- Feb 08, 2017
-
-
Dongjoon Hyun authored
## What changes were proposed in this pull request? After SPARK-19464, **SparkPullRequestBuilder** fails because it still tries to use hadoop2.3. **BEFORE** https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder/72595/console ``` ======================================================================== Building Spark ======================================================================== [error] Could not find hadoop2.3 in the list. Valid options are ['hadoop2.6', 'hadoop2.7'] Attempting to post to Github... > Post successful. ``` **AFTER** https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder/72595/console ``` ======================================================================== Building Spark ======================================================================== [info] Building Spark (w/Hive 1.2.1) using SBT with these arguments: -Phadoop-2.6 -Pmesos -Pkinesis-asl -Pyarn -Phive-thriftserver -Phive test:package streaming-kafka-0-8-assembly/assembly streaming-flume-assembly/assembly streaming-kinesis-asl-assembly/assembly Using /usr/java/jdk1.8.0_60 as default JAVA_HOME. Note, this will be overridden by -java-home if it is set. ``` ## How was this patch tested? Pass the existing test. Author: Dongjoon Hyun <dongjoon@apache.org> Closes #16858 from dongjoon-hyun/hotfix_run-tests.
-
actuaryzhang authored
## What changes were proposed in this pull request? Intercept-only GLM is failing for non-Gaussian family because of reducing an empty array in IWLS. The following code `val maxTolOfCoefficients = oldCoefficients.toArray.reduce { (x, y) => math.max(math.abs(x), math.abs(y))` fails in the intercept-only model because `oldCoefficients` is empty. This PR fixes this issue. yanboliang srowen imatiach-msft zhengruifeng ## How was this patch tested? New test for intercept only model. Author: actuaryzhang <actuaryzhang10@gmail.com> Closes #16740 from actuaryzhang/interceptOnly.
-
Sean Owen authored
[SPARK-19464][BUILD][HOTFIX][TEST-HADOOP2.6] Add back mockito test dep in YARN module, as it ends up being required in a Maven build Add back mockito test dep in YARN module, as it ends up being required in a Maven build ## How was this patch tested? PR builder again, but also a local `mvn` run using the command that the broken Jenkins job uses Author: Sean Owen <sowen@cloudera.com> Closes #16853 from srowen/SPARK-19464.2.
-
gatorsmile authored
### What changes were proposed in this pull request? `table.schema` is always not empty for partitioned tables, because `table.schema` also contains the partitioned columns, even if the original table does not have any column. This PR is to fix the issue. ### How was this patch tested? Added a test case Author: gatorsmile <gatorsmile@gmail.com> Closes #16848 from gatorsmile/inferHiveSerdeSchema.
-
Dongjoon Hyun authored
[SPARK-19409][BUILD][TEST-MAVEN] Fix ParquetAvroCompatibilitySuite failure due to test dependency on avro ## What changes were proposed in this pull request? After using Apache Parquet 1.8.2, `ParquetAvroCompatibilitySuite` fails on **Maven** test. It is because `org.apache.parquet.avro.AvroParquetWriter` in the test code used new `avro 1.8.0` specific class, `LogicalType`. This PR aims to fix the test dependency of `sql/core` module to use avro 1.8.0. https://amplab.cs.berkeley.edu/jenkins/view/Spark%20QA%20Test%20(Dashboard)/job/spark-master-test-maven-hadoop-2.7/2530/consoleFull ``` ParquetAvroCompatibilitySuite: *** RUN ABORTED *** java.lang.NoClassDefFoundError: org/apache/avro/LogicalType at org.apache.parquet.avro.AvroParquetWriter.writeSupport(AvroParquetWriter.java:144) ``` ## How was this patch tested? Pass the existing test with **Maven**. ``` $ build/mvn -Pyarn -Phadoop-2.7 -Pkinesis-asl -Phive -Phive-thriftserver test ... [INFO] ------------------------------------------------------------------------ [INFO] BUILD SUCCESS [INFO] ------------------------------------------------------------------------ [INFO] Total time: 02:07 h [INFO] Finished at: 2017-02-04T05:41:43+00:00 [INFO] Final Memory: 77M/987M [INFO] ------------------------------------------------------------------------ ``` Author: Dongjoon Hyun <dongjoon@apache.org> Closes #16795 from dongjoon-hyun/SPARK-19409-2.
