- Aug 30, 2016
-
-
Ferdinand Xu authored
This patch is using Apache Commons Crypto library to enable shuffle encryption support. Author: Ferdinand Xu <cheng.a.xu@intel.com> Author: kellyzly <kellyzly@126.com> Closes #8880 from winningsix/SPARK-10771.
-
Xin Ren authored
## What changes were proposed in this pull request? Clean up unused variables and unused import statements, unnecessary `return` and `toArray`, and some more style improvement, when I walk through the code examples. ## How was this patch tested? Testet manually on local laptop. Author: Xin Ren <iamshrek@126.com> Closes #14836 from keypointt/codeWalkThroughML.
-
Dmitriy Sokolov authored
## What changes were proposed in this pull request? Fix minor typos python example code in streaming programming guide ## How was this patch tested? N/A Author: Dmitriy Sokolov <silentsokolov@gmail.com> Closes #14805 from silentsokolov/fix-typos.
-
Sean Owen authored
## What changes were proposed in this pull request? Clarify that only parquet files are supported by DataStreamWriter now ## How was this patch tested? (Doc build -- no functional changes to test) Author: Sean Owen <sowen@cloudera.com> Closes #14860 from srowen/SPARK-17264.
-
Xin Ren authored
https://issues.apache.org/jira/browse/SPARK-17276 ## What changes were proposed in this pull request? When trying to find error msg in a failed Jenkins build job, I'm annoyed by the huge env output. The env parameter output should be muted.  ## How was this patch tested? Tested manually on local laptop. Author: Xin Ren <iamshrek@126.com> Closes #14848 from keypointt/SPARK-17276.
-
gatorsmile authored
### What changes were proposed in this pull request? Hive Index tables are not supported by Spark SQL. Thus, we issue an exception when users try to access Hive Index tables. When the internal function `tableExists` tries to access Hive Index tables, it always gets the same error message: ```Hive index table is not supported```. This message could be confusing to users, since their SQL operations could be completely unrelated to Hive Index tables. For example, when users try to alter a table to a new name and there exists an index table with the same name, the expected exception should be a `TableAlreadyExistsException`. This PR made the following changes: - Introduced a new `AnalysisException` type: `SQLFeatureNotSupportedException`. When users try to access an `Index Table`, we will issue a `SQLFeatureNotSupportedException`. - `tableExists` returns `true` when hitting a `SQLFeatureNotSupportedException` and the feature is `Hive index table`. - Add a checking `requireTableNotExists` for `SessionCatalog`'s `createTable` API; otherwise, the current implementation relies on the Hive's internal checking. ### How was this patch tested? Added a test case Author: gatorsmile <gatorsmile@gmail.com> Closes #14801 from gatorsmile/tableExists.
-
Takeshi YAMAMURO authored
## What changes were proposed in this pull request? Partial aggregations are generated in `EnsureRequirements`, but the planner fails to check if partial aggregation satisfies sort requirements. For the following query: ``` val df2 = (0 to 1000).map(x => (x % 2, x.toString)).toDF("a", "b").createOrReplaceTempView("t2") spark.sql("select max(b) from t2 group by a").explain(true) ``` Now, the SortAggregator won't insert Sort operator before partial aggregation, this will break sort-based partial aggregation. ``` == Physical Plan == SortAggregate(key=[a#5], functions=[max(b#6)], output=[max(b)#17]) +- *Sort [a#5 ASC], false, 0 +- Exchange hashpartitioning(a#5, 200) +- SortAggregate(key=[a#5], functions=[partial_max(b#6)], output=[a#5, max#19]) +- LocalTableScan [a#5, b#6] ``` Actually, a correct plan is: ``` == Physical Plan == SortAggregate(key=[a#5], functions=[max(b#6)], output=[max(b)#17]) +- *Sort [a#5 ASC], false, 0 +- Exchange hashpartitioning(a#5, 200) +- SortAggregate(key=[a#5], functions=[partial_max(b#6)], output=[a#5, max#19]) +- *Sort [a#5 ASC], false, 0 +- LocalTableScan [a#5, b#6] ``` ## How was this patch tested? Added tests in `PlannerSuite`. Author: Takeshi YAMAMURO <linguin.m.s@gmail.com> Closes #14865 from maropu/SPARK-17289.
-
frreiss authored
## What changes were proposed in this pull request? Excludes the `spark-warehouse` directory from the Apache RAT checks that src/run-tests performs. `spark-warehouse` is created by some of the Spark SQL tests, as well as by `bin/spark-sql`. ## How was this patch tested? Ran src/run-tests twice. The second time, the script failed because the first iteration Made the change in this PR. Ran src/run-tests a third time; RAT checks succeeded. Author: frreiss <frreiss@us.ibm.com> Closes #14870 from frreiss/fred-17303.
-
- Aug 29, 2016
-
-
Josh Rosen authored
There's an unused `classTag` val in the AtomicType base class which is causing unnecessary slowness in deserialization because it needs to grab ScalaReflectionLock and create a new runtime reflection mirror. Removing this unused code gives a small but measurable performance boost in SQL task deserialization. Author: Josh Rosen <joshrosen@databricks.com> Closes #14869 from JoshRosen/remove-unused-classtag.
-
Shivaram Venkataraman authored
## What changes were proposed in this pull request? This change exposes a public API in SparkR to create objects, call methods on the Spark driver JVM ## How was this patch tested? (Please explain how this patch was tested. E.g. unit tests, integration tests, manual tests) Unit tests, CRAN checks Author: Shivaram Venkataraman <shivaram@cs.berkeley.edu> Closes #14775 from shivaram/sparkr-java-api.
-
Davies Liu authored
## What changes were proposed in this pull request? This PR split the the single `createPartitions()` call into smaller batches, which could prevent Hive metastore from OOM (caused by millions of partitions). It will also try to gather all the fast stats (number of files and total size of all files) in parallel to avoid the bottle neck of listing the files in metastore sequential, which is controlled by spark.sql.gatherFastStats (enabled by default). ## How was this patch tested? Tested locally with 10000 partitions and 100 files with embedded metastore, without gathering fast stats in parallel, adding partitions took 153 seconds, after enable that, gathering the fast stats took about 34 seconds, adding these partitions took 25 seconds (most of the time spent in object store), 59 seconds in total, 2.5X faster (with larger cluster, gathering will much faster). Author: Davies Liu <davies@databricks.com> Closes #14607 from davies/repair_batch.
-
Junyang Qian authored
## What changes were proposed in this pull request? This PR tries to fix the name of the `SparkDataFrame` used in the example. Also, it gives a reference url of an example data file so that users can play with. ## How was this patch tested? Manual test. Author: Junyang Qian <junyangq@databricks.com> Closes #14853 from junyangq/SPARKR-FixLDADoc.
-
Seigneurin, Alexis (CONT) authored
idempotant -> idempotent Author: Seigneurin, Alexis (CONT) <Alexis.Seigneurin@capitalone.com> Closes #14833 from aseigneurin/fix-typo.
-
Sean Owen authored
## What changes were proposed in this pull request? Closes #10995 Closes #13658 Closes #14505 Closes #14536 Closes #12753 Closes #14449 Closes #12694 Closes #12695 Closes #14810 Closes #10572 ## How was this patch tested? N/A Author: Sean Owen <sowen@cloudera.com> Closes #14849 from srowen/CloseStalePRs.
-
- Aug 28, 2016
-
-
Tejas Patil authored
[SPARK-17271][SQL] Planner adds un-necessary Sort even if child ordering is semantically same as required ordering ## What changes were proposed in this pull request? Jira : https://issues.apache.org/jira/browse/SPARK-17271 Planner is adding un-needed SORT operation due to bug in the way comparison for `SortOrder` is done at https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/exchange/EnsureRequirements.scala#L253 `SortOrder` needs to be compared semantically because `Expression` within two `SortOrder` can be "semantically equal" but not literally equal objects. eg. In case of `sql("SELECT * FROM table1 a JOIN table2 b ON a.col1=b.col1")` Expression in required SortOrder: ``` AttributeReference( name = "col1", dataType = LongType, nullable = false ) (exprId = exprId, qualifier = Some("a") ) ``` Expression in child SortOrder: ``` AttributeReference( name = "col1", dataType = LongType, nullable = false ) (exprId = exprId) ``` Notice that the output column has a qualifier but the child attribute does not but the inherent expression is the same and hence in this case we can say that the child satisfies the required sort order. This PR includes following changes: - Added a `semanticEquals` method to `SortOrder` so that it can compare underlying child expressions semantically (and not using default Object.equals) - Fixed `EnsureRequirements` to use semantic comparison of SortOrder ## How was this patch tested? - Added a test case to `PlannerSuite`. Ran rest tests in `PlannerSuite` Author: Tejas Patil <tejasp@fb.com> Closes #14841 from tejasapatil/SPARK-17271_sort_order_equals_bug.
-
- Aug 27, 2016
-
-
Sean Owen authored
## What changes were proposed in this pull request? Allow centering / mean scaling of sparse vectors in StandardScaler, if requested. This is for compatibility with `VectorAssembler` in common usages. ## How was this patch tested? Jenkins tests, including new caes to reflect the new behavior. Author: Sean Owen <sowen@cloudera.com> Closes #14663 from srowen/SPARK-17001.
-
Robert Kruszewski authored
## What changes were proposed in this pull request? Make event timeline bar expand to full length of the bar (which is total time) This issue occurs only on chrome, firefox looks fine. Haven't tested other browsers. ## How was this patch tested? Inspection in browsers Before  After  Author: Robert Kruszewski <robertk@palantir.com> Closes #14791 from robert3005/robertk/event-timeline.
-
Peng, Meng authored
## What changes were proposed in this pull request? The require condition and message doesn't match, and the condition also should be optimized. Small change. Please kindly let me know if JIRA required. ## How was this patch tested? No additional test required. Author: Peng, Meng <peng.meng@intel.com> Closes #14824 from mpjlu/smallChangeForMatrixRequire.
-
Takeshi YAMAMURO authored
## What changes were proposed in this pull request? This pr to fix a bug below in sampling with replacement ``` val df = Seq((1, 0), (2, 0), (3, 0)).toDF("a", "b") df.sample(true, 2.0).withColumn("c", monotonically_increasing_id).select($"c").show +---+ | c| +---+ | 0| | 1| | 1| | 1| | 2| +---+ ``` ## How was this patch tested? Added a test in `DataFrameSuite`. Author: Takeshi YAMAMURO <linguin.m.s@gmail.com> Closes #14800 from maropu/FixSampleBug.
-
Reynold Xin authored
## What changes were proposed in this pull request? As part of breaking Optimizer.scala apart, this patch moves various join rules into a single file. ## How was this patch tested? This should be covered by existing tests. Author: Reynold Xin <rxin@databricks.com> Closes #14846 from rxin/SPARK-17274.
-
Reynold Xin authored
## What changes were proposed in this pull request? As part of breaking Optimizer.scala apart, this patch moves various expression optimization rules into a single file. ## How was this patch tested? This should be covered by existing tests. Author: Reynold Xin <rxin@databricks.com> Closes #14845 from rxin/SPARK-17273.
-
Reynold Xin authored
## What changes were proposed in this pull request? As part of breaking Optimizer.scala apart, this patch moves various subquery rules into a single file. ## How was this patch tested? This should be covered by existing tests. Author: Reynold Xin <rxin@databricks.com> Closes #14844 from rxin/SPARK-17272.
