- Feb 09, 2016
-
-
Davies Liu authored
This PR improve the lookup of BytesToBytesMap by: 1. Generate code for calculate the hash code of grouping keys. 2. Do not use MemoryLocation, fetch the baseObject and offset for key and value directly (remove the indirection). Author: Davies Liu <davies@databricks.com> Closes #11010 from davies/gen_map.
-
Shixiong Zhu authored
Call shuffleMetrics's incRemoteBytesRead and incRemoteBlocksFetched when polling FetchResult from `results` so as to always use shuffleMetrics in one thread. Also fix a race condition that could cause memory leak. Author: Shixiong Zhu <shixiong@databricks.com> Closes #11138 from zsxwing/SPARK-13245.
-
Wenchen Fan authored
Adds the benchmark results as comments. The codegen version is slower than the interpreted version for `simple` case becasue of 3 reasons: 1. codegen version use a more complex hash algorithm than interpreted version, i.e. `Murmur3_x86_32.hashInt` vs [simple multiplication and addition](https://github.com/apache/spark/blob/master/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/rows.scala#L153). 2. codegen version will write the hash value to a row first and then read it out. I tried to create a `GenerateHasher` that can generate code to return hash value directly and got about 60% speed up for the `simple` case, does it worth? 3. the row in `simple` case only has one int field, so the runtime reflection may be removed because of branch prediction, which makes the interpreted version faster. The `array` case is also slow for similar reasons, e.g. array elements are of same type, so interpreted version can probably get rid of runtime reflection by branch prediction. Author: Wenchen Fan <wenchen@databricks.com> Closes #10917 from cloud-fan/hash-benchmark.
-
Jakob Odersky authored
Since Spark requires at least JRE 1.7, it is safe to use built-in java.nio.Files. Author: Jakob Odersky <jakob@odersky.com> Closes #11098 from jodersky/SPARK-13176.
-
- Feb 08, 2016
-
-
Andrew Or authored
Additional changes to #10835, mainly related to style and visibility. This patch also adds back a few deprecated methods for backward compatibility. Author: Andrew Or <andrew@databricks.com> Closes #10958 from andrewor14/task-metrics-to-accums-followups.
-
Davies Liu authored
There is a bug when we try to grow the buffer, OOM is ignore wrongly (the assert also skipped by JVM), then we try grow the array again, this one will trigger spilling free the current page, the current record we inserted will be invalid. The root cause is that JVM has less free memory than MemoryManager thought, it will OOM when allocate a page without trigger spilling. We should catch the OOM, and acquire memory again to trigger spilling. And also, we could not grow the array in `insertRecord` of `InMemorySorter` (it was there just for easy testing). Author: Davies Liu <davies@databricks.com> Closes #11095 from davies/fix_expand.
-
- Feb 06, 2016
-
-
Tommy YU authored
rxin srowen I work out note message for rdd.take function, please help to review. If it's fine, I can apply to all other function later. Author: Tommy YU <tummyyu@163.com> Closes #10874 from Wenpei/spark-5865-add-warning-for-localdatastructure.
-
Davies Liu authored
-
- Feb 05, 2016
-
-
Jakob Odersky authored
Trivial search-and-replace to eliminate deprecation warnings in Scala 2.11. Also works with 2.10 Author: Jakob Odersky <jakob@odersky.com> Closes #11085 from jodersky/SPARK-13171.
-
Luc Bourlier authored
Fix for [SPARK-13002](https://issues.apache.org/jira/browse/SPARK-13002) about the initial number of executors when running with dynamic allocation on Mesos. Instead of fixing it just for the Mesos case, made the change in `ExecutorAllocationManager`. It is already driving the number of executors running on Mesos, only no the initial value. The `None` and `Some(0)` are internal details on the computation of resources to reserved, in the Mesos backend scheduler. `executorLimitOption` has to be initialized correctly, otherwise the Mesos backend scheduler will, either, create to many executors at launch, or not create any executors and not be able to recover from this state. Removed the 'special case' description in the doc. It was not totally accurate, and is not needed anymore. This doesn't fix the same problem visible with Spark standalone. There is no straightforward way to send the initial value in standalone mode. Somebody knowing this part of the yarn support should review this change. Author: Luc Bourlier <luc.bourlier@typesafe.com> Closes #11047 from skyluc/issue/initial-dyn-alloc-2.