-
Sean Owen authored
## What changes were proposed in this pull request? - Remove support for Hadoop 2.5 and earlier - Remove reflection and code constructs only needed to support multiple versions at once - Update docs to reflect newer versions - Remove older versions' builds and profiles. ## How was this patch tested? Existing tests Author: Sean Owen <sowen@cloudera.com> Closes #16810 from srowen/SPARK-19464.
-
windpiger authored
## What changes were proposed in this pull request? when csv infer schema, it does not use user defined csvoptions to parse the field, such as `inf`, `-inf` which are should be parsed to DoubleType this pr add `options.nanValue`, `options.negativeInf`, `options.positiveIn` to check if the field is a DoubleType ## How was this patch tested? unit test added Author: windpiger <songjun@outlook.com> Closes #16834 from windpiger/fixinferInfSchemaCsv.
-
- Feb 07, 2017
-
-
manugarri authored
There is a typo in http://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html#creating-a-kafka-source-stream , python example n1 uses `readStream()` instead of `readStream` Just removed the parenthesis. Author: manugarri <manuel.garrido.pena@gmail.com> Closes #16836 from manugarri/fix_kafka_python_doc.
-
Nattavut Sutyanyong authored
[SPARK-18873][SQL][TEST] New test cases for scalar subquery (part 1 of 2) - scalar subquery in SELECT clause ## What changes were proposed in this pull request? This PR adds new test cases for scalar subquery in SELECT clause. ## How was this patch tested? The test result is compared with the result run from another SQL engine (in this case is IBM DB2). If the result are equivalent, we assume the result is correct. Author: Nattavut Sutyanyong <nsy.can@gmail.com> Closes #16712 from nsyca/18873.
-
CodingCat authored
## What changes were proposed in this pull request? addBatch method in Sink trait is supposed to be a synchronous method to coordinate with the fault-tolerance design in StreamingExecution (being different with the compute() method in DStream) We need to add more notes in the comments of this method to remind the developers ## How was this patch tested? existing tests Author: CodingCat <zhunansjtu@gmail.com> Closes #16840 from CodingCat/SPARK-19499.
-
Tathagata Das authored
## What changes were proposed in this pull request? `mapGroupsWithState` is a new API for arbitrary stateful operations in Structured Streaming, similar to `DStream.mapWithState` *Requirements* - Users should be able to specify a function that can do the following - Access the input row corresponding to a key - Access the previous state corresponding to a key - Optionally, update or remove the state - Output any number of new rows (or none at all) *Proposed API* ``` // ------------ New methods on KeyValueGroupedDataset ------------ class KeyValueGroupedDataset[K, V] { // Scala friendly def mapGroupsWithState[S: Encoder, U: Encoder](func: (K, Iterator[V], KeyedState[S]) => U) def flatMapGroupsWithState[S: Encode, U: Encoder](func: (K, Iterator[V], KeyedState[S]) => Iterator[U]) // Java friendly def mapGroupsWithState[S, U](func: MapGroupsWithStateFunction[K, V, S, R], stateEncoder: Encoder[S], resultEncoder: Encoder[U]) def flatMapGroupsWithState[S, U](func: FlatMapGroupsWithStateFunction[K, V, S, R], stateEncoder: Encoder[S], resultEncoder: Encoder[U]) } // ------------------- New Java-friendly function classes ------------------- public interface MapGroupsWithStateFunction<K, V, S, R> extends Serializable { R call(K key, Iterator<V> values, state: KeyedState<S>) throws Exception; } public interface FlatMapGroupsWithStateFunction<K, V, S, R> extends Serializable { Iterator<R> call(K key, Iterator<V> values, state: KeyedState<S>) throws Exception; } // ---------------------- Wrapper class for state data ---------------------- trait State[S] { def exists(): Boolean def get(): S // throws Exception is state does not exist def getOption(): Option[S] def update(newState: S): Unit def remove(): Unit // exists() will be false after this } ``` Key Semantics of the State class - The state can be null. - If the state.remove() is called, then state.exists() will return false, and getOption will returm None. - After that state.update(newState) is called, then state.exists() will return true, and getOption will return Some(...). - None of the operations are thread-safe. This is to avoid memory barriers. *Usage* ``` val stateFunc = (word: String, words: Iterator[String, runningCount: KeyedState[Long]) => { val newCount = words.size + runningCount.getOption.getOrElse(0L) runningCount.update(newCount) (word, newCount) } dataset // type is Dataset[String] .groupByKey[String](w => w) // generates KeyValueGroupedDataset[String, String] .mapGroupsWithState[Long, (String, Long)](stateFunc) // returns Dataset[(String, Long)] ``` ## How was this patch tested? New unit tests. Author: Tathagata Das <tathagata.das1565@gmail.com> Closes #16758 from tdas/mapWithState.