-
Reynold Xin authored
## What changes were proposed in this pull request? As part of breaking Optimizer.scala apart, this patch moves various finish analysis optimization stage rules into a single file. I'm submitting separate pull requests so we can more easily merge this in branch-2.0 to simplify optimizer backports. ## How was this patch tested? This should be covered by existing tests. Author: Reynold Xin <rxin@databricks.com> Closes #14838 from rxin/SPARK-17269.
-
- Aug 26, 2016
-
-
Reynold Xin authored
## What changes were proposed in this pull request? As part of breaking Optimizer.scala apart, this patch moves various Dataset object optimization rules into a single file. I'm submitting separate pull requests so we can more easily merge this in branch-2.0 to simplify optimizer backports. ## How was this patch tested? This should be covered by existing tests. Author: Reynold Xin <rxin@databricks.com> Closes #14839 from rxin/SPARK-17270.
-
Yin Huai authored
## What changes were proposed in this pull request? This PR adds a regression test to PrefixComparatorsSuite's "String prefix comparator" because this test failed on jenkins once (https://amplab.cs.berkeley.edu/jenkins/job/spark-master-test-sbt-hadoop-2.4/1620/testReport/junit/org.apache.spark.util.collection.unsafe.sort/PrefixComparatorsSuite/String_prefix_comparator/). I could not reproduce it locally. But, let's this test case in the regressionTests. Author: Yin Huai <yhuai@databricks.com> Closes #14837 from yhuai/SPARK-17266.
-
Sameer Agarwal authored
## What changes were proposed in this pull request? Given that non-deterministic expressions can be stateful, pushing them down the query plan during the optimization phase can cause incorrect behavior. This patch fixes that issue by explicitly disabling that. ## How was this patch tested? A new test in `FilterPushdownSuite` that checks catalyst behavior for both deterministic and non-deterministic join conditions. Author: Sameer Agarwal <sameerag@cs.berkeley.edu> Closes #14815 from sameeragarwal/constraint-inputfile.
-
petermaxlee authored
## What changes were proposed in this pull request? This patch adds a purge interface to MetadataLog, and an implementation in HDFSMetadataLog. The purge function is currently unused, but I will use it to purge old execution and file source logs in follow-up patches. These changes are required in a production structured streaming job that runs for a long period of time. ## How was this patch tested? Added a unit test case in HDFSMetadataLogSuite. Author: petermaxlee <petermaxlee@gmail.com> Closes #14802 from petermaxlee/SPARK-17235.
-
Herman van Hovell authored
## What changes were proposed in this pull request? This PR adds parser support for `BigDecimal` literals. If you append the suffix `BD` to a valid number then this will be interpreted as a `BigDecimal`, for example `12.0E10BD` will interpreted into a BigDecimal with scale -9 and precision 3. This is useful in situations where you need exact values. ## How was this patch tested? Added tests to `ExpressionParserSuite`, `ExpressionSQLBuilderSuite` and `SQLQueryTestSuite`. Author: Herman van Hovell <hvanhovell@databricks.com> Closes #14819 from hvanhovell/SPARK-17246.
-
Michael Gummelt authored
## What changes were proposed in this pull request? Move Mesos code into a mvn module ## How was this patch tested? unit tests manually submitting a client mode and cluster mode job spark/mesos integration test suite Author: Michael Gummelt <mgummelt@mesosphere.io> Closes #14637 from mgummelt/mesos-module.
-
Peng, Meng authored
## What changes were proposed in this pull request? fix comparing Vector bug in TestingUtils. There is the same bug for Matrix comparing. How to check the length of Matrix should be discussed first. ## How was this patch tested? (Please explain how this patch was tested. E.g. unit tests, integration tests, manual tests) (If this patch involves UI changes, please attach a screenshot; otherwise, remove this) Author: Peng, Meng <peng.meng@intel.com> Closes #14785 from mpjlu/testUtils.
-
petermaxlee authored
## What changes were proposed in this pull request? Before this change, FileStreamSource uses an in-memory hash set to track the list of files processed by the engine. The list can grow indefinitely, leading to OOM or overflow of the hash set. This patch introduces a new user-defined option called "maxFileAge", default to 24 hours. If a file is older than this age, FileStreamSource will purge it from the in-memory map that was used to track the list of files that have been processed. ## How was this patch tested? Added unit tests for the underlying utility, and also added an end-to-end test to validate the purge in FileStreamSourceSuite. Also verified the new test cases would fail when the timeout was set to a very large number. Author: petermaxlee <petermaxlee@gmail.com> Closes #14728 from petermaxlee/SPARK-17165.
-
gatorsmile authored
### What changes were proposed in this pull request? This is the first step to remove `HiveClient` from `HiveSessionState`. In the metastore interaction, we always use the fully qualified table name when accessing/operating a table. That means, we always specify the database. Thus, it is not necessary to use `HiveClient` to change the active database in Hive metastore. In `HiveSessionCatalog `, `setCurrentDatabase` is the only function that uses `HiveClient`. Thus, we can remove it after removing `setCurrentDatabase` ### How was this patch tested? The existing test cases. Author: gatorsmile <gatorsmile@gmail.com> Closes #14821 from gatorsmile/setCurrentDB.
-
gatorsmile authored
[SPARK-17192][SQL] Issue Exception when Users Specify the Partitioning Columns without a Given Schema ### What changes were proposed in this pull request? Address the comments by yhuai in the original PR: https://github.com/apache/spark/pull/14207 First, issue an exception instead of logging a warning when users specify the partitioning columns without a given schema. Second, refactor the codes a little. ### How was this patch tested? Fixed the test cases. Author: gatorsmile <gatorsmile@gmail.com> Closes #14572 from gatorsmile/followup16552.
-
Junyang Qian authored
## What changes were proposed in this pull request? The original example doesn't work because the features are not categorical. This PR fixes this by changing to another dataset. ## How was this patch tested? Manual test. Author: Junyang Qian <junyangq@databricks.com> Closes #14820 from junyangq/SPARK-FixNaiveBayes.
-
Wenchen Fan authored
## What changes were proposed in this pull request? improve the document to make it easier to understand and also mention window operator. ## How was this patch tested? N/A Author: Wenchen Fan <wenchen@databricks.com> Closes #14822 from cloud-fan/object-agg.
-
Wenchen Fan authored
## What changes were proposed in this pull request? `CreateTables` rule turns a general `CreateTable` plan to `CreateHiveTableAsSelectCommand` for hive serde table. However, this rule is logically a planner strategy, we should move it to `HiveStrategies`, to be consistent with other DDL commands. ## How was this patch tested? existing tests. Author: Wenchen Fan <wenchen@databricks.com> Closes #14825 from cloud-fan/ctas.
-
hyukjinkwon authored
[SPARK-16216][SQL][FOLLOWUP] Enable timestamp type tests for JSON and verify all unsupported types in CSV ## What changes were proposed in this pull request? This PR enables the tests for `TimestampType` for JSON and unifies the logics for verifying schema when writing in CSV. In more details, this PR, - Enables the tests for `TimestampType` for JSON and This was disabled due to an issue in `DatatypeConverter.parseDateTime` which parses dates incorrectly, for example as below: ```scala val d = javax.xml.bind.DatatypeConverter.parseDateTime("0900-01-01T00:00:00.000").getTime println(d.toString) ``` ``` Fri Dec 28 00:00:00 KST 899 ``` However, since we use `FastDateFormat`, it seems we are safe now. ```scala val d = FastDateFormat.getInstance("yyyy-MM-dd'T'HH:mm:ss.SSS").parse("0900-01-01T00:00:00.000") println(d) ``` ``` Tue Jan 01 00:00:00 PST 900 ``` - Verifies all unsupported types in CSV There is a separate logics to verify the schemas in `CSVFileFormat`. This is actually not quite correct enough because we don't support `NullType` and `CalanderIntervalType` as well `StructType`, `ArrayType`, `MapType`. So, this PR adds both types. ## How was this patch tested? Tests in `JsonHadoopFsRelation` and `CSVSuite` Author: hyukjinkwon <gurwls223@gmail.com> Closes #14829 from HyukjinKwon/SPARK-16216-followup.
-
- Aug 25, 2016
-
-
Shixiong Zhu authored
## What changes were proposed in this pull request? Updated links of external dstream projects. ## How was this patch tested? Just document changes. Author: Shixiong Zhu <shixiong@databricks.com> Closes #14814 from zsxwing/dstream-link.
-
hyukjinkwon authored
## What changes were proposed in this pull request? Currently, type-widening does not work between `TimestampType` and `DateType`. This applies to `SetOperation`, `Union`, `In`, `CaseWhen`, `Greatest`, `Leatest`, `CreateArray`, `CreateMap`, `Coalesce`, `NullIf`, `IfNull`, `Nvl` and `Nvl2`, . This PR adds the support for widening `DateType` to `TimestampType` for them. For a simple example, **Before** ```scala Seq(Tuple2(new Timestamp(0), new Date(0))).toDF("a", "b").selectExpr("greatest(a, b)").show() ``` shows below: ``` cannot resolve 'greatest(`a`, `b`)' due to data type mismatch: The expressions should all have the same type, got GREATEST(timestamp, date) ``` or union as below: ```scala val a = Seq(Tuple1(new Timestamp(0))).toDF() val b = Seq(Tuple1(new Date(0))).toDF() a.union(b).show() ``` shows below: ``` Union can only be performed on tables with the compatible column types. DateType <> TimestampType at the first column of the second table; ``` **After** ```scala Seq(Tuple2(new Timestamp(0), new Date(0))).toDF("a", "b").selectExpr("greatest(a, b)").show() ``` shows below: ``` +----------------------------------------------------+ |greatest(CAST(a AS TIMESTAMP), CAST(b AS TIMESTAMP))| +----------------------------------------------------+ | 1969-12-31 16:00:...| +----------------------------------------------------+ ``` or union as below: ```scala val a = Seq(Tuple1(new Timestamp(0))).toDF() val b = Seq(Tuple1(new Date(0))).toDF() a.union(b).show() ``` shows below: ``` +--------------------+ | _1| +--------------------+ |1969-12-31 16:00:...| |1969-12-31 00:00:...| +--------------------+ ``` ## How was this patch tested? Unit tests in `TypeCoercionSuite`. Author: hyukjinkwon <gurwls223@gmail.com> Author: HyukjinKwon <gurwls223@gmail.com> Closes #14786 from HyukjinKwon/SPARK-17212.
-
Sean Zhong authored
## What changes were proposed in this pull request? This PR introduces an abstract class `TypedImperativeAggregate` so that an aggregation function of TypedImperativeAggregate can use **arbitrary** user-defined Java object as intermediate aggregation buffer object. **This has advantages like:** 1. It now can support larger category of aggregation functions. For example, it will be much easier to implement aggregation function `percentile_approx`, which has a complex aggregation buffer definition. 2. It can be used to avoid doing serialization/de-serialization for every call of `update` or `merge` when converting domain specific aggregation object to internal Spark-Sql storage format. 3. It is easier to integrate with other existing monoid libraries like algebird, and supports more aggregation functions with high performance. Please see `org.apache.spark.sql.TypedImperativeAggregateSuite.TypedMaxAggregate` to find an example of how to defined a `TypedImperativeAggregate` aggregation function. Please see Java doc of `TypedImperativeAggregate` and Jira ticket SPARK-17187 for more information. ## How was this patch tested? Unit tests. Author: Sean Zhong <seanzhong@databricks.com> Author: Yin Huai <yhuai@databricks.com> Closes #14753 from clockfly/object_aggregation_buffer_try_2.
-