-
Jakob Odersky authored
Another trivial deprecation fix for Scala 2.11 Author: Jakob Odersky <jakob@odersky.com> Closes #11089 from jodersky/SPARK-13208.
-
- Feb 04, 2016
-
-
Raafat Akkad authored
Author: Raafat Akkad <raafat.akkad@gmail.com> Closes #10959 from RaafatAkkad/master.
-
Andrew Or authored
-
Andrew Or authored
The config already describes time and accepts a general format that is not restricted to ms. This commit renames the internal config to use a format that's consistent in Spark.
-
Andrew Or authored
These were ignored because they are incorrectly written; they don't actually trigger stage retries, which is what the tests are testing. These tests are now rewritten to induce stage retries through fetch failures. Note: there were 2 tests before and now there's only 1. What happened? It turns out that the case where we only resubmit a subset of of the original missing partitions is very difficult to simulate in tests without potentially introducing flakiness. This is because the `DAGScheduler` removes all map outputs associated with a given executor when this happens, and we will need multiple executors to trigger this case, and sometimes the scheduler still removes map outputs from all executors. Author: Andrew Or <andrew@databricks.com> Closes #10969 from andrewor14/unignore-accum-test.
-
Andrew Or authored
Currently the Master would always set an application's initial executor limit to infinity. If the user specified `spark.dynamicAllocation.initialExecutors`, the config would not take effect. This is similar to #11047 but for standalone mode. Author: Andrew Or <andrew@databricks.com> Closes #11054 from andrewor14/standalone-da-initial.
-
Holden Karau authored
Building with scala 2.11 results in the warning trait SynchronizedBuffer in package mutable is deprecated: Synchronization via traits is deprecated as it is inherently unreliable. Consider java.util.concurrent.ConcurrentLinkedQueue as an alternative. Investigation shows we are already using ConcurrentLinkedQueue in other locations so switch our uses of SynchronizedBuffer to ConcurrentLinkedQueue. Author: Holden Karau <holden@us.ibm.com> Closes #11059 from holdenk/SPARK-13164-replace-deprecated-synchronized-buffer-in-core.
-
Charles Allen authored
In the current implementation the mesos coarse scheduler does not wait for the mesos tasks to complete before ending the driver. This causes a race where the task has to finish cleaning up before the mesos driver terminates it with a SIGINT (and SIGKILL after 3 seconds if the SIGINT doesn't work). This PR causes the mesos coarse scheduler to wait for the mesos tasks to finish (with a timeout defined by `spark.mesos.coarse.shutdown.ms`) This PR also fixes a regression caused by [SPARK-10987] whereby submitting a shutdown causes a race between the local shutdown procedure and the notification of the scheduler driver disconnection. If the scheduler driver disconnection wins the race, the coarse executor incorrectly exits with status 1 (instead of the proper status 0) With this patch the mesos coarse scheduler terminates properly, the executors clean up, and the tasks are reported as `FINISHED` in the Mesos console (as opposed to `KILLED` in < 1.6 or `FAILED` in 1.6 and later) Author: Charles Allen <charles@allen-net.com> Closes #10319 from drcrallen/SPARK-12330.
-
Liang-Chi Hsieh authored
JIRA: https://issues.apache.org/jira/browse/SPARK-13113 As we shift bits right, looks like the bitwise AND operation is unnecessary. Author: Liang-Chi Hsieh <viirya@gmail.com> Closes #11002 from viirya/improve-decodepagenumber.