-
gatorsmile authored
### What changes were proposed in this pull request? Prior to Spark 2.1, the option names are case sensitive for all the formats. Since Spark 2.1, the option key names become case insensitive except the format `Text` and `LibSVM `. This PR is to fix these issues. Also, add a check to know whether the input option vector type is legal for `LibSVM`. ### How was this patch tested? Added test cases Author: gatorsmile <gatorsmile@gmail.com> Closes #16737 from gatorsmile/libSVMTextOptions.
-
Tyson Condie authored
## What changes were proposed in this pull request? Today, you can start a stream that reads from kafka. However, given kafka's configurable retention period, it seems like sometimes you might just want to read all of the data that is available now. As such we should add a version that works with spark.read as well. The options should be the same as the streaming kafka source, with the following differences: startingOffsets should default to earliest, and should not allow latest (which would always be empty). endingOffsets should also be allowed and should default to latest. the same assign json format as startingOffsets should also be accepted. It would be really good, if things like .limit(n) were enough to prevent all the data from being read (this might just work). ## How was this patch tested? KafkaRelationSuite was added for testing batch queries via KafkaUtils. Author: Tyson Condie <tcondie@gmail.com> Closes #16686 from tcondie/SPARK-18682.
-
Herman van Hovell authored
## What changes were proposed in this pull request? The optimizer tries to remove redundant alias only projections from the query plan using the `RemoveAliasOnlyProject` rule. The current rule identifies removes such a project and rewrites the project's attributes in the **entire** tree. This causes problems when parts of the tree are duplicated (for instance a self join on a temporary view/CTE) and the duplicated part contains the alias only project, in this case the rewrite will break the tree. This PR fixes these problems by using a blacklist for attributes that are not to be moved, and by making sure that attribute remapping is only done for the parent tree, and not for unrelated parts of the query plan. The current tree transformation infrastructure works very well if the transformation at hand requires little or a global contextual information. In this case we need to know both the attributes that were not to be moved, and we also needed to know which child attributes were modified. This cannot be done easily using the current infrastructure, and solutions typically involves transversing the query plan multiple times (which is super slow). I have moved around some code in `TreeNode`, `QueryPlan` and `LogicalPlan`to make this much more straightforward; this basically allows you to manually traverse the tree. This PR subsumes the following PRs by windpiger: Closes https://github.com/apache/spark/pull/16267 Closes https://github.com/apache/spark/pull/16255 ## How was this patch tested? I have added unit tests to `RemoveRedundantAliasAndProjectSuite` and I have added integration tests to the `SQLQueryTestSuite.union` and `SQLQueryTestSuite.cte` test cases. Author: Herman van Hovell <hvanhovell@databricks.com> Closes #16757 from hvanhovell/SPARK-18609.
-
Reynold Xin authored
## What changes were proposed in this pull request? This pull request makes SQLConf slightly more extensible by removing the visibility limitations on the build* functions. ## How was this patch tested? N/A - there are no logic changes and everything should be covered by existing unit tests. Author: Reynold Xin <rxin@databricks.com> Closes #16835 from rxin/SPARK-19495.
