Skip to content
Snippets Groups Projects
Commit f0afafdc authored by Davies Liu's avatar Davies Liu Committed by Davies Liu
Browse files

[SPARK-14267] [SQL] [PYSPARK] execute multiple Python UDFs within single batch

## What changes were proposed in this pull request?

This PR support multiple Python UDFs within single batch, also improve the performance.

```python
>>> from pyspark.sql.types import IntegerType
>>> sqlContext.registerFunction("double", lambda x: x * 2, IntegerType())
>>> sqlContext.registerFunction("add", lambda x, y: x + y, IntegerType())
>>> sqlContext.sql("SELECT double(add(1, 2)), add(double(2), 1)").explain(True)
== Parsed Logical Plan ==
'Project [unresolvedalias('double('add(1, 2)), None),unresolvedalias('add('double(2), 1), None)]
+- OneRowRelation$

== Analyzed Logical Plan ==
double(add(1, 2)): int, add(double(2), 1): int
Project [double(add(1, 2))#14,add(double(2), 1)#15]
+- Project [double(add(1, 2))#14,add(double(2), 1)#15]
   +- Project [pythonUDF0#16 AS double(add(1, 2))#14,pythonUDF0#18 AS add(double(2), 1)#15]
      +- EvaluatePython [add(pythonUDF1#17, 1)], [pythonUDF0#18]
         +- EvaluatePython [double(add(1, 2)),double(2)], [pythonUDF0#16,pythonUDF1#17]
            +- OneRowRelation$

== Optimized Logical Plan ==
Project [pythonUDF0#16 AS double(add(1, 2))#14,pythonUDF0#18 AS add(double(2), 1)#15]
+- EvaluatePython [add(pythonUDF1#17, 1)], [pythonUDF0#18]
   +- EvaluatePython [double(add(1, 2)),double(2)], [pythonUDF0#16,pythonUDF1#17]
      +- OneRowRelation$

== Physical Plan ==
WholeStageCodegen
:  +- Project [pythonUDF0#16 AS double(add(1, 2))#14,pythonUDF0#18 AS add(double(2), 1)#15]
:     +- INPUT
+- !BatchPythonEvaluation [add(pythonUDF1#17, 1)], [pythonUDF0#16,pythonUDF1#17,pythonUDF0#18]
   +- !BatchPythonEvaluation [double(add(1, 2)),double(2)], [pythonUDF0#16,pythonUDF1#17]
      +- Scan OneRowRelation[]
```

## How was this patch tested?

Added new tests.

Using the following script to benchmark 1, 2 and 3 udfs,
```
df = sqlContext.range(1, 1 << 23, 1, 4)
double = F.udf(lambda x: x * 2, LongType())
print df.select(double(df.id)).count()
print df.select(double(df.id), double(df.id + 1)).count()
print df.select(double(df.id), double(df.id + 1), double(df.id + 2)).count()
```
Here is the results:

N | Before | After  | speed up
---- |------------ | -------------|------
1 | 22 s | 7 s |  3.1X
2 | 38 s | 13 s | 2.9X
3 | 58 s | 16 s | 3.6X

This benchmark ran locally with 4 CPUs. For 3 UDFs, it launched 12 Python before before this patch, 4 process after this patch. After this patch, it will use less memory for multiple UDFs than before (less buffering).

Author: Davies Liu <davies@databricks.com>

Closes #12057 from davies/multi_udfs.
parent 8de201ba
No related branches found
No related tags found
No related merge requests found
Loading
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment