- May 24, 2017
-
-
Liang-Chi Hsieh authored
## What changes were proposed in this pull request? This is a follow-up to #18073. Taking a safer approach to shutdown the pool to prevent possible issue. Also using `ThreadUtils.newForkJoinPool` instead to set a better thread name. ## How was this patch tested? Manually test. Please review http://spark.apache.org/contributing.html before opening a pull request. Author: Liang-Chi Hsieh <viirya@gmail.com> Closes #18100 from viirya/SPARK-20848-followup. (cherry picked from commit 6b68d61c) Signed-off-by:
Wenchen Fan <wenchen@databricks.com>
-
Liang-Chi Hsieh authored
## What changes were proposed in this pull request? From JIRA: On each call to spark.read.parquet, a new ForkJoinPool is created. One of the threads in the pool is kept in the WAITING state, and never stopped, which leads to unbounded growth in number of threads. We should shutdown the pool after reading parquet files. ## How was this patch tested? Added a test to ParquetFileFormatSuite. Please review http://spark.apache.org/contributing.html before opening a pull request. Author: Liang-Chi Hsieh <viirya@gmail.com> Closes #18073 from viirya/SPARK-20848. (cherry picked from commit f72ad303) Signed-off-by:
Wenchen Fan <wenchen@databricks.com>
-
- May 19, 2017
-
-
Ala Luszczak authored
## What changes were proposed in this pull request? GenerateUnsafeProjection.writeStructToBuffer() did not honor the assumption that the caller must make sure that a value is not null before using the getter. This could lead to various errors. This change fixes that behavior. Example of code generated before: ```scala /* 059 */ final UTF8String fieldName = value.getUTF8String(0); /* 060 */ if (value.isNullAt(0)) { /* 061 */ rowWriter1.setNullAt(0); /* 062 */ } else { /* 063 */ rowWriter1.write(0, fieldName); /* 064 */ } ``` Example of code generated now: ```scala /* 060 */ boolean isNull1 = value.isNullAt(0); /* 061 */ UTF8String value1 = isNull1 ? null : value.getUTF8String(0); /* 062 */ if (isNull1) { /* 063 */ rowWriter1.setNullAt(0); /* 064 */ } else { /* 065 */ rowWriter1.write(0, value1); /* 066 */ } ``` ## How was this patch tested? Adds GenerateUnsafeProjectionSuite. Author: Ala Luszczak <ala@databricks.com> Closes #18030 from ala/fix-generate-unsafe-projection. (cherry picked from commit ce8edb8b) Signed-off-by:
Herman van Hovell <hvanhovell@databricks.com>
-
- May 15, 2017
-
-
Dongjoon Hyun authored
## What changes were proposed in this pull request? Since [SPARK-17298](https://issues.apache.org/jira/browse/SPARK-17298 ), some queries (q28, q61, q77, q88, q90) in the test suites fail with a message "_Use the CROSS JOIN syntax to allow cartesian products between these relations_". This benchmark is used as a reference model for Spark TPC-DS, so this PR aims to enable the correct configuration in `TPCDSQueryBenchmark.scala`. ## How was this patch tested? Manual. (Run TPCDSQueryBenchmark) Author: Dongjoon Hyun <dongjoon@apache.org> Closes #17977 from dongjoon-hyun/SPARK-20735. (cherry picked from commit bbd163d5) Signed-off-by:
Xiao Li <gatorsmile@gmail.com>
-
- May 11, 2017
-
-
liuxian authored
spark-sql>select bround(12.3, 2); spark-sql>NULL For this case, the expected result is 12.3, but it is null. So ,when the second parameter is bigger than "decimal.scala", the result is not we expected. "round" function has the same problem. This PR can solve the problem for both of them. unit test cases in MathExpressionsSuite and MathFunctionsSuite Author: liuxian <liu.xian3@zte.com.cn> Closes #17906 from 10110346/wip_lx_0509. (cherry picked from commit 2b36eb69) Signed-off-by:
Wenchen Fan <wenchen@databricks.com>
-
- May 10, 2017
-
-
Wenchen Fan authored
In `CheckAnalysis`, we should call `checkAnalysis` for `ScalarSubquery` at the beginning, as later we will call `plan.output` which is invalid if `plan` is not resolved. new regression test Author: Wenchen Fan <wenchen@databricks.com> Closes #17930 from cloud-fan/tmp. (cherry picked from commit 789bdbe3) Signed-off-by:
Wenchen Fan <wenchen@databricks.com>
-
Josh Rosen authored
The query ``` SELECT 1 FROM (SELECT COUNT(*) WHERE FALSE) t1 ``` should return a single row of output because the subquery is an aggregate without a group-by and thus should return a single row. However, Spark incorrectly returns zero rows. This is caused by SPARK-16208 / #13906, a patch which added an optimizer rule to propagate EmptyRelation through operators. The logic for handling aggregates is wrong: it checks whether aggregate expressions are non-empty for deciding whether the output should be empty, whereas it should be checking grouping expressions instead: An aggregate with non-empty grouping expression will return one output row per group. If the input to the grouped aggregate is empty then all groups will be empty and thus the output will be empty. It doesn't matter whether the aggregation output columns include aggregate expressions since that won't affect the number of output rows. If the grouping expressions are empty, however, then the aggregate will always produce a single output row and thus we cannot propagate the EmptyRelation. The current implementation is incorrect and also misses an optimization opportunity by not propagating EmptyRelation in the case where a grouped aggregate has aggregate expressions (in other words, `SELECT COUNT(*) from emptyRelation GROUP BY x` would _not_ be optimized to `EmptyRelation` in the old code, even though it safely could be). This patch resolves this issue by modifying `PropagateEmptyRelation` to consider only the presence/absence of grouping expressions, not the aggregate functions themselves, when deciding whether to propagate EmptyRelation. - Added end-to-end regression tests in `SQLQueryTest`'s `group-by.sql` file. - Updated unit tests in `PropagateEmptyRelationSuite`. Author: Josh Rosen <joshrosen@databricks.com> Closes #17929 from JoshRosen/fix-PropagateEmptyRelation. (cherry picked from commit a90c5cd8) Signed-off-by:
Wenchen Fan <wenchen@databricks.com>
-
- May 09, 2017
-
-
Yuming Wang authored
## What changes were proposed in this pull request? The following SQL query cause `IndexOutOfBoundsException` issue when `LIMIT > 1310720`: ```sql CREATE TABLE tab1(int int, int2 int, str string); CREATE TABLE tab2(int int, int2 int, str string); INSERT INTO tab1 values(1,1,'str'); INSERT INTO tab1 values(2,2,'str'); INSERT INTO tab2 values(1,1,'str'); INSERT INTO tab2 values(2,3,'str'); SELECT count(*) FROM ( SELECT t1.int, t2.int2 FROM (SELECT * FROM tab1 LIMIT 1310721) t1 INNER JOIN (SELECT * FROM tab2 LIMIT 1310721) t2 ON (t1.int = t2.int AND t1.int2 = t2.int2) ) t; ``` This pull request fix this issue. ## How was this patch tested? unit tests Author: Yuming Wang <wgyumg@gmail.com> Closes #17920 from wangyum/SPARK-17685. (cherry picked from commit 771abeb4) Signed-off-by:
Herman van Hovell <hvanhovell@databricks.com>
-
- Apr 25, 2017
-
-
Xiao Li authored
[SPARK-20439][SQL][BACKPORT-2.1] Fix Catalog API listTables and getTable when failed to fetch table metadata ### What changes were proposed in this pull request? This PR is to backport https://github.com/apache/spark/pull/17730 to Spark 2.1 --- -- `spark.catalog.listTables` and `spark.catalog.getTable` does not work if we are unable to retrieve table metadata due to any reason (e.g., table serde class is not accessible or the table type is not accepted by Spark SQL). After this PR, the APIs still return the corresponding Table without the description and tableType) ### How was this patch tested? Added a test case Author: Xiao Li <gatorsmile@gmail.com> Closes #17760 from gatorsmile/backport-17730.
-
Patrick Wendell authored
-
Sameer Agarwal authored
## What changes were proposed in this pull request? In `randomSplit`, It is possible that the underlying dataset doesn't guarantee the ordering of rows in its constituent partitions each time a split is materialized which could result in overlapping splits. To prevent this, as part of SPARK-12662, we explicitly sort each input partition to make the ordering deterministic. Given that `MapTypes` cannot be sorted this patch explicitly prunes them out from the sort order. Additionally, if the resulting sort order is empty, this patch then materializes the dataset to guarantee determinism. ## How was this patch tested? Extended `randomSplit on reordered partitions` in `DataFrameStatSuite` to also test for dataframes with mapTypes nested mapTypes. Author: Sameer Agarwal <sameerag@cs.berkeley.edu> Closes #17751 from sameeragarwal/randomsplit2. (cherry picked from commit 31345fde) Signed-off-by:
Wenchen Fan <wenchen@databricks.com>
-
- Apr 22, 2017
-
-
Bogdan Raducanu authored
[SPARK-20407][TESTS][BACKPORT-2.1] ParquetQuerySuite 'Enabling/disabling ignoreCorruptFiles' flaky test ## What changes were proposed in this pull request? SharedSQLContext.afterEach now calls DebugFilesystem.assertNoOpenStreams inside eventually. SQLTestUtils withTempDir calls waitForTasksToFinish before deleting the directory. ## How was this patch tested? New test but marked as ignored because it takes 30s. Can be unignored for review. Author: Bogdan Raducanu <bogdan@databricks.com> Closes #17720 from bogdanrdc/SPARK-20407-BACKPORT2.1.
-
- Apr 20, 2017
-
-
Wenchen Fan authored
## What changes were proposed in this pull request? It's illegal to have aggregate function in GROUP BY, and we should fail at analysis phase, if this happens. ## How was this patch tested? new regression test Author: Wenchen Fan <wenchen@databricks.com> Closes #17704 from cloud-fan/minor.
-
- Apr 19, 2017
-
-
Koert Kuipers authored
[SPARK-20359][SQL] Avoid unnecessary execution in EliminateOuterJoin optimization that can lead to NPE Avoid necessary execution that can lead to NPE in EliminateOuterJoin and add test in DataFrameSuite to confirm NPE is no longer thrown ## What changes were proposed in this pull request? Change leftHasNonNullPredicate and rightHasNonNullPredicate to lazy so they are only executed when needed. ## How was this patch tested? Added test in DataFrameSuite that failed before this fix and now succeeds. Note that a test in catalyst project would be better but i am unsure how to do this. Please review http://spark.apache.org/contributing.html before opening a pull request. Author: Koert Kuipers <koert@tresata.com> Closes #17660 from koertkuipers/feat-catch-npe-in-eliminate-outer-join. (cherry picked from commit 608bf30f) Signed-off-by:
Wenchen Fan <wenchen@databricks.com>
-
- Apr 17, 2017
-
-
Xiao Li authored
[SPARK-20349][SQL][REVERT-BRANCH2.1] ListFunctions returns duplicate functions after using persistent functions Revert the changes of https://github.com/apache/spark/pull/17646 made in Branch 2.1, because it breaks the build. It needs the parser interface, but SessionCatalog in branch 2.1 does not have it. ### What changes were proposed in this pull request? The session catalog caches some persistent functions in the `FunctionRegistry`, so there can be duplicates. Our Catalog API `listFunctions` does not handle it. It would be better if `SessionCatalog` API can de-duplciate the records, instead of doing it by each API caller. In `FunctionRegistry`, our functions are identified by the unquoted string. Thus, this PR is try to parse it using our parser interface and then de-duplicate the names. ### How was this patch tested? Added test cases. Author: Xiao Li <gatorsmile@gmail.com> Closes #17661 from gatorsmile/compilationFix17646.