-
anabranch authored
## What changes were proposed in this pull request? This pull request adds two new user facing functions: - `to_date` which accepts an expression and a format and returns a date. - `to_timestamp` which accepts an expression and a format and returns a timestamp. For example, Given a date in format: `2016-21-05`. (YYYY-dd-MM) ### Date Function *Previously* ``` to_date(unix_timestamp(lit("2016-21-05"), "yyyy-dd-MM").cast("timestamp")) ``` *Current* ``` to_date(lit("2016-21-05"), "yyyy-dd-MM") ``` ### Timestamp Function *Previously* ``` unix_timestamp(lit("2016-21-05"), "yyyy-dd-MM").cast("timestamp") ``` *Current* ``` to_timestamp(lit("2016-21-05"), "yyyy-dd-MM") ``` ### Tasks - [X] Add `to_date` to Scala Functions - [x] Add `to_date` to Python Functions - [x] Add `to_date` to SQL Functions - [X] Add `to_timestamp` to Scala Functions - [x] Add `to_timestamp` to Python Functions - [x] Add `to_timestamp` to SQL Functions - [x] Add function to R ## How was this patch tested? - [x] Add Functions to `DateFunctionsSuite` - Test new `ParseToTimestamp` Expression (*not necessary*) - Test new `ParseToDate` Expression (*not necessary*) - [x] Add test for R - [x] Add test for Python in test.py Please review http://spark.apache.org/contributing.html before opening a pull request. Author: anabranch <wac.chambers@gmail.com> Author: Bill Chambers <bill@databricks.com> Author: anabranch <bill@databricks.com> Closes #16138 from anabranch/SPARK-16609.
-
Ala Luszczak authored
## What changes were proposed in this pull request? This change introduces a new metric "number of generated rows". It is used exclusively for Range, which is a leaf in the query tree, yet doesn't read any input data, and therefore cannot report "recordsRead". Additionally the way in which the metrics are reported by the JIT-compiled version of Range was changed. Previously, it was immediately reported that all the records were produced. This could be confusing for a user monitoring execution progress in the UI. Now, the metric is updated gradually. In order to avoid negative impact on Range performance, the code generation was reworked. The values are now produced in batches in the tighter inner loop, while the metrics are updated in the outer loop. The change also contains a number of unit tests, which should help ensure the correctness of metrics for various input sources. ## How was this patch tested? Unit tests. Author: Ala Luszczak <ala@databricks.com> Closes #16829 from ala/SPARK-19447.
-
gagan taneja authored
## What changes were proposed in this pull request? I have a frequency distribution table with following entries Age, No of person 21, 10 22, 15 23, 18 .. .. 30, 14 Moreover it is common to have data in frequency distribution format to further calculate Percentile, Median. With current implementation It would be very difficult and complex to find the percentile. Therefore i am proposing enhancement to current Percentile and Approx Percentile implementation to take frequency distribution column into consideration ## How was this patch tested? 1) Enhanced /sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/expressions/aggregate/PercentileSuite.scala to cover the additional functionality 2) Run some performance benchmark test with 20 million row in local environment and did not see any performance degradation Please review http://spark.apache.org/contributing.html before opening a pull request. Author: gagan taneja <tanejagagan@gagans-MacBook-Pro.local> Closes #16497 from tanejagagan/branch-18940.
-
hyukjinkwon authored
## What changes were proposed in this pull request? This PR refactors CSV schema inference path to be consistent with JSON data source and moves some filtering codes having the similar/same logics into `CSVUtils`. It makes the methods in classes have consistent arguments with JSON ones. (this PR renames `.../json/InferSchema.scala` → `.../json/JsonInferSchema.scala`) `CSVInferSchema` and `JsonInferSchema` ``` scala private[csv] object CSVInferSchema { ... def infer( csv: Dataset[String], caseSensitive: Boolean, options: CSVOptions): StructType = { ... ``` ``` scala private[sql] object JsonInferSchema { ... def infer( json: RDD[String], columnNameOfCorruptRecord: String, configOptions: JSONOptions): StructType = { ... ``` These allow schema inference from `Dataset[String]` directly, meaning the similar functionalities that use `JacksonParser`/`JsonInferSchema` for JSON can be easily implemented by `UnivocityParser`/`CSVInferSchema` for CSV. This completes refactoring CSV datasource and they are now pretty consistent. ## How was this patch tested? Existing tests should cover this and ``` ./dev/change-scala-version.sh 2.10 ./build/mvn -Pyarn -Phadoop-2.4 -Dscala-2.10 -DskipTests clean package ``` Author: hyukjinkwon <gurwls223@gmail.com> Closes #16680 from HyukjinKwon/SPARK-16101-schema-inference.
-
zuotingbing authored
JIRA Issue: https://issues.apache.org/jira/browse/SPARK-19260 ## What changes were proposed in this pull request? 1. “spark.history.fs.logDirectory” supports with space character and “%20” characters. 2. As usually, if the run classpath includes hdfs-site.xml and core-site.xml files, the supplied path eg."/test" which does not contain a scheme should be taken as a HDFS path rather than a local path since the path parameter is a Hadoop dir. ## How was this patch tested? Update Unit Test and take some manual tests local: .sbin/start-history-server.sh "file:/a b" .sbin/start-history-server.sh "/abc%20c" (without hdfs-site.xml,core-site.xml) .sbin/start-history-server.sh "/a b" (without hdfs-site.xml,core-site.xml) .sbin/start-history-server.sh "/a b/a bc%20c" (without hdfs-site.xml,core-site.xml) hdfs: .sbin/start-history-server.sh "hdfs:/namenode:9000/a b" .sbin/start-history-server.sh "/a b" (with hdfs-site.xml,core-site.xml) .sbin/start-history-server.sh "/a b/a bc%20c" (with hdfs-site.xml,core-site.xml) Author: zuotingbing <zuo.tingbing9@zte.com.cn> Closes #16614 from zuotingbing/SPARK-19260.
-
Aseem Bansal authored
## What changes were proposed in this pull request? SPARK-19444 imports not being present in documentation ## How was this patch tested? Manual ## Disclaimer Contribution is original work and I license the work to the project under the project’s open source license Author: Aseem Bansal <anshbansal@users.noreply.github.com> Closes #16789 from anshbansal/patch-1.
-
Eyal Farago authored
## What changes were proposed in this pull request? It often happens that a complex object (struct/map/array) is created only to get elements from it in an subsequent expression. We can add an optimizer rule for this. ## How was this patch tested? unit-tests Please review http://spark.apache.org/contributing.html before opening a pull request. Author: Eyal Farago <eyal@nrgene.com> Author: eyal farago <eyal.farago@gmail.com> Closes #16043 from eyalfa/SPARK-18601.
-
Imran Rashid authored
## What changes were proposed in this pull request? Before this change, with delay scheduling off, spark would effectively ignore locality preferences for bulk scheduling. With this change, locality preferences are used when multiple offers are made simultaneously. ## How was this patch tested? Test case added which fails without this change. All unit tests run via jenkins. Author: Imran Rashid <irashid@cloudera.com> Closes #16376 from squito/locality_without_delay.
-
- Feb 06, 2017
-
-
uncleGen authored
## What changes were proposed in this pull request? ``` Caused by: java.lang.IllegalArgumentException: Wrong FS: s3a://**************/checkpoint/7b2231a3-d845-4740-bfa3-681850e5987f/metadata, expected: file:/// at org.apache.hadoop.fs.FileSystem.checkPath(FileSystem.java:649) at org.apache.hadoop.fs.RawLocalFileSystem.pathToFile(RawLocalFileSystem.java:82) at org.apache.hadoop.fs.RawLocalFileSystem.deprecatedGetFileStatus(RawLocalFileSystem.java:606) at org.apache.hadoop.fs.RawLocalFileSystem.getFileLinkStatusInternal(RawLocalFileSystem.java:824) at org.apache.hadoop.fs.RawLocalFileSystem.getFileStatus(RawLocalFileSystem.java:601) at org.apache.hadoop.fs.FilterFileSystem.getFileStatus(FilterFileSystem.java:421) at org.apache.hadoop.fs.FileSystem.exists(FileSystem.java:1426) at org.apache.spark.sql.execution.streaming.StreamMetadata$.read(StreamMetadata.scala:51) at org.apache.spark.sql.execution.streaming.StreamExecution.<init>(StreamExecution.scala:100) at org.apache.spark.sql.streaming.StreamingQueryManager.createQuery(StreamingQueryManager.scala:232) at org.apache.spark.sql.streaming.StreamingQueryManager.startQuery(StreamingQueryManager.scala:269) at org.apache.spark.sql.streaming.DataStreamWriter.start(DataStreamWriter.scala:262) ``` Can easily replicate on spark standalone cluster by providing checkpoint location uri scheme anything other than "file://" and not overriding in config. WorkAround --conf spark.hadoop.fs.defaultFS=s3a://somebucket or set it in sparkConf or spark-default.conf ## How was this patch tested? existing ut Author: uncleGen <hustyugm@gmail.com> Closes #16815 from uncleGen/SPARK-19407.
-
zero323 authored
## What changes were proposed in this pull request? Remove cyclic imports between `pyspark.ml.pipeline` and `pyspark.ml`. ## How was this patch tested? Existing unit tests. Author: zero323 <zero323@users.noreply.github.com> Closes #16814 from zero323/SPARK-19467.
-
gatorsmile authored
### What changes were proposed in this pull request? The removed codes for `IN` are not reachable, because the previous rule `InConversion` already resolves the type coercion issues. ### How was this patch tested? N/A Author: gatorsmile <gatorsmile@gmail.com> Closes #16783 from gatorsmile/typeCoercionIn.
-
Herman van Hovell authored
## What changes were proposed in this pull request? The SQL parser can mistake a `WHEN (...)` used in `CASE` for a function call. This happens in cases like the following: ```sql select case when (1) + case when 1 > 0 then 1 else 0 end = 2 then 1 else 0 end from tb ``` This PR fixes this by re-organizing the case related parsing rules. ## How was this patch tested? Added a regression test to the `ExpressionParserSuite`. Author: Herman van Hovell <hvanhovell@databricks.com> Closes #16821 from hvanhovell/SPARK-19472.
-
Jin Xing authored
## What changes were proposed in this pull request? Log below is misleading: ``` if (successful(index)) { logInfo( s"Task ${info.id} in stage ${taskSet.id} (TID $tid) failed, " + "but another instance of the task has already succeeded, " + "so not re-queuing the task to be re-executed.") } ``` If fetch failed, the task is marked as successful in `TaskSetManager:: handleFailedTask`. Then log above will be printed. The `successful` just means task will not be scheduled any longer, not a real success. ## How was this patch tested? Existing unit tests can cover this. Author: jinxing <jinxing@meituan.com> Closes #16738 from jinxing64/SPARK-19398.
-
Wenchen Fan authored
## What changes were proposed in this pull request? The current way of resolving `InsertIntoTable` and `CreateTable` is convoluted: sometimes we replace them with concrete implementation commands during analysis, sometimes during planning phase. And the error checking logic is also a mess: we may put it in extended analyzer rules, or extended checking rules, or `CheckAnalysis`. This PR simplifies the data source analysis: 1. `InsertIntoTable` and `CreateTable` are always unresolved and need to be replaced by concrete implementation commands during analysis. 2. The error checking logic is mainly in 2 rules: `PreprocessTableCreation` and `PreprocessTableInsertion`. ## How was this patch tested? existing test. Author: Wenchen Fan <wenchen@databricks.com> Closes #16269 from cloud-fan/ddl.
-
hyukjinkwon authored
## What changes were proposed in this pull request? This PR proposes to enable the tests for Parquet filter pushdown with binary and string. This was disabled in https://github.com/apache/spark/pull/16106 due to Parquet's issue but it is now revived in https://github.com/apache/spark/pull/16791 after upgrading Parquet to 1.8.2. ## How was this patch tested? Manually tested `ParquetFilterSuite` via IDE. Author: hyukjinkwon <gurwls223@gmail.com> Closes #16817 from HyukjinKwon/SPARK-17213.
-
erenavsarogullari authored
[SPARK-17663][CORE] SchedulableBuilder should handle invalid data access via scheduler.allocation.file ## What changes were proposed in this pull request? If `spark.scheduler.allocation.file` has invalid `minShare` or/and `weight` values, these cause : - `NumberFormatException` due to `toInt` function - `SparkContext` can not be initialized. - It does not show meaningful error message to user. In a nutshell, this functionality can be more robust by selecting one of the following flows : **1-** Currently, if `schedulingMode` has an invalid value, a warning message is logged and default value is set as `FIFO`. Same pattern can be used for `minShare`(default: 0) and `weight`(default: 1) as well **2-** Meaningful error message can be shown to the user for all invalid cases. PR offers : - `schedulingMode` handles just empty values. It also needs to be supported for **whitespace**, **non-uppercase**(fair, FaIr etc...) or `SchedulingMode.NONE` cases by setting default value(`FIFO`) - `minShare` and `weight` handle just empty values. They also need to be supported for **non-integer** cases by setting default values. - Some refactoring of `PoolSuite`. **Code to Reproduce :** ``` val conf = new SparkConf().setAppName("spark-fairscheduler").setMaster("local") conf.set("spark.scheduler.mode", "FAIR") conf.set("spark.scheduler.allocation.file", "src/main/resources/fairscheduler-invalid-data.xml") val sc = new SparkContext(conf) ``` **fairscheduler-invalid-data.xml :** ``` <allocations> <pool name="production"> <schedulingMode>FIFO</schedulingMode> <weight>invalid_weight</weight> <minShare>2</minShare> </pool> </allocations> ``` **Stacktrace :** ``` Exception in thread "main" java.lang.NumberFormatException: For input string: "invalid_weight" at java.lang.NumberFormatException.forInputString(NumberFormatException.java:65) at java.lang.Integer.parseInt(Integer.java:580) at java.lang.Integer.parseInt(Integer.java:615) at scala.collection.immutable.StringLike$class.toInt(StringLike.scala:272) at scala.collection.immutable.StringOps.toInt(StringOps.scala:29) at org.apache.spark.scheduler.FairSchedulableBuilder$$anonfun$org$apache$spark$scheduler$FairSchedulableBuilder$$buildFairSchedulerPool$1.apply(SchedulableBuilder.scala:127) at org.apache.spark.scheduler.FairSchedulableBuilder$$anonfun$org$apache$spark$scheduler$FairSchedulableBuilder$$buildFairSchedulerPool$1.apply(SchedulableBuilder.scala:102) ``` ## How was this patch tested? Added Unit Test Case. Author: erenavsarogullari <erenavsarogullari@gmail.com> Closes #15237 from erenavsarogullari/SPARK-17663.
-
Cheng Lian authored
## What changes were proposed in this pull request? We've already upgraded parquet-mr to 1.8.2. This PR does some further cleanup by removing a workaround of PARQUET-686 and a hack due to PARQUET-363 and PARQUET-278. All three Parquet issues are fixed in parquet-mr 1.8.2. ## How was this patch tested? Existing unit tests. Author: Cheng Lian <lian@databricks.com> Closes #16791 from liancheng/parquet-1.8.2-cleanup.
-
- Feb 05, 2017
-
-
gatorsmile authored
[SPARK-19279][SQL] Infer Schema for Hive Serde Tables and Block Creating a Hive Table With an Empty Schema ### What changes were proposed in this pull request? So far, we allow users to create a table with an empty schema: `CREATE TABLE tab1`. This could break many code paths if we enable it. Thus, we should follow Hive to block it. For Hive serde tables, some serde libraries require the specified schema and record it in the metastore. To get the list, we need to check `hive.serdes.using.metastore.for.schema,` which contains a list of serdes that require user-specified schema. The default values are - org.apache.hadoop.hive.ql.io.orc.OrcSerde - org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe - org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe - org.apache.hadoop.hive.serde2.dynamic_type.DynamicSerDe - org.apache.hadoop.hive.serde2.MetadataTypedColumnsetSerDe - org.apache.hadoop.hive.serde2.columnar.LazyBinaryColumnarSerDe - org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe - org.apache.hadoop.hive.serde2.lazybinary.LazyBinarySerDe ### How was this patch tested? Added test cases for both Hive and data source tables Author: gatorsmile <gatorsmile@gmail.com> Closes #16636 from gatorsmile/fixEmptyTableSchema.
