- Apr 12, 2017
-
-
hyukjinkwon authored
## What changes were proposed in this pull request? This PR proposes corrections related to JSON APIs as below: - Rendering links in Python documentation - Replacing `RDD` to `Dataset` in programing guide - Adding missing description about JSON Lines consistently in `DataFrameReader.json` in Python API - De-duplicating little bit of `DataFrameReader.json` in Scala/Java API ## How was this patch tested? Manually build the documentation via `jekyll build`. Corresponding snapstops will be left on the codes. Note that currently there are Javadoc8 breaks in several places. These are proposed to be handled in https://github.com/apache/spark/pull/17477. So, this PR does not fix those. Author: hyukjinkwon <gurwls223@gmail.com> Closes #17602 from HyukjinKwon/minor-json-documentation.
-
Lee Dongjin authored
## What changes were proposed in this pull request? 1. Omitted space between the sentences: `... on static data.The Spark SQL engine will ...` -> `... on static data. The Spark SQL engine will ...` 2. Omitted colon in Output Model section. ## How was this patch tested? None. Author: Lee Dongjin <dongjin@apache.org> Closes #17564 from dongjinleekr/feature/fix-programming-guide.
-
- Apr 11, 2017
-
-
Dilip Biswal authored
## What changes were proposed in this pull request? The sameResult() method does not work when the logical plan contains subquery expressions. **Before the fix** ```SQL scala> val ds = spark.sql("select * from s1 where s1.c1 in (select s2.c1 from s2 where s1.c1 = s2.c1)") ds: org.apache.spark.sql.DataFrame = [c1: int] scala> ds.cache res13: ds.type = [c1: int] scala> spark.sql("select * from s1 where s1.c1 in (select s2.c1 from s2 where s1.c1 = s2.c1)").explain(true) == Analyzed Logical Plan == c1: int Project [c1#86] +- Filter c1#86 IN (list#78 [c1#86]) : +- Project [c1#87] : +- Filter (outer(c1#86) = c1#87) : +- SubqueryAlias s2 : +- Relation[c1#87] parquet +- SubqueryAlias s1 +- Relation[c1#86] parquet == Optimized Logical Plan == Join LeftSemi, ((c1#86 = c1#87) && (c1#86 = c1#87)) :- Relation[c1#86] parquet +- Relation[c1#87] parquet ``` **Plan after fix** ```SQL == Analyzed Logical Plan == c1: int Project [c1#22] +- Filter c1#22 IN (list#14 [c1#22]) : +- Project [c1#23] : +- Filter (outer(c1#22) = c1#23) : +- SubqueryAlias s2 : +- Relation[c1#23] parquet +- SubqueryAlias s1 +- Relation[c1#22] parquet == Optimized Logical Plan == InMemoryRelation [c1#22], true, 10000, StorageLevel(disk, memory, deserialized, 1 replicas) +- *BroadcastHashJoin [c1#1, c1#1], [c1#2, c1#2], LeftSemi, BuildRight :- *FileScan parquet default.s1[c1#1] Batched: true, Format: Parquet, Location: InMemoryFileIndex[file:/Users/dbiswal/mygit/apache/spark/bin/spark-warehouse/s1], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<c1:int> +- BroadcastExchange HashedRelationBroadcastMode(List((shiftleft(cast(input[0, int, true] as bigint), 32) | (cast(input[0, int, true] as bigint) & 4294967295)))) +- *FileScan parquet default.s2[c1#2] Batched: true, Format: Parquet, Location: InMemoryFileIndex[file:/Users/dbiswal/mygit/apache/spark/bin/spark-warehouse/s2], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<c1:int> ``` ## How was this patch tested? New tests are added to CachedTableSuite. Author: Dilip Biswal <dbiswal@us.ibm.com> Closes #17330 from dilipbiswal/subquery_cache_final.
-
DB Tsai authored
## What changes were proposed in this pull request? `NaNvl(float value, null)` will be converted into `NaNvl(float value, Cast(null, DoubleType))` and finally `NaNvl(Cast(float value, DoubleType), Cast(null, DoubleType))`. This will cause mismatching in the output type when the input type is float. By adding extra rule in TypeCoercion can resolve this issue. ## How was this patch tested? unite tests. Please review http://spark.apache.org/contributing.html before opening a pull request. Author: DB Tsai <dbt@netflix.com> Closes #17606 from dbtsai/fixNaNvl.