-
- Feb 03, 2016
-
-
Holden Karau authored
Make an internal non-deprecated version of incBytesRead and incRecordsRead so we don't have unecessary deprecation warnings in our build. Right now incBytesRead and incRecordsRead are marked as deprecated and for internal use only. We should make private[spark] versions which are not deprecated and switch to those internally so as to not clutter up the warning messages when building. cc andrewor14 who did the initial deprecation Author: Holden Karau <holden@us.ibm.com> Closes #11056 from holdenk/SPARK-13152-fix-task-metrics-deprecation-warnings.
-
Davies Liu authored
Best time is stabler than average time, also added a column for nano seconds per row (which could be used to estimate contributions of each components in a query). Having best time and average time together for more information (we can see kind of variance). rate, time per row and relative are all calculated using best time. The result looks like this: ``` Intel(R) Core(TM) i7-4558U CPU 2.80GHz rang/filter/sum: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------- rang/filter/sum codegen=false 14332 / 16646 36.0 27.8 1.0X rang/filter/sum codegen=true 845 / 940 620.0 1.6 17.0X ``` Author: Davies Liu <davies@databricks.com> Closes #11018 from davies/gen_bench.
-
Alex Bozarth authored
Added a Cores column in the Executors UI Author: Alex Bozarth <ajbozart@us.ibm.com> Closes #11039 from ajbozarth/spark3611.
-
- Feb 02, 2016
-
-
Shixiong Zhu authored
`rpcEnv.awaitTermination()` was not added in #10854 because some Streaming Python tests hung forever. This patch fixed the hung issue and added rpcEnv.awaitTermination() back to SparkEnv. Previously, Streaming Kafka Python tests shutdowns the zookeeper server before stopping StreamingContext. Then when stopping StreamingContext, KafkaReceiver may be hung due to https://issues.apache.org/jira/browse/KAFKA-601, hence, some thread of RpcEnv's Dispatcher cannot exit and rpcEnv.awaitTermination is hung.The patch just changed the shutdown order to fix it. Author: Shixiong Zhu <shixiong@databricks.com> Closes #11031 from zsxwing/awaitTermination.
-
Adam Budde authored
https://issues.apache.org/jira/browse/SPARK-13122 A race condition can occur in MemoryStore's unrollSafely() method if two threads that return the same value for currentTaskAttemptId() execute this method concurrently. This change makes the operation of reading the initial amount of unroll memory used, performing the unroll, and updating the associated memory maps atomic in order to avoid this race condition. Initial proposed fix wraps all of unrollSafely() in a memoryManager.synchronized { } block. A cleaner approach might be introduce a mechanism that synchronizes based on task attempt ID. An alternative option might be to track unroll/pending unroll memory based on block ID rather than task attempt ID. Author: Adam Budde <budde@amazon.com> Closes #11012 from budde/master.
-
- Feb 01, 2016
-
-
felixcheung authored
Removed isLegacyLogDirectory code path and updated tests andrewor14 Author: felixcheung <felixcheung_m@hotmail.com> Closes #10860 from felixcheung/historyserverformat.
-
Sean Owen authored
Improve printing of StageInfo in onStageCompleted See also https://github.com/apache/spark/pull/10585 Author: Sean Owen <sowen@cloudera.com> Closes #10922 from srowen/SPARK-12637.
-
Iulian Dragos authored
The driver filesystem is likely different from where the executors will run, so resolving paths (and symlinks, etc.) will lead to invalid paths on executors. Author: Iulian Dragos <jaguarul@gmail.com> Closes #10923 from dragos/issue/canonical-paths.
-
Nilanjan Raychaudhuri authored
This takes over #10729 and makes sure that `spark-shell` fails with a proper error message. There is a slight behavioral change: before this change `spark-shell` would exit, while now the REPL is still there, but `sc` and `sqlContext` are not defined and the error is visible to the user. Author: Nilanjan Raychaudhuri <nraychaudhuri@gmail.com> Author: Iulian Dragos <jaguarul@gmail.com> Closes #10921 from dragos/pr/10729.