-
Zheng RuiFeng authored
## What changes were proposed in this pull request? Methods `numClasses` and `numFeatures` in LinearSVCModel are already usable by inheriting `JavaClassificationModel` we should not explicitly add them. ## How was this patch tested? existing tests Author: Zheng RuiFeng <ruifengz@foxmail.com> Closes #16727 from zhengruifeng/nits_in_linearSVC.
-
Asher Krim authored
## What changes were proposed in this pull request? * save word2vec models as distributed files rather than as one large datum. Backwards compatibility with the previous save format is maintained by checking for the "wordIndex" column * migrate the fix for loading large models (SPARK-11994) to ml word2vec ## How was this patch tested? Tested loading the new and old formats locally srowen yanboliang MLnick Author: Asher Krim <akrim@hubspot.com> Closes #16607 from Krimit/saveLargeModels.
-
actuaryzhang authored
## What changes were proposed in this pull request? The names method fails to check for validity of the assignment values. This can be fixed by calling colnames within names. ## How was this patch tested? new tests. Author: actuaryzhang <actuaryzhang10@gmail.com> Closes #16794 from actuaryzhang/sparkRNames.
-
- Feb 04, 2017
-
-
Liang-Chi Hsieh authored
## What changes were proposed in this pull request? DataFrame.except doesn't work for UDT columns. It is because `ExtractEquiJoinKeys` will run `Literal.default` against UDT. However, we don't handle UDT in `Literal.default` and an exception will throw like: java.lang.RuntimeException: no default for type org.apache.spark.ml.linalg.VectorUDT3bfc3ba7 at org.apache.spark.sql.catalyst.expressions.Literal$.default(literals.scala:179) at org.apache.spark.sql.catalyst.planning.ExtractEquiJoinKeys$$anonfun$4.apply(patterns.scala:117) at org.apache.spark.sql.catalyst.planning.ExtractEquiJoinKeys$$anonfun$4.apply(patterns.scala:110) More simple fix is just let `Literal.default` handle UDT by its sql type. So we can use more efficient join type on UDT. Besides `except`, this also fixes other similar scenarios, so in summary this fixes: * `except` on two Datasets with UDT * `intersect` on two Datasets with UDT * `Join` with the join conditions using `<=>` on UDT columns ## How was this patch tested? Jenkins tests. Please review http://spark.apache.org/contributing.html before opening a pull request. Author: Liang-Chi Hsieh <viirya@gmail.com> Closes #16765 from viirya/df-except-for-udt.
-
hyukjinkwon authored
## What changes were proposed in this pull request? This PR proposes to - remove unused `findTightestCommonType` in `TypeCoercion` as suggested in https://github.com/apache/spark/pull/16777#discussion_r99283834 - rename `findTightestCommonTypeOfTwo ` to `findTightestCommonType`. - fix comments accordingly The usage was removed while refactoring/fixing in several JIRAs such as SPARK-16714, SPARK-16735 and SPARK-16646 ## How was this patch tested? Existing tests. Author: hyukjinkwon <gurwls223@gmail.com> Closes #16786 from HyukjinKwon/SPARK-19446.
-
- Feb 03, 2017
-
-
Reynold Xin authored
## What changes were proposed in this pull request? DirectParquetOutputCommitter was removed from Spark as it was deemed unsafe to use. We however still have some code to generate warning. This patch removes those code as well. ## How was this patch tested? N/A Author: Reynold Xin <rxin@databricks.com> Closes #16796 from rxin/remove-direct.
-
actuaryzhang authored
## What changes were proposed in this pull request? Current version has error in vignettes: ``` model <- spark.bisectingKmeans(df, Sepal_Length ~ Sepal_Width, k = 4) summary(kmeansModel) ``` `kmeansModel` does not exist... felixcheung wangmiao1981 Author: actuaryzhang <actuaryzhang10@gmail.com> Closes #16799 from actuaryzhang/sparkRVignettes.
-