-
Dongjoon Hyun authored
## What changes were proposed in this pull request? Since SPARK-18112 and SPARK-13446, Apache Spark starts to support reading Hive metastore 2.0 ~ 2.1.1. This updates the docs. ## How was this patch tested? N/A Author: Dongjoon Hyun <dongjoon@apache.org> Closes #17612 from dongjoon-hyun/metastore.
-
David Gingrich authored
## What changes were proposed in this pull request? Added `util._message_exception` helper to use `str(e)` when `e.message` is unavailable (Python3). Grepped for all occurrences of `.message` in `pyspark/` and these were the only occurrences. ## How was this patch tested? - Doctests for helper function ## Legal This is my original work and I license the work to the project under the project’s open source license. Author: David Gingrich <david@textio.com> Closes #16845 from dgingrich/topic-spark-19505-py3-exceptions.
-
Reynold Xin authored
## What changes were proposed in this pull request? Dataset typed API currently uses NewInstance to box primitive types (i.e. calling the constructor). Instead, it'd be slightly more idiomatic in Java to use PrimitiveType.valueOf, which can be invoked using StaticInvoke expression. ## How was this patch tested? The change should be covered by existing tests for Dataset encoders. Author: Reynold Xin <rxin@databricks.com> Closes #17604 from rxin/SPARK-20289.
-
Liang-Chi Hsieh authored
## What changes were proposed in this pull request? Similar to `ListQuery`, `Exists` should not be evaluated in `Join` operator too. ## How was this patch tested? Jenkins tests. Please review http://spark.apache.org/contributing.html before opening a pull request. Author: Liang-Chi Hsieh <viirya@gmail.com> Closes #17491 from viirya/dont-push-exists-to-join.
-
Wenchen Fan authored
## What changes were proposed in this pull request? This is a regression caused by SPARK-19716. Before SPARK-19716, we will cast an array field to the expected array type. However, after SPARK-19716, the cast is removed, but we forgot to push the cast to the element level. ## How was this patch tested? new regression tests Author: Wenchen Fan <wenchen@databricks.com> Closes #17587 from cloud-fan/array.
-
MirrorZ authored
## What changes were proposed in this pull request? Add documentation for adding master url in multi host, port format for standalone cluster with high availability with zookeeper. Referring documentation [Standby Masters with ZooKeeper](http://spark.apache.org/docs/latest/spark-standalone.html#standby-masters-with-zookeeper) ## How was this patch tested? Documenting the functionality already present. Author: MirrorZ <chandrika3437@gmail.com> Closes #17584 from MirrorZ/master.
-
Benjamin Fradet authored
## What changes were proposed in this pull request? - made `numInstances` public in GLR - made `degreesOfFreedom` public in LR ## How was this patch tested? reran the concerned test suites Author: Benjamin Fradet <benjamin.fradet@gmail.com> Closes #17431 from BenFradet/SPARK-20097.
-
- Apr 10, 2017
-
-
Shixiong Zhu authored
## What changes were proposed in this pull request? This PR fixs the following failure: ``` sbt.ForkMain$ForkError: java.lang.AssertionError: null at org.junit.Assert.fail(Assert.java:86) at org.junit.Assert.assertTrue(Assert.java:41) at org.junit.Assert.assertTrue(Assert.java:52) at org.apache.spark.network.RequestTimeoutIntegrationSuite.furtherRequestsDelay(RequestTimeoutIntegrationSuite.java:230) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:497) at org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:50) at org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:12) at org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:47) at org.junit.internal.runners.statements.InvokeMethod.evaluate(InvokeMethod.java:17) at org.junit.internal.runners.statements.RunBefores.evaluate(RunBefores.java:26) at org.junit.internal.runners.statements.RunAfters.evaluate(RunAfters.java:27) at org.junit.runners.ParentRunner.runLeaf(ParentRunner.java:325) at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:78) at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:57) at org.junit.runners.ParentRunner$3.run(ParentRunner.java:290) at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:71) at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:288) at