-
Xiao Li authored
### What changes were proposed in this pull request? The session catalog caches some persistent functions in the `FunctionRegistry`, so there can be duplicates. Our Catalog API `listFunctions` does not handle it. It would be better if `SessionCatalog` API can de-duplciate the records, instead of doing it by each API caller. In `FunctionRegistry`, our functions are identified by the unquoted string. Thus, this PR is try to parse it using our parser interface and then de-duplicate the names. ### How was this patch tested? Added test cases. Author: Xiao Li <gatorsmile@gmail.com> Closes #17646 from gatorsmile/showFunctions. (cherry picked from commit 01ff0350) Signed-off-by:
Xiao Li <gatorsmile@gmail.com>
-
- Apr 14, 2017
-
-
Patrick Wendell authored
-
Patrick Wendell authored
-
- Apr 12, 2017
-
-
DB Tsai authored
## What changes were proposed in this pull request? `NaNvl(float value, null)` will be converted into `NaNvl(float value, Cast(null, DoubleType))` and finally `NaNvl(Cast(float value, DoubleType), Cast(null, DoubleType))`. This will cause mismatching in the output type when the input type is float. By adding extra rule in TypeCoercion can resolve this issue. ## How was this patch tested? unite tests. Please review http://spark.apache.org/contributing.html before opening a pull request. Author: DB Tsai <dbt@netflix.com> Closes #17606 from dbtsai/fixNaNvl. (cherry picked from commit 8ad63ee1) Signed-off-by:
DB Tsai <dbtsai@dbtsai.com>
-
- Apr 10, 2017
-
-
DB Tsai authored
## What changes were proposed in this pull request? Fix the since tag when backporting critical bugs (SPARK-18555) from 2.2 branch into 2.1 branch. ## How was this patch tested? N/A Please review http://spark.apache.org/contributing.html before opening a pull request. Author: DB Tsai <dbtsai@dbtsai.com> Closes #17600 from dbtsai/branch-2.1.
-
DB Tsai authored
[SPARK-20270][SQL] na.fill should not change the values in long or integer when the default value is in double ## What changes were proposed in this pull request? This bug was partially addressed in SPARK-18555 https://github.com/apache/spark/pull/15994 , but the root cause isn't completely solved. This bug is pretty critical since it changes the member id in Long in our application if the member id can not be represented by Double losslessly when the member id is very big. Here is an example how this happens, with ``` Seq[(java.lang.Long, java.lang.Double)]((null, 3.14), (9123146099426677101L, null), (9123146560113991650L, 1.6), (null, null)).toDF("a", "b").na.fill(0.2), ``` the logical plan will be ``` == Analyzed Logical Plan == a: bigint, b: double Project [cast(coalesce(cast(a#232L as double), cast(0.2 as double)) as bigint) AS a#240L, cast(coalesce(nanvl(b#233, cast(null as double)), 0.2) as double) AS b#241] +- Project [_1#229L AS a#232L, _2#230 AS b#233] +- LocalRelation [_1#229L, _2#230] ``` Note that even the value is not null, Spark will cast the Long into Double first. Then if it's not null, Spark will cast it back to Long which results in losing precision. The behavior should be that the original value should not be changed if it's not null, but Spark will change the value which is wrong. With the PR, the logical plan will be ``` == Analyzed Logical Plan == a: bigint, b: double Project [coalesce(a#232L, cast(0.2 as bigint)) AS a#240L, coalesce(nanvl(b#233, cast(null as double)), cast(0.2 as double)) AS b#241] +- Project [_1#229L AS a#232L, _2#230 AS b#233] +- LocalRelation [_1#229L, _2#230] ``` which behaves correctly without changing the original Long values and also avoids extra cost of unnecessary casting. ## How was this patch tested? unit test added. +cc srowen rxin cloud-fan gatorsmile Thanks. Author: DB Tsai <dbt@netflix.com> Closes #17577 from dbtsai/fixnafill. (cherry picked from commit 1a0bc416) Signed-off-by:
DB Tsai <dbtsai@dbtsai.com>
-
root authored
## What changes were proposed in this pull request? DataSet.na.fill(0) used on a DataSet which has a long value column, it will change the original long value. The reason is that the type of the function fill's param is Double, and the numeric columns are always cast to double(`fillCol[Double](f, value)`) . ``` def fill(value: Double, cols: Seq[String]): DataFrame = { val columnEquals = df.sparkSession.sessionState.analyzer.resolver val projections = df.schema.fields.map { f => // Only fill if the column is part of the cols list. if (f.dataType.isInstanceOf[NumericType] && cols.exists(col => columnEquals(f.name, col))) { fillCol[Double](f, value) } else { df.col(f.name) } } df.select(projections : _*) } ``` For example: ``` scala> val df = Seq[(Long, Long)]((1, 2), (-1, -2), (9123146099426677101L, 9123146560113991650L)).toDF("a", "b") df: org.apache.spark.sql.DataFrame = [a: bigint, b: bigint] scala> df.show +-------------------+-------------------+ | a| b| +-------------------+-------------------+ | 1| 2| | -1| -2| |9123146099426677101|9123146560113991650| +-------------------+-------------------+ scala> df.na.fill(0).show +-------------------+-------------------+ | a| b| +-------------------+-------------------+ | 1| 2| | -1| -2| |9123146099426676736|9123146560113991680| +-------------------+-------------------+ ``` the original values changed [which is not we expected result]: ``` 9123146099426677101 -> 9123146099426676736 9123146560113991650 -> 9123146560113991680 ``` ## How was this patch tested? unit test added. Author: root <root@iZbp1gsnrlfzjxh82cz80vZ.(none)> Closes #15994 from windpiger/nafillMissupOriginalValue. (cherry picked from commit 508de38c) Signed-off-by:
DB Tsai <dbtsai@dbtsai.com>
-
Bogdan Raducanu authored
## What changes were proposed in this pull request? Weigher.weigh needs to return Int but it is possible for an Array[FileStatus] to have size > Int.maxValue. To avoid this, the size is scaled down by a factor of 32. The maximumWeight of the cache is also scaled down by the same factor. ## How was this patch tested? New test in FileIndexSuite Author: Bogdan Raducanu <bogdan@databricks.com> Closes #17591 from bogdanrdc/SPARK-20280. (cherry picked from commit f6dd8e0e) Signed-off-by:
Herman van Hovell <hvanhovell@databricks.com>
-
- Apr 09, 2017
-
-
Reynold Xin authored
## What changes were proposed in this pull request? sq/core module currently declares asm as a test scope dependency. Transitively it should actually be a normal dependency since the actual core module defines it. This occasionally confuses IntelliJ. ## How was this patch tested? N/A - This is a build change. Author: Reynold Xin <rxin@databricks.com> Closes #17574 from rxin/SPARK-20264. (cherry picked from commit 7bfa05e0) Signed-off-by:
Xiao Li <gatorsmile@gmail.com>
-
- Apr 05, 2017
-
-
wangzhenhua authored
## What changes were proposed in this pull request? Fix typo in tpcds q77.sql ## How was this patch tested? N/A Author: wangzhenhua <wangzhenhua@huawei.com> Closes #17538 from wzhfy/typoQ77. (cherry picked from commit a2d8d767) Signed-off-by:
Xiao Li <gatorsmile@gmail.com>
-
- Mar 31, 2017
-
-
Kunal Khamar authored
The query plan in an `AnalysisException` may be `null` when an `AnalysisException` object is serialized and then deserialized, since `plan` is marked `transient`. Or when someone throws an `AnalysisException` with a null query plan (which should not happen). `def getMessage` is not tolerant of this and throws a `NullPointerException`, leading to loss of information about the original exception. The fix is to add a `null` check in `getMessage`. - Unit test Author: Kunal Khamar <kkhamar@outlook.com> Closes #17486 from kunalkhamar/spark-20164. (cherry picked from commit 254877c2) Signed-off-by:
Xiao Li <gatorsmile@gmail.com>
-
- Mar 29, 2017
-
-
Reynold Xin authored
## What changes were proposed in this pull request? It is not super intuitive how to update SQLMetric on the driver side. This patch introduces a new SQLMetrics.postDriverMetricUpdates function to do that, and adds documentation to make it more obvious. ## How was this patch tested? Updated a test case to use this method. Author: Reynold Xin <rxin@databricks.com> Closes #17464 from rxin/SPARK-20134. (cherry picked from commit 9712bd39) Signed-off-by:
Reynold Xin <rxin@databricks.com>
-
- Mar 28, 2017
-
-
Patrick Wendell authored
-
Patrick Wendell authored
-
sureshthalamati authored
## What changes were proposed in this pull request? JDBC read is failing with NPE due to missing null value check for array data type if the source table has null values in the array type column. For null values Resultset.getArray() returns null. This PR adds null safe check to the Resultset.getArray() value before invoking method on the Array object ## How was this patch tested? Updated the PostgresIntegration test suite to test null values. Ran docker integration tests on my laptop. Author: sureshthalamati <suresh.thalamati@gmail.com> Closes #17460 from sureshthalamati/jdbc_array_null_fix_spark_2.1-SPARK-14536.
-
Wenchen Fan authored
When we build the deserializer expression for map type, we will use `StaticInvoke` to call `ArrayBasedMapData.toScalaMap`, and declare the return type as `scala.collection.immutable.Map`. If the map is inside an Option, we will wrap this `StaticInvoke` with `WrapOption`, which requires the input to be `scala.collect.Map`. Ideally this should be fine, as `scala.collection.immutable.Map` extends `scala.collect.Map`, but our `ObjectType` is too strict about this, this PR fixes it. new regression test Author: Wenchen Fan <wenchen@databricks.com> Closes #17454 from cloud-fan/map. (cherry picked from commit d4fac410) Signed-off-by:
Cheng Lian <lian@databricks.com>
-
- Mar 25, 2017
-
-
Carson Wang authored
[SPARK-19674][SQL] Ignore driver accumulator updates don't belong to the execution when merging all accumulator updates N.B. This is a backport to branch-2.1 of #17009. ## What changes were proposed in this pull request? In SQLListener.getExecutionMetrics, driver accumulator updates don't belong to the execution should be ignored when merging all accumulator updates to prevent NoSuchElementException. ## How was this patch tested? Updated unit test. Author: Carson Wang <carson.wangintel.com> Author: Carson Wang <carson.wang@intel.com> Closes #17418 from mallman/spark-19674-backport_2.1.
-
- Mar 23, 2017
-
-
Kazuaki Ishizaki authored
## What changes were proposed in this pull request? This PR fixes `NullPointerException` in the generated code by Catalyst. When we run the following code, we get the following `NullPointerException`. This is because there is no null checks for `inputadapter_value` while `java.lang.Long inputadapter_value` at Line 30 may have `null`. This happen when a type of DataFrame is nullable primitive type such as `java.lang.Long` and the wholestage codegen is used. While the physical plan keeps `nullable=true` in `input[0, java.lang.Long, true].longValue`, `BoundReference.doGenCode` ignores `nullable=true`. Thus, nullcheck code will not be generated and `NullPointerException` will occur. This PR checks the nullability and correctly generates nullcheck if needed. ```java sparkContext.parallelize(Seq[java.lang.Long](0L, null, 2L), 1).toDF.collect ``` ```java Caused by: java.lang.NullPointerException at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(generated.java:37) at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:393) ... ``` Generated code without this PR ```java /* 005 */ final class GeneratedIterator extends org.apache.spark.sql.execution.BufferedRowIterator { /* 006 */ private Object[] references; /* 007 */ private scala.collection.Iterator[] inputs; /* 008 */ private scala.collection.Iterator inputadapter_input; /* 009 */ private UnsafeRow serializefromobject_result; /* 010 */ private org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder serializefromobject_holder; /* 011 */ private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter serializefromobject_rowWriter; /* 012 */ /* 013 */ public GeneratedIterator(Object[] references) { /* 014 */ this.references = references; /* 015 */ } /* 016 */ /* 017 */ public void init(int index, scala.collection.Iterator[] inputs) { /* 018 */ partitionIndex = index; /* 019 */ this.inputs = inputs; /* 020 */ inputadapter_input = inputs[0]; /* 021 */ serializefromobject_result = new UnsafeRow(1); /* 022 */ this.serializefromobject_holder = new org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder(serializefromobject_result, 0); /* 023 */ this.serializefromobject_rowWriter = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(serializefromobject_holder, 1); /* 024 */ /* 025 */ } /* 026 */ /* 027 */ protected void