Skip to content
Snippets Groups Projects
user avatar
Tyson Condie authored
## What changes were proposed in this pull request?

An additional trigger and trigger executor that will execute a single trigger only. One can use this OneTime trigger to have more control over the scheduling of triggers.

In addition, this patch requires an optimization to StreamExecution that logs a commit record at the end of successfully processing a batch. This new commit log will be used to determine the next batch (offsets) to process after a restart, instead of using the offset log itself to determine what batch to process next after restart; using the offset log to determine this would process the previously logged batch, always, thus not permitting a OneTime trigger feature.

## How was this patch tested?

A number of existing tests have been revised. These tests all assumed that when restarting a stream, the last batch in the offset log is to be re-processed. Given that we now have a commit log that will tell us if that last batch was processed successfully, the results/assumptions of those tests needed to be revised accordingly.

In addition, a OneTime trigger test was added to StreamingQuerySuite, which tests:
- The semantics of OneTime trigger (i.e., on start, execute a single batch, then stop).
- The case when the commit log was not able to successfully log the completion of a batch before restart, which would mean that we should fall back to what's in the offset log.
- A OneTime trigger execution that results in an exception being thrown.

marmbrus tdas zsxwing

Please review http://spark.apache.org/contributing.html before opening a pull request.

Author: Tyson Condie <tcondie@gmail.com>
Author: Tathagata Das <tathagata.das1565@gmail.com>

Closes #17219 from tcondie/stream-commit.
746a558d
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.)

You can build Spark using more than one thread by using the -T option with Maven, see "Parallel builds in Maven 3". More detailed documentation is available from the project site, at "Building Spark".

For general development tips, including info on developing Spark using an IDE, see "Useful Developer Tools".

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.

Configuration

Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.

## Contributing

Please review the Contribution to Spark guide for information on how to get started contributing to the project.