org.junit.runners.ParentRunner.access$000(ParentRunner.java:58) at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:268) at org.junit.runners.ParentRunner.run(ParentRunner.java:363) at org.junit.runners.Suite.runChild(Suite.java:128) at org.junit.runners.Suite.runChild(Suite.java:27) at org.junit.runners.ParentRunner$3.run(ParentRunner.java:290) at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:71) at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:288) at org.junit.runners.ParentRunner.access$000(ParentRunner.java:58) at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:268) at org.junit.runners.ParentRunner.run(ParentRunner.java:363) at org.junit.runner.JUnitCore.run(JUnitCore.java:137) at org.junit.runner.JUnitCore.run(JUnitCore.java:115) at com.novocode.junit.JUnitRunner$1.execute(JUnitRunner.java:132) at sbt.ForkMain$Run$2.call(ForkMain.java:296) at sbt.ForkMain$Run$2.call(ForkMain.java:286) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) ``` It happens several times per month on [Jenkins](http://spark-tests.appspot.com/test-details?suite_name=org.apache.spark.network.RequestTimeoutIntegrationSuite&test_name=furtherRequestsDelay). The failure is because `callback1` may not be called before `assertTrue(callback1.failure instanceof IOException);`. It's pretty easy to reproduce this error by adding a sleep before this line: https://github.com/apache/spark/blob/379b0b0bbdbba2278ce3bcf471bd75f6ffd9cf0d/common/network-common/src/test/java/org/apache/spark/network/RequestTimeoutIntegrationSuite.java#L267 The fix is straightforward: just use the latch to wait until `callback1` is called. ## How was this patch tested? Jenkins Author: Shixiong Zhu <shixiong@databricks.com> Closes #17599 from zsxwing/SPARK-17564.
-
Reynold Xin authored
## What changes were proposed in this pull request? We currently have postHocOptimizationBatches, but not preOptimizationBatches. This patch adds preOptimizationBatches so the optimizer debugging extensions are symmetric. ## How was this patch tested? N/A Author: Reynold Xin <rxin@databricks.com> Closes #17595 from rxin/SPARK-20283.
-
Shixiong Zhu authored
## What changes were proposed in this pull request? This PR fixes the following failure: ``` sbt.ForkMain$ForkError: org.scalatest.exceptions.TestFailedException: Assert on query failed: == Progress == AssertOnQuery(<condition>, ) StopStream AddData to MemoryStream[value#30891]: 1,2 StartStream(OneTimeTrigger,org.apache.spark.util.SystemClock35cdc93a,Map()) CheckAnswer: [6],[3] StopStream => AssertOnQuery(<condition>, ) AssertOnQuery(<condition>, ) StartStream(OneTimeTrigger,org.apache.spark.util.SystemClockcdb247d,Map()) CheckAnswer: [6],[3] StopStream AddData to MemoryStream[value#30891]: 3 StartStream(OneTimeTrigger,org.apache.spark.util.SystemClock55394e4d,Map()) CheckLastBatch: [2] StopStream AddData to MemoryStream[value#30891]: 0 StartStream(OneTimeTrigger,org.apache.spark.util.SystemClock749aa997,Map()) ExpectFailure[org.apache.spark.SparkException, isFatalError: false] AssertOnQuery(<condition>, ) AssertOnQuery(<condition>, incorrect start offset or end offset on exception) == Stream == Output Mode: Append Stream state: not started Thread state: dead == Sink == 0: [6] [3] == Plan == at org.scalatest.Assertions$class.newAssertionFailedException(Assertions.scala:495) at org.scalatest.FunSuite.newAssertionFailedException(FunSuite.scala:1555) at org.scalatest.Assertions$class.fail(Assertions.scala:1328) at org.scalatest.FunSuite.fail(FunSuite.scala:1555) at org.apache.spark.sql.streaming.StreamTest$class.failTest$1(StreamTest.scala:347) at org.apache.spark.sql.streaming.StreamTest$class.verify$1(StreamTest.scala:318) at org.apache.spark.sql.streaming.StreamTest$$anonfun$liftedTree1$1$1.apply(StreamTest.scala:483) at org.apache.spark.sql.streaming.StreamTest$$anonfun$liftedTree1$1$1.apply(StreamTest.scala:357) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) at org.apache.spark.sql.streaming.StreamTest$class.liftedTree1$1(StreamTest.scala:357) at org.apache.spark.sql.streaming.StreamTest$class.testStream(StreamTest.scala:356) at org.apache.spark.sql.streaming.StreamingQuerySuite.testStream(StreamingQuerySuite.scala:41) at org.apache.spark.sql.streaming.StreamingQuerySuite$$anonfun$6.apply$mcV$sp(StreamingQuerySuite.scala:166) at