processNext() throws java.io.IOException { /* 028 */ while (inputadapter_input.hasNext() && !stopEarly()) { /* 029 */ InternalRow inputadapter_row = (InternalRow) inputadapter_input.next(); /* 030 */ java.lang.Long inputadapter_value = (java.lang.Long)inputadapter_row.get(0, null); /* 031 */ /* 032 */ boolean serializefromobject_isNull = true; /* 033 */ long serializefromobject_value = -1L; /* 034 */ if (!false) { /* 035 */ serializefromobject_isNull = false; /* 036 */ if (!serializefromobject_isNull) { /* 037 */ serializefromobject_value = inputadapter_value.longValue(); /* 038 */ } /* 039 */ /* 040 */ } /* 041 */ serializefromobject_rowWriter.zeroOutNullBytes(); /* 042 */ /* 043 */ if (serializefromobject_isNull) { /* 044 */ serializefromobject_rowWriter.setNullAt(0); /* 045 */ } else { /* 046 */ serializefromobject_rowWriter.write(0, serializefromobject_value); /* 047 */ } /* 048 */ append(serializefromobject_result); /* 049 */ if (shouldStop()) return; /* 050 */ } /* 051 */ } /* 052 */ } ``` Generated code with this PR ```java /* 005 */ final class GeneratedIterator extends org.apache.spark.sql.execution.BufferedRowIterator { /* 006 */ private Object[] references; /* 007 */ private scala.collection.Iterator[] inputs; /* 008 */ private scala.collection.Iterator inputadapter_input; /* 009 */ private UnsafeRow serializefromobject_result; /* 010 */ private org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder serializefromobject_holder; /* 011 */ private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter serializefromobject_rowWriter; /* 012 */ /* 013 */ public GeneratedIterator(Object[] references) { /* 014 */ this.references = references; /* 015 */ } /* 016 */ /* 017 */ public void init(int index, scala.collection.Iterator[] inputs) { /* 018 */ partitionIndex = index; /* 019 */ this.inputs = inputs; /* 020 */ inputadapter_input = inputs[0]; /* 021 */ serializefromobject_result = new UnsafeRow(1); /* 022 */ this.serializefromobject_holder = new org.apache.spark.sql.catalyst.expressions.codegen.BufferHolder(serializefromobject_result, 0); /* 023 */ this.serializefromobject_rowWriter = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(serializefromobject_holder, 1); /* 024 */ /* 025 */ } /* 026 */ /* 027 */ protected void processNext() throws java.io.IOException { /* 028 */ while (inputadapter_input.hasNext() && !stopEarly()) { /* 029 */ InternalRow inputadapter_row = (InternalRow) inputadapter_input.next(); /* 030 */ boolean inputadapter_isNull = inputadapter_row.isNullAt(0); /* 031 */ java.lang.Long inputadapter_value = inputadapter_isNull ? null : ((java.lang.Long)inputadapter_row.get(0, null)); /* 032 */ /* 033 */ boolean serializefromobject_isNull = true; /* 034 */ long serializefromobject_value = -1L; /* 035 */ if (!inputadapter_isNull) { /* 036 */ serializefromobject_isNull = false; /* 037 */ if (!serializefromobject_isNull) { /* 038 */ serializefromobject_value = inputadapter_value.longValue(); /* 039 */ } /* 040 */ /* 041 */ } /* 042 */ serializefromobject_rowWriter.zeroOutNullBytes(); /* 043 */ /* 044 */ if (serializefromobject_isNull) { /* 045 */ serializefromobject_rowWriter.setNullAt(0); /* 046 */ } else { /* 047 */ serializefromobject_rowWriter.write(0, serializefromobject_value); /* 048 */ } /* 049 */ append(serializefromobject_result); /* 050 */ if (shouldStop()) return; /* 051 */ } /* 052 */ } /* 053 */ } ``` ## How was this patch tested? Added new test suites in `DataFrameSuites` Author: Kazuaki Ishizaki <ishizaki@jp.ibm.com> Closes #17302 from kiszk/SPARK-19959. (cherry picked from commit bb823ca4) Signed-off-by:
Wenchen Fan <wenchen@databricks.com>
-
- Mar 21, 2017
-
-
Patrick Wendell authored