-
Timothy Chen authored
[SPARK-12463][SPARK-12464][SPARK-12465][SPARK-10647][MESOS] Fix zookeeper dir with mesos conf and add docs. Fix zookeeper dir configuration used in cluster mode, and also add documentation around these settings. Author: Timothy Chen <tnachen@gmail.com> Closes #10057 from tnachen/fix_mesos_dir.
-
Shixiong Zhu authored
[SPARK-6847][CORE][STREAMING] Fix stack overflow issue when updateStateByKey is followed by a checkpointed dstream Add a local property to indicate if checkpointing all RDDs that are marked with the checkpoint flag, and enable it in Streaming Author: Shixiong Zhu <shixiong@databricks.com> Closes #10934 from zsxwing/recursive-checkpoint.
-
- Jan 30, 2016
-
-
Josh Rosen authored
This patch changes Spark's build to make Scala 2.11 the default Scala version. To be clear, this does not mean that Spark will stop supporting Scala 2.10: users will still be able to compile Spark for Scala 2.10 by following the instructions on the "Building Spark" page; however, it does mean that Scala 2.11 will be the default Scala version used by our CI builds (including pull request builds). The Scala 2.11 compiler is faster than 2.10, so I think we'll be able to look forward to a slight speedup in our CI builds (it looks like it's about 2X faster for the Maven compile-only builds, for instance). After this patch is merged, I'll update Jenkins to add new compile-only jobs to ensure that Scala 2.10 compilation doesn't break. Author: Josh Rosen <joshrosen@databricks.com> Closes #10608 from JoshRosen/SPARK-6363.
-
- Jan 29, 2016
-
-
Andrew Or authored
This issue is causing tests to fail consistently in master with Hadoop 2.6 / 2.7. This is because for Hadoop 2.5+ we overwrite existing values of `InputMetrics#bytesRead` in each call to `HadoopRDD#compute`. In the case of coalesce, e.g. ``` sc.textFile(..., 4).coalesce(2).count() ``` we will call `compute` multiple times in the same task, overwriting `bytesRead` values from previous calls to `compute`. For a regression test, see `InputOutputMetricsSuite.input metrics for old hadoop with coalesce`. I did not add a new regression test because it's impossible without significant refactoring; there's a lot of existing duplicate code in this corner of Spark. This was caused by #10835. Author: Andrew Or <andrew@databricks.com> Closes #10973 from andrewor14/fix-input-metrics-coalesce.
-
Andrew Or authored
Apparently chrome removed `SVGElement.prototype.getTransformToElement`, which is used by our JS library dagre-d3 when creating edges. The real diff can be found here: https://github.com/andrewor14/dagre-d3/commit/7d6c0002e4c74b82a02c5917876576f71e215590, which is taken from the fix in the main repo: https://github.com/cpettitt/dagre-d3/commit/1ef067f1c6ad2e0980f6f0ca471bce998784b7b2 Upstream issue: https://github.com/cpettitt/dagre-d3/issues/202 Author: Andrew Or <andrew@databricks.com> Closes #10986 from andrewor14/fix-dag-viz.
-
Andrew Or authored
Previously we would assert things before all events are guaranteed to have been processed. To fix this, just block until all events are actually processed, i.e. until the listener queue is empty. https://amplab.cs.berkeley.edu/jenkins/job/spark-master-test-sbt-hadoop-2.7/79/testReport/junit/org.apache.spark.util.collection/ExternalAppendOnlyMapSuite/spilling/ Author: Andrew Or <andrew@databricks.com> Closes #10990 from andrewor14/accum-suite-less-flaky.
-
Andrew Or authored
This is an existing issue uncovered recently by #10835. The reason for the exception was because the `SQLHistoryListener` gets all sorts of accumulators, not just the ones that represent SQL metrics. For example, the listener gets the `internal.metrics.shuffleRead.remoteBlocksFetched`, which is an Int, then it proceeds to cast the Int to a Long, which fails. The fix is to mark accumulators representing SQL metrics using some internal metadata. Then we can identify which ones are SQL metrics and only process those in the `SQLHistoryListener`. Author: Andrew Or <andrew@databricks.com> Closes #10971 from andrewor14/fix-sql-history.
-
zhuol authored
[SPARK-10873] Support column sort and search for History Server using jQuery DataTable and REST API. Before this commit, the history server was generated hard-coded html and can not support search, also, the sorting was disabled if there is any application that has more than one attempt. Supporting search and sort (over all applications rather than the 20 entries in the current page) in any case will greatly improve user experience. 1. Create the historypage-template.html for displaying application information in datables. 2. historypage.js uses jQuery to access the data from /api/v1/applications REST API, and use DataTable to display each application's information. For application that has more than one attempt, the RowsGroup is used to merge such entries while at the same time supporting sort and search. 3. "duration" and "lastUpdated" rest API are added to application's "attempts". 4. External javascirpt and css files for datatables, RowsGroup and jquery plugins are added with licenses clarified. Snapshots for how it looks like now: History page view:  Search:  Sort by started time:  Author: zhuol <zhuol@yahoo-inc.com> Closes #10648 from zhuoliu/10873.
-
- Jan 27, 2016
-
-
Andrew Or authored
by explicitly marking annotated parameters as vals (SI-8813). Caused by #10835. Author: Andrew Or <andrew@databricks.com> Closes #10955 from andrewor14/fix-scala211.
-
Josh Rosen authored
Spark's `Partition` and `RDD.partitions` APIs have a contract which requires custom implementations of `RDD.partitions` to ensure that for all `x`, `rdd.partitions(x).index == x`; in other words, the `index` reported by a repartition needs to match its position in the partitions array. If a custom RDD implementation violates this contract, then Spark has the potential to become stuck in an infinite recomputation loop when recomputing a subset of an RDD's partitions, since the tasks that are actually run will not correspond to the missing output partitions that triggered the recomputation. Here's a link to a notebook which demonstrates this problem: https://rawgit.com/JoshRosen/e520fb9a64c1c97ec985/raw/5e8a5aa8d2a18910a1607f0aa4190104adda3424/Violating%2520RDD.partitions%2520contract.html In order to guard against this infinite loop behavior, this patch modifies Spark so that it fails fast and refuses to compute RDDs' whose `partitions` violate the API contract. Author: Josh Rosen <joshrosen@databricks.com> Closes #10932 from JoshRosen/SPARK-13021.
-
Andrew Or authored
The high level idea is that instead of having the executors send both accumulator updates and TaskMetrics, we should have them send only accumulator updates. This eliminates the need to maintain both code paths since one can be implemented in terms of the other. This effort is split into two parts: **SPARK-12895: Implement TaskMetrics using accumulators.** TaskMetrics is basically just a bunch of accumulable fields. This patch makes TaskMetrics a syntactic wrapper around a collection of accumulators so we don't need to send TaskMetrics from the executors to the driver. **SPARK-12896: Send only accumulator updates to the driver.** Now that TaskMetrics are expressed in terms of accumulators, we can capture all TaskMetrics values if we just send accumulator updates from the executors to the driver. This completes the parent issue SPARK-10620. While an effort has been made to preserve as much of the public API as possible, there were a few known breaking DeveloperApi changes that would be very awkward to maintain. I will gather the full list shortly and post it here. Note: This was once part of #10717. This patch is split out into its own patch from there to make it easier for others to review. Other smaller pieces of already been merged into master. Author: Andrew Or <andrew@databricks.com> Closes #10835 from andrewor14/task-metrics-use-accums.
-
- Jan 26, 2016
-
-
Nishkam Ravi authored
If there's an RPC issue while sparkContext is alive but stopped (which would happen only when executing SparkContext.stop), log a warning instead. This is a common occurrence. vanzin Author: Nishkam Ravi <nishkamravi@gmail.com> Author: nishkamravi2 <nishkamravi@gmail.com> Closes #10881 from nishkamravi2/master_netty.
-