org.apache.spark.sql.streaming.StreamingQuerySuite$$anonfun$6.apply(StreamingQuerySuite.scala:161) at org.apache.spark.sql.streaming.StreamingQuerySuite$$anonfun$6.apply(StreamingQuerySuite.scala:161) at org.apache.spark.sql.catalyst.util.package$.quietly(package.scala:42) at org.apache.spark.sql.test.SQLTestUtils$$anonfun$testQuietly$1.apply$mcV$sp(SQLTestUtils.scala:268) at org.apache.spark.sql.test.SQLTestUtils$$anonfun$testQuietly$1.apply(SQLTestUtils.scala:268) at org.apache.spark.sql.test.SQLTestUtils$$anonfun$testQuietly$1.apply(SQLTestUtils.scala:268) at org.scalatest.Transformer$$anonfun$apply$1.apply$mcV$sp(Transformer.scala:22) at org.scalatest.OutcomeOf$class.outcomeOf(OutcomeOf.scala:85) at org.scalatest.OutcomeOf$.outcomeOf(OutcomeOf.scala:104) at org.scalatest.Transformer.apply(Transformer.scala:22) at org.scalatest.Transformer.apply(Transformer.scala:20) at org.scalatest.FunSuiteLike$$anon$1.apply(FunSuiteLike.scala:166) at org.apache.spark.SparkFunSuite.withFixture(SparkFunSuite.scala:68) at org.scalatest.FunSuiteLike$class.invokeWithFixture$1(FunSuiteLike.scala:163) at org.scalatest.FunSuiteLike$$anonfun$runTest$1.apply(FunSuiteLike.scala:175) at org.scalatest.FunSuiteLike$$anonfun$runTest$1.apply(FunSuiteLike.scala:175) at org.scalatest.SuperEngine.runTestImpl(Engine.scala:306) at org.scalatest.FunSuiteLike$class.runTest(FunSuiteLike.scala:175) at org.apache.spark.sql.streaming.StreamingQuerySuite.org$scalatest$BeforeAndAfterEach$$super$runTest(StreamingQuerySuite.scala:41) at org.scalatest.BeforeAndAfterEach$class.runTest(BeforeAndAfterEach.scala:255) at org.apache.spark.sql.streaming.StreamingQuerySuite.org$scalatest$BeforeAndAfter$$super$runTest(StreamingQuerySuite.scala:41) at org.scalatest.BeforeAndAfter$class.runTest(BeforeAndAfter.scala:200) at org.apache.spark.sql.streaming.StreamingQuerySuite.runTest(StreamingQuerySuite.scala:41) at org.scalatest.FunSuiteLike$$anonfun$runTests$1.apply(FunSuiteLike.scala:208) at org.scalatest.FunSuiteLike$$anonfun$runTests$1.apply(FunSuiteLike.scala:208) at org.scalatest.SuperEngine$$anonfun$traverseSubNodes$1$1.apply(Engine.scala:413) at org.scalatest.SuperEngine$$anonfun$traverseSubNodes$1$1.apply(Engine.scala:401) at scala.collection.immutable.List.foreach(List.scala:381) at org.scalatest.SuperEngine.traverseSubNodes$1(Engine.scala:401) at org.scalatest.SuperEngine.org$scalatest$SuperEngine$$runTestsInBranch(Engine.scala:396) at org.scalatest.SuperEngine.runTestsImpl(Engine.scala:483) at org.scalatest.FunSuiteLike$class.runTests(FunSuiteLike.scala:208) at org.scalatest.FunSuite.runTests(FunSuite.scala:1555) at org.scalatest.Suite$class.run(Suite.scala:1424) at org.scalatest.FunSuite.org$scalatest$FunSuiteLike$$super$run(FunSuite.scala:1555) at org.scalatest.FunSuiteLike$$anonfun$run$1.apply(FunSuiteLike.scala:212) at org.scalatest.FunSuiteLike$$anonfun$run$1.apply(FunSuiteLike.scala:212) at org.scalatest.SuperEngine.runImpl(Engine.scala:545) at org.scalatest.FunSuiteLike$class.run(FunSuiteLike.scala:212) at org.apache.spark.SparkFunSuite.org$scalatest$BeforeAndAfterAll$$super$run(SparkFunSuite.scala:31) at org.scalatest.BeforeAndAfterAll$class.liftedTree1$1(BeforeAndAfterAll.scala:257) at org.scalatest.BeforeAndAfterAll$class.run(BeforeAndAfterAll.scala:256) at org.apache.spark.sql.streaming.StreamingQuerySuite.org$scalatest$BeforeAndAfter$$super$run(StreamingQuerySuite.scala:41) at org.scalatest.BeforeAndAfter$class.run(BeforeAndAfter.scala:241) at org.apache.spark.sql.streaming.StreamingQuerySuite.run(StreamingQuerySuite.scala:41) at org.scalatest.tools.Framework.org$scalatest$tools$Framework$$runSuite(Framework.scala:357) at org.scalatest.tools.Framework$ScalaTestTask.execute(Framework.scala:502) at sbt.ForkMain$Run$2.call(ForkMain.java:296) at sbt.ForkMain$Run$2.call(ForkMain.java:286) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) ``` The failure is because `CheckAnswer` will run once `committedOffsets` is updated. Then writing the commit log may be interrupted by the following `StopStream`. This PR just change the order to write the commit log first. ## How was this patch tested? Jenkins Author: Shixiong Zhu <shixiong@databricks.com> Closes #17594 from zsxwing/SPARK-20282.
-
Shixiong Zhu authored
## What changes were proposed in this pull request? Saw the following failure locally: ``` Traceback (most recent call last): File "/home/jenkins/workspace/python/pyspark/streaming/tests.py", line 351, in test_cogroup self._test_func(input, func, expected, sort=True, input2=input2) File "/home/jenkins/workspace/python/pyspark/streaming/tests.py", line 162, in _test_func self.assertEqual(expected, result) AssertionError: Lists differ: [[(1, ([1], [2])), (2, ([1], [... != [] First list contains 3 additional elements. First extra element 0: [(1, ([1], [2])), (2, ([1], [])), (3, ([1], []))] + [] - [[(1, ([1], [2])), (2, ([1], [])), (3, ([1], []))], - [(1, ([1, 1, 1], [])), (2, ([1], [])), (4, ([], [1]))], - [('', ([1, 1], [1, 2])), ('a', ([1, 1], [1, 1])), ('b', ([1], [1]))]] ``` It also happened on Jenkins: http://spark-tests.appspot.com/builds/spark-branch-2.1-test-sbt-hadoop-2.7/120 It's because when the machine is overloaded, the timeout is not enough. This PR just increases the timeout to 30 seconds. ## How was this patch tested? Jenkins Author: Shixiong Zhu <shixiong@databricks.com> Closes #17597 from zsxwing/SPARK-20285.
-
Bogdan Raducanu authored
## What changes were proposed in this pull request? Weigher.weigh needs to return Int but it is possible for an Array[FileStatus] to have size > Int.maxValue. To avoid this, the size is scaled down by a factor of 32. The maximumWeight of the cache is also scaled down by the same factor. ## How was this patch tested? New test in FileIndexSuite Author: Bogdan Raducanu <bogdan@databricks.com> Closes #17591 from bogdanrdc/SPARK-20280.
-
Sean Owen authored
[SPARK-20156][CORE][SQL][STREAMING][MLLIB] Java String toLowerCase "Turkish locale bug" causes Spark problems ## What changes were proposed in this pull request? Add Locale.ROOT to internal calls to String `toLowerCase`, `toUpperCase`, to avoid inadvertent locale-sensitive variation in behavior (aka the "Turkish locale problem"). The change looks large but it is just adding `Locale.ROOT` (the locale with no country or language specified) to every call to these methods. ## How was this patch tested? Existing tests. Author: Sean Owen <sowen@cloudera.com> Closes #17527 from srowen/SPARK-20156.