-
Patrick Wendell authored
-
Takeshi Yamamuro authored
## What changes were proposed in this pull request? A Bean serializer in `ExpressionEncoder` could change values when Beans having NULL. A concrete example is as follows; ``` scala> :paste class Outer extends Serializable { private var cls: Inner = _ def setCls(c: Inner): Unit = cls = c def getCls(): Inner = cls } class Inner extends Serializable { private var str: String = _ def setStr(s: String): Unit = str = str def getStr(): String = str } scala> Seq("""{"cls":null}""", """{"cls": {"str":null}}""").toDF().write.text("data") scala> val encoder = Encoders.bean(classOf[Outer]) scala> val schema = encoder.schema scala> val df = spark.read.schema(schema).json("data").as[Outer](encoder) scala> df.show +------+ | cls| +------+ |[null]| | null| +------+ scala> df.map(x => x)(encoder).show() +------+ | cls| +------+ |[null]| |[null]| // <-- Value changed +------+ ``` This is because the Bean serializer does not have the NULL-check expressions that the serializer of Scala's product types has. Actually, this value change does not happen in Scala's product types; ``` scala> :paste case class Outer(cls: Inner) case class Inner(str: String) scala> val encoder = Encoders.product[Outer] scala> val schema = encoder.schema scala> val df = spark.read.schema(schema).json("data").as[Outer](encoder) scala> df.show +------+ | cls| +------+ |[null]| | null| +------+ scala> df.map(x => x)(encoder).show() +------+ | cls| +------+ |[null]| | null| +------+ ``` This pr added the NULL-check expressions in Bean serializer along with the serializer of Scala's product types. ## How was this patch tested? Added tests in `JavaDatasetSuite`. Author: Takeshi Yamamuro <yamamuro@apache.org> Closes #17372 from maropu/SPARK-19980-BACKPORT2.1.
-
Will Manning authored
## What changes were proposed in this pull request? The description in the comment for array_contains is vague/incomplete (i.e., doesn't mention that it returns `null` if the array is `null`); this PR fixes that. ## How was this patch tested? No testing, since it merely changes a comment. Please review http://spark.apache.org/contributing.html before opening a pull request. Author: Will Manning <lwwmanning@gmail.com> Closes #17380 from lwwmanning/patch-1. (cherry picked from commit a04dcde8) Signed-off-by:
Reynold Xin <rxin@databricks.com>
-
- Mar 20, 2017
-
-
wangzhenhua authored
## What changes were proposed in this pull request? For right outer join, values of the left key will be filled with nulls if it can't match the value of the right key, so `nullOrdering` of the left key can't be guaranteed. We should output right key order instead of left key order. For full outer join, neither left key nor right key guarantees `nullOrdering`. We should not output any ordering. In tests, besides adding three test cases for left/right/full outer sort merge join, this patch also reorganizes code in `PlannerSuite` by putting together tests for `Sort`, and also extracts common logic in Sort tests into a method. ## How was this patch tested? Corresponding test cases are added. Author: wangzhenhua <wangzhenhua@huawei.com> Author: Zhenhua Wang <wzh_zju@163.com> Closes #17331 from wzhfy/wrongOrdering. (cherry picked from commit 965a5abc) Signed-off-by:
Wenchen Fan <wenchen@databricks.com>
-
- Mar 17, 2017
-
-
Jacek Laskowski authored
## What changes were proposed in this pull request? Fix scaladoc for UDFRegistration ## How was this patch tested? local build Author: Jacek Laskowski <jacek@japila.pl> Closes #17337 from jaceklaskowski/udfregistration-scaladoc. (cherry picked from commit 6326d406) Signed-off-by:
Reynold Xin <rxin@databricks.com>
-