author: Davies Liu <davies@databricks.com> Closes #10677 from davies/grouping.
-
- Jan 31, 2016
-
-
Herman van Hovell authored
This PR adds the ability to specify the ```ignoreNulls``` option to the functions dsl, e.g: ```df.select($"id", last($"value", ignoreNulls = true).over(Window.partitionBy($"id").orderBy($"other"))``` This PR is some where between a bug fix (see the JIRA) and a new feature. I am not sure if we should backport to 1.6. cc yhuai Author: Herman van Hovell <hvanhovell@questtec.nl> Closes #10957 from hvanhovell/SPARK-13049.
-
- Jan 13, 2016
-
-
Wenchen Fan authored
https://issues.apache.org/jira/browse/SPARK-12642 Author: Wenchen Fan <wenchen@databricks.com> Closes #10694 from cloud-fan/hash-expr.
-
- Jan 05, 2016
-
-
Wenchen Fan authored
address comments in #10435 This makes the API easier to use if user programmatically generate the call to hash, and they will get analysis exception if the arguments of hash is empty. Author: Wenchen Fan <wenchen@databricks.com> Closes #10588 from cloud-fan/hash.
-
- Jan 04, 2016
-
-
Reynold Xin authored
Author: Reynold Xin <rxin@databricks.com> Closes #10559 from rxin/remove-deprecated-sql.
-
- Dec 21, 2015
-
-
pshearer authored
Author: pshearer <pshearer@massmutual.com> Closes #10414 from pshearer/patch-1.
-
- Nov 26, 2015
-
-
gatorsmile authored
Added Python test cases for the function `isnan`, `isnull`, `nanvl` and `json_tuple`. Fixed a bug in the function `json_tuple` rxin , could you help me review my changes? Please let me know anything is missing. Thank you! Have a good Thanksgiving day! Author: gatorsmile <gatorsmile@gmail.com> Closes #9977 from gatorsmile/json_tuple.
-
- Nov 24, 2015
-
-
Reynold Xin authored
Author: Reynold Xin <rxin@databricks.com> Closes #9948 from rxin/SPARK-10621.
-
- Nov 23, 2015
-
-
Davies Liu authored
They should use the existing SQLContext. Author: Davies Liu <davies@databricks.com> Closes #9914 from davies/create_udf.
-
- Nov 10, 2015
-
-
felixcheung authored
like `df.agg(corr("col1", "col2")` davies Author: felixcheung <felixcheung_m@hotmail.com> Closes #9536 from felixcheung/pyfunc.
-
Yin Huai authored
[SPARK-9830][SQL] Remove AggregateExpression1 and Aggregate Operator used to evaluate AggregateExpression1s https://issues.apache.org/jira/browse/SPARK-9830 This PR contains the following main changes. * Removing `AggregateExpression1`. * Removing `Aggregate` operator, which is used to evaluate `AggregateExpression1`. * Removing planner rule used to plan `Aggregate`. * Linking `MultipleDistinctRewriter` to analyzer. * Renaming `AggregateExpression2` to `AggregateExpression` and `AggregateFunction2` to `AggregateFunction`. * Updating places where we create aggregate expression. The way to create aggregate expressions is `AggregateExpression(aggregateFunction, mode, isDistinct)`. * Changing `val`s in `DeclarativeAggregate`s that touch children of this function to `lazy val`s (when we create aggregate expression in DataFrame API, children of an aggregate function can be unresolved). Author: Yin Huai <yhuai@databricks.com> Closes #9556 from yhuai/removeAgg1.
-
- Nov 09, 2015
-
-
Nick Buroojy authored
For now they are thin wrappers around the corresponding Hive UDAFs. One limitation with these in Hive 0.13.0 is they only support aggregating primitive types. I chose snake_case here instead of camelCase because it seems to be used in the majority of the multi-word fns. Do we also want to add these to `functions.py`? This approach was recommended here: https://github.com/apache/spark/pull/8592#issuecomment-154247089 marmbrus rxin Author: Nick Buroojy <nick.buroojy@civitaslearning.com> Closes #9526 from nburoojy/nick/udaf-alias. (cherry picked from commit a6ee4f98) Signed-off-by:
Michael Armbrust <michael@databricks.com>
-
- Nov 03, 2015
-
-
Davies Liu authored
Add Python API for stddev/stddev_pop/stddev_samp/variance/var_pop/var_samp/skewness/kurtosis Author: Davies Liu <davies@databricks.com> Closes #9424 from davies/py_var.
-
- Sep 22, 2015
-
-
Jian Feng authored
https://issues.apache.org/jira/browse/SPARK-10577 Author: Jian Feng <jzhang.chs@gmail.com> Closes #8801 from Jianfeng-chs/master.
-
- Sep 08, 2015
-
-
Davies Liu authored
cc mengxr Author: Davies Liu <davies@databricks.com> Closes #8657 from davies/move_since.
-