- Jan 26, 2016
-
-
Cheng Lian authored
This PR integrates Count-Min Sketch from spark-sketch into DataFrame. This version resorts to `RDD.aggregate` for building the sketch. A more performant UDAF version can be built in future follow-up PRs. Author: Cheng Lian <lian@databricks.com> Closes #10911 from liancheng/cms-df-api.
-
Yanbo Liang authored
Add ```covar_samp``` and ```covar_pop``` for SparkR. Should we also provide ```cov``` alias for ```covar_samp```? There is ```cov``` implementation at stats.R which masks ```stats::cov``` already, but may bring to breaking API change. cc sun-rui felixcheung shivaram Author: Yanbo Liang <ybliang8@gmail.com> Closes #10829 from yanboliang/spark-12903.
-
Holden Karau authored
The intercept in Logistic Regression represents a prior on categories which should not be regularized. In MLlib, the regularization is handled through Updater, and the Updater penalizes all the components without excluding the intercept which resulting poor training accuracy with regularization. The new implementation in ML framework handles this properly, and we should call the implementation in ML from MLlib since majority of users are still using MLlib api. Note that both of them are doing feature scalings to improve the convergence, and the only difference is ML version doesn't regularize the intercept. As a result, when lambda is zero, they will converge to the same solution. Previously partially reviewed at https://github.com/apache/spark/pull/6386#issuecomment-168781424 re-opening for dbtsai to review. Author: Holden Karau <holden@us.ibm.com> Author: Holden Karau <holden@pigscanfly.ca> Closes #10788 from holdenk/SPARK-7780-intercept-in-logisticregressionwithLBFGS-should-not-be-regularized.
-
Nong Li authored
This patch adds support for complex types for ColumnarBatch. ColumnarBatch supports structs and arrays. There is a simple mapping between the richer catalyst types to these two. Strings are treated as an array of bytes. ColumnarBatch will contain a column for each node of the schema. Non-complex schemas consists of just leaf nodes. Structs represent an internal node with one child for each field. Arrays are internal nodes with one child. Structs just contain nullability. Arrays contain offsets and lengths into the child array. This structure is able to handle arbitrary nesting. It has the key property that we maintain columnar throughout and that primitive types are only stored in the leaf nodes and contiguous across rows. For example, if the schema is ``` array<array<int>> ``` There are three columns in the schema. The internal nodes each have one children. The leaf node contains all the int data stored consecutively. As part of this, this patch adds append APIs in addition to the Put APIs (e.g. putLong(rowid, v) vs appendLong(v)). These APIs are necessary when the batch contains variable length elements. The vectors are not fixed length and will grow as necessary. This should make the usage a lot simpler for the writer. Author: Nong Li <nong@databricks.com> Closes #10820 from nongli/spark-12854.
-
Jeff Zhang authored
… Add LibSVMOutputWriter The behavior of LibSVMRelation is not changed except adding LibSVMOutputWriter * Partition is still not supported * Multiple input paths is not supported Author: Jeff Zhang <zjffdu@apache.org> Closes #9595 from zjffdu/SPARK-11622.
-
Shixiong Zhu authored
Right now RpcEndpointRef.ask may throw exception in some corner cases, such as calling ask after stopping RpcEnv. It's better to avoid throwing exception from RpcEndpointRef.ask. We can send the exception to the future for `ask`. Author: Shixiong Zhu <shixiong@databricks.com> Closes #10568 from zsxwing/send-ask-fail.
-
Holden Karau authored
The current python ml params require cut-and-pasting the param setup and description between the class & ```__init__``` methods. Remove this possible case of errors & simplify use of custom params by adding a ```_copy_new_parent``` method to param so as to avoid cut and pasting (and cut and pasting at different indentation levels urgh). Author: Holden Karau <holden@us.ibm.com> Closes #10216 from holdenk/SPARK-10509-excessive-param-boiler-plate-code.
-
Jeff Zhang authored
environment variable ADD_FILES is created for adding python files on spark context to be distributed to executors (SPARK-865), this is deprecated now. User are encouraged to use --py-files for adding python files. Author: Jeff Zhang <zjffdu@apache.org> Closes #10913 from zjffdu/SPARK-12993.
-
Cheng Lian authored
Otherwise the `^` character is always marked as error in IntelliJ since it represents an unclosed superscript markup tag. Author: Cheng Lian <lian@databricks.com> Closes #10926 from liancheng/agg-doc-fix.
-
Josh Rosen authored
This patch improves our `dev/run-tests` script to test modules in a topologically-sorted order based on modules' dependencies. This will help to ensure that bugs in upstream projects are not misattributed to downstream projects because those projects' tests were the first ones to exhibit the failure Topological sorting is also useful for shortening the feedback loop when testing pull requests: if I make a change in SQL then the SQL tests should run before MLlib, not after. In addition, this patch also updates our test module definitions to split `sql` into `catalyst`, `sql`, and `hive` in order to allow more tests to be skipped when changing only `hive/` files. Author: Josh Rosen <joshrosen@databricks.com> Closes #10885 from JoshRosen/SPARK-8725.
-
Xusen Yin authored
https://issues.apache.org/jira/browse/SPARK-12952 Author: Xusen Yin <yinxusen@gmail.com> Closes #10863 from yinxusen/SPARK-12952.
-
Xusen Yin authored
https://issues.apache.org/jira/browse/SPARK-11923 Author: Xusen Yin <yinxusen@gmail.com> Closes #10186 from yinxusen/SPARK-11923.
-
Shixiong Zhu authored
[SPARK-7799][STREAMING][DOCUMENT] Add the linking and deploying instructions for streaming-akka project Since `actorStream` is an external project, we should add the linking and deploying instructions for it. A follow up PR of #10744 Author: Shixiong Zhu <shixiong@databricks.com> Closes #10856 from zsxwing/akka-link-instruction.
-
Sameer Agarwal authored
This PR adds a new table option (`skip_hive_metadata`) that'd allow the user to skip storing the table metadata in hive metadata format. While this could be useful in general, the specific use-case for this change is that Hive doesn't handle wide schemas well (see https://issues.apache.org/jira/browse/SPARK-12682 and https://issues.apache.org/jira/browse/SPARK-6024) which in turn prevents such tables from being queried in SparkSQL. Author: Sameer Agarwal <sameer@databricks.com> Closes #10826 from sameeragarwal/skip-hive-metadata.
-
zhuol authored
Call system.exit explicitly to make sure non-daemon user threads terminate. Without this, user applications might live forever if the cluster manager does not appropriately kill them. E.g., YARN had this bug: HADOOP-12441. Author: zhuol <zhuol@yahoo-inc.com> Closes #9946 from zhuoliu/10911.
-
Sean Owen authored
[SPARK-3369][CORE][STREAMING] Java mapPartitions Iterator->Iterable is inconsistent with Scala's Iterator->Iterator Fix Java function API methods for flatMap and mapPartitions to require producing only an Iterator, not Iterable. Also fix DStream.flatMap to require a function producing TraversableOnce only, not Traversable. CC rxin pwendell for API change; tdas since it also touches streaming. Author: Sean Owen <sowen@cloudera.com> Closes #10413 from srowen/SPARK-3369.
-
Liang-Chi Hsieh authored
JIRA: https://issues.apache.org/jira/browse/SPARK-12961 To prevent memory leak in snappy-java, just call the method once and cache the result. After the library releases new version, we can remove this object. JoshRosen Author: Liang-Chi Hsieh <viirya@gmail.com> Closes #10875 from viirya/prevent-snappy-memory-leak.
-
Wenchen Fan authored
This PR adds serialization support for BloomFilter. A version number is added to version the serialized binary format. Author: Wenchen Fan <wenchen@databricks.com> Closes #10920 from cloud-fan/bloom-filter.
-
Reynold Xin authored
This pull request simply fixes a few minor coding style issues in csv, as I was reviewing the change post-hoc. Author: Reynold Xin <rxin@databricks.com> Closes #10919 from rxin/csv-minor.
-
Xiangrui Meng authored
I saw several failures from recent PR builds, e.g., https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder/50015/consoleFull. This PR marks the test as ignored and we will fix the flakyness in SPARK-10086. gliptak Do you know why the test failure didn't show up in the Jenkins "Test Result"? cc: jkbradley Author: Xiangrui Meng <meng@databricks.com> Closes #10909 from mengxr/SPARK-10086.
-
Xusen Yin authored
https://issues.apache.org/jira/browse/SPARK-12834 We use `SerDe.dumps()` to serialize `JavaArray` and `JavaList` in `PythonMLLibAPI`, then deserialize them with `PickleSerializer` in Python side. However, there is no need to transform them in such an inefficient way. Instead of it, we can use type conversion to convert them, e.g. `list(JavaArray)` or `list(JavaList)`. What's more, there is an issue to Ser/De Scala Array as I said in https://issues.apache.org/jira/browse/SPARK-12780 Author: Xusen Yin <yinxusen@gmail.com> Closes #10772 from yinxusen/SPARK-12834.
-
Holden Karau authored
Add Python API for ml.feature.QuantileDiscretizer. One open question: Do we want to do this stuff to re-use the java model, create a new model, or use a different wrapper around the java model. cc brkyvz & mengxr Author: Holden Karau <holden@us.ibm.com> Closes #10085 from holdenk/SPARK-11937-SPARK-11922-Python-API-for-ml.feature.QuantileDiscretizer.
-
- Jan 25, 2016
-
-
tedyu authored
liancheng please take a look Author: tedyu <yuzhihong@gmail.com> Closes #10906 from tedyu/master.
-
Wenchen Fan authored
This PR adds an initial implementation of bloom filter in the newly added sketch module. The implementation is based on the [`BloomFilter` class in guava](https://code.google.com/p/guava-libraries/source/browse/guava/src/com/google/common/hash/BloomFilter.java). Some difference from the design doc: * expose `bitSize` instead of `sizeInBytes` to user. * always need the `expectedInsertions` parameter when create bloom filter. Author: Wenchen Fan <wenchen@databricks.com> Closes #10883 from cloud-fan/bloom-filter.
-
Wenchen Fan authored
As we begin to use unsafe row writing framework(`BufferHolder` and `UnsafeRowWriter`) in more and more places(`UnsafeProjection`, `UnsafeRowParquetRecordReader`, `GenerateColumnAccessor`, etc.), we should add more doc to it and make it easier to use. This PR abstract the technique used in `UnsafeRowParquetRecordReader`: avoid unnecessary operatition as more as possible. For example, do not always point the row to the buffer at the end, we only need to update the size of row. If all fields are of primitive type, we can even save the row size updating. Then we can apply this technique to more places easily. a local benchmark shows `UnsafeProjection` is up to 1.7x faster after this PR: **old version** ``` Intel(R) Core(TM) i7-4960HQ CPU 2.60GHz unsafe projection: Avg Time(ms) Avg Rate(M/s) Relative Rate ------------------------------------------------------------------------------- single long 2616.04 102.61 1.00 X single nullable long 3032.54 88.52 0.86 X primitive types 9121.05 29.43 0.29 X nullable primitive types 12410.60 21.63 0.21 X ``` **new version** ``` Intel(R) Core(TM) i7-4960HQ CPU 2.60GHz unsafe projection: Avg Time(ms) Avg Rate(M/s) Relative Rate ------------------------------------------------------------------------------- single long 1533.34 175.07 1.00 X single nullable long 2306.73 116.37 0.66 X primitive types 8403.93 31.94 0.18 X nullable primitive types 12448.39 21.56 0.12 X ``` For single non-nullable long(the best case), we can have about 1.7x speed up. Even it's nullable, we can still have 1.3x speed up. For other cases, it's not such a boost as the saved operations only take a little proportion of the whole process. The benchmark code is included in this PR. Author: Wenchen Fan <wenchen@databricks.com> Closes #10809 from cloud-fan/unsafe-projection.
-
Cheng Lian authored
This PR adds serialization support for `CountMinSketch`. A version number is added to version the serialized binary format. Author: Cheng Lian <lian@databricks.com> Closes #10893 from liancheng/cms-serialization.
-
Yanbo Liang authored
```PCAModel``` can output ```explainedVariance``` at Python side. cc mengxr srowen Author: Yanbo Liang <ybliang8@gmail.com> Closes #10830 from yanboliang/spark-12905.
-
gatorsmile authored
When users are using `partitionBy` and `bucketBy` at the same time, some bucketing columns might be part of partitioning columns. For example, ``` df.write .format(source) .partitionBy("i") .bucketBy(8, "i", "k") .saveAsTable("bucketed_table") ``` However, in the above case, adding column `i` into `bucketBy` is useless. It is just wasting extra CPU when reading or writing bucket tables. Thus, like Hive, we can issue an exception and let users do the change. Also added a test case for checking if the information of `sortBy` and `bucketBy` columns are correctly saved in the metastore table. Could you check if my understanding is correct? cloud-fan rxin marmbrus Thanks! Author: gatorsmile <gatorsmile@gmail.com> Closes #10891 from gatorsmile/commonKeysInPartitionByBucketBy.
-
Yin Huai authored
-
Davies Liu authored
This PR brings back visualization for generated operators, they looks like:   Note: SQL metrics are not supported right now, because they are very slow, will be supported once we have batch mode. Author: Davies Liu <davies@databricks.com> Closes #10828 from davies/viz_codegen.
-
Alex Bozarth authored
Added color coding to the Executors page for Active Tasks, Failed Tasks, Completed Tasks and Task Time. Active Tasks is shaded blue with it's range based on percentage of total cores used. Failed Tasks is shaded red ranging over the first 10% of total tasks failed Completed Tasks is shaded green ranging over 10% of total tasks including failed and active tasks, but only when there are active or failed tasks on that executor. Task Time is shaded red when GC Time goes over 10% of total time with it's range directly corresponding to the percent of total time. Author: Alex Bozarth <ajbozart@us.ibm.com> Closes #10154 from ajbozarth/spark12149.
-
Xiangrui Meng authored
Closes #9046 Closes #8532 Closes #10756 Closes #8960 Closes #10485 Closes #10467
-
Yanbo Liang authored
Update user guide for RFormula feature interactions. Meanwhile we also update other new features such as supporting string label in Spark 1.6. Author: Yanbo Liang <ybliang8@gmail.com> Closes #10222 from yanboliang/spark-11965.
-
Michael Allman authored
[SPARK-12755][CORE] Stop the event logger before the DAG scheduler to avoid a race condition where the standalone master attempts to build the app's history UI before the event log is stopped. This contribution is my original work, and I license this work to the Spark project under the project's open source license. Author: Michael Allman <michael@videoamp.com> Closes #10700 from mallman/stop_event_logger_first.
-
Andy Grove authored
Author: Andy Grove <andygrove73@gmail.com> Closes #10865 from andygrove/SPARK-12932.
-
hyukjinkwon authored
https://issues.apache.org/jira/browse/SPARK-12901 This PR refactors the options in JSON and CSV datasources. In more details, 1. `JSONOptions` uses the same format as `CSVOptions`. 2. Not case classes. 3. `CSVRelation` that does not have to be serializable (it was `with Serializable` but I removed) Author: hyukjinkwon <gurwls223@gmail.com> Closes #10895 from HyukjinKwon/SPARK-12901.
-
- Jan 24, 2016
-
-
Cheng Lian authored
When actual row length doesn't conform to specified schema field length, we should give a better error message instead of throwing an unintuitive `ArrayOutOfBoundsException`. Author: Cheng Lian <lian@databricks.com> Closes #10886 from liancheng/spark-12624.
-
Jeff Zhang authored
…ialize HiveContext in PySpark davies Mind to review ? This is the error message after this PR ``` 15/12/03 16:59:53 WARN ObjectStore: Failed to get database default, returning NoSuchObjectException /Users/jzhang/github/spark/python/pyspark/sql/context.py:689: UserWarning: You must build Spark with Hive. Export 'SPARK_HIVE=true' and run build/sbt assembly warnings.warn("You must build Spark with Hive. " Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Users/jzhang/github/spark/python/pyspark/sql/context.py", line 663, in read return DataFrameReader(self) File "/Users/jzhang/github/spark/python/pyspark/sql/readwriter.py", line 56, in __init__ self._jreader = sqlContext._ssql_ctx.read() File "/Users/jzhang/github/spark/python/pyspark/sql/context.py", line 692, in _ssql_ctx raise e py4j.protocol.Py4JJavaError: An error occurred while calling None.org.apache.spark.sql.hive.HiveContext. : java.lang.RuntimeException: java.net.ConnectException: Call From jzhangMBPr.local/127.0.0.1 to 0.0.0.0:9000 failed on connection exception: java.net.ConnectException: Connection refused; For more details see: http://wiki.apache.org/hadoop/ConnectionRefused at org.apache.hadoop.hive.ql.session.SessionState.start(SessionState.java:522) at org.apache.spark.sql.hive.client.ClientWrapper.<init>(ClientWrapper.scala:194) at org.apache.spark.sql.hive.client.IsolatedClientLoader.createClient(IsolatedClientLoader.scala:238) at org.apache.spark.sql.hive.HiveContext.executionHive$lzycompute(HiveContext.scala:218) at org.apache.spark.sql.hive.HiveContext.executionHive(HiveContext.scala:208) at org.apache.spark.sql.hive.HiveContext.functionRegistry$lzycompute(HiveContext.scala:462) at org.apache.spark.sql.hive.HiveContext.functionRegistry(HiveContext.scala:461) at org.apache.spark.sql.UDFRegistration.<init>(UDFRegistration.scala:40) at org.apache.spark.sql.SQLContext.<init>(SQLContext.scala:330) at org.apache.spark.sql.hive.HiveContext.<init>(HiveContext.scala:90) at org.apache.spark.sql.hive.HiveContext.<init>(HiveContext.scala:101) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:526) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:234) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381) at py4j.Gateway.invoke(Gateway.java:214) at py4j.commands.ConstructorCommand.invokeConstructor(ConstructorCommand.java:79) at py4j.commands.ConstructorCommand.execute(ConstructorCommand.java:68) at py4j.GatewayConnection.run(GatewayConnection.java:209) at java.lang.Thread.run(Thread.java:745) ``` Author: Jeff Zhang <zjffdu@apache.org> Closes #10126 from zjffdu/SPARK-12120.
-
Holden Karau authored
Minor since so few people use them, but it would probably be good to have a requirements file for our python release tools for easier setup (also version pinning). cc JoshRosen who looked at the original JIRA. Author: Holden Karau <holden@us.ibm.com> Closes #10871 from holdenk/SPARK-10498-add-requirements-file-for-dev-python-tools.
-
Josh Rosen authored
ErrorPositionSuite and one of the HiveComparisonTest tests have been consistently failing on the Hadoop 2.3 SBT build (but on no other builds). I believe that this is due to test isolation issues (e.g. tests sharing state via the sets of temporary tables that are registered to TestHive). This patch attempts to improve the isolation of these tests in order to address this issue. Author: Josh Rosen <joshrosen@databricks.com> Closes #10884 from JoshRosen/fix-failing-hadoop-2.3-hive-tests.
-