-
Xiao Li authored
## What changes were proposed in this pull request? ``` sql("SELECT t1.b, rand(0) as r FROM cachedData, cachedData t1 GROUP BY t1.b having r > 0.5").show() ``` We will get the following error: ``` Job aborted due to stage failure: Task 1 in stage 4.0 failed 1 times, most recent failure: Lost task 1.0 in stage 4.0 (TID 8, localhost, executor driver): java.lang.NullPointerException at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificPredicate.eval(Unknown Source) at org.apache.spark.sql.execution.joins.BroadcastNestedLoopJoinExec$$anonfun$org$apache$spark$sql$execution$joins$BroadcastNestedLoopJoinExec$$boundCondition$1.apply(BroadcastNestedLoopJoinExec.scala:87) at org.apache.spark.sql.execution.joins.BroadcastNestedLoopJoinExec$$anonfun$org$apache$spark$sql$execution$joins$BroadcastNestedLoopJoinExec$$boundCondition$1.apply(BroadcastNestedLoopJoinExec.scala:87) at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:463) ``` Filters could be pushed down to the join conditions by the optimizer rule `PushPredicateThroughJoin`. However, Analyzer [blocks users to add non-deterministics conditions](https://github.com/apache/spark/blob/master/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/CheckAnalysis.scala#L386-L395) (For details, see the PR https://github.com/apache/spark/pull/7535). We should not push down non-deterministic conditions; otherwise, we need to explicitly initialize the non-deterministic expressions. This PR is to simply block it. ### How was this patch tested? Added a test case Author: Xiao Li <gatorsmile@gmail.com> Closes #17585 from gatorsmile/joinRandCondition.
-
hyukjinkwon authored
## What changes were proposed in this pull request? This PR proposes to add `IGNORE NULLS` keyword in `first`/`last` in Spark's parser likewise http://docs.oracle.com/cd/B19306_01/server.102/b14200/functions057.htm. This simply maps the keywords to existing `ignoreNullsExpr`. **Before** ```scala scala> sql("select first('a' IGNORE NULLS)").show() ``` ``` org.apache.spark.sql.catalyst.parser.ParseException: extraneous input 'NULLS' expecting {')', ','}(line 1, pos 24) == SQL == select first('a' IGNORE NULLS) ------------------------^^^ at org.apache.spark.sql.catalyst.parser.ParseException.withCommand(ParseDriver.scala:210) at org.apache.spark.sql.catalyst.parser.AbstractSqlParser.parse(ParseDriver.scala:112) at org.apache.spark.sql.execution.SparkSqlParser.parse(SparkSqlParser.scala:46) at org.apache.spark.sql.catalyst.parser.AbstractSqlParser.parsePlan(ParseDriver.scala:66) at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:622) ... 48 elided ``` **After** ```scala scala> sql("select first('a' IGNORE NULLS)").show() ``` ``` +--------------+ |first(a, true)| +--------------+ | a| +--------------+ ``` ## How was this patch tested? Unit tests in `ExpressionParserSuite`. Author: hyukjinkwon <gurwls223@gmail.com> Closes #17566 from HyukjinKwon/SPARK-19518.
-
Bogdan Raducanu authored
## What changes were proposed in this pull request? Synchronize access to openStreams map. ## How was this patch tested? Existing tests. Author: Bogdan Raducanu <bogdan@databricks.com> Closes #17592 from bogdanrdc/SPARK-20243.
-
Wenchen Fan authored
## What changes were proposed in this pull request? Like `Expression`, `QueryPlan` should also have a `semanticHash` method, then we can put plans to a hash map and look it up fast. This PR refactors `QueryPlan` to follow `Expression` and put all the normalization logic in `QueryPlan.canonicalized`, so that it's very natural to implement `semanticHash`. follow-up: improve `CacheManager` to leverage this `semanticHash` and speed up plan lookup, instead of iterating all cached plans. ## How was this patch tested? existing tests. Note that we don't need to test the `semanticHash` method, once the existing tests prove `sameResult` is correct, we are good. Author: Wenchen Fan <wenchen@databricks.com> Closes #17541 from cloud-fan/plan-semantic.
-
DB Tsai authored
[SPARK-20270][SQL] na.fill should not change the values in long or integer when the default value is in double ## What changes were proposed in this pull request? This bug was partially addressed in SPARK-18555 https://github.com/apache/spark/pull/15994, but the root cause isn't completely solved. This bug is pretty critical since it changes the member id in Long in our application if the member id can not be represented by Double losslessly when the member id is very big. Here is an example how this happens, with ``` Seq[(java.lang.Long, java.lang.Double)]((null, 3.14), (9123146099426677101L, null), (9123146560113991650L, 1.6), (null, null)).toDF("a", "b").na.fill(0.2), ``` the logical plan will be ``` == Analyzed Logical Plan == a: bigint, b: double Project [cast(coalesce(cast(a#232L as double), cast(0.2 as double)) as bigint) AS a#240L, cast(coalesce(nanvl(b#233, cast(null as double)), 0.2) as double) AS b#241] +- Project [_1#229L AS a#232L, _2#230 AS b#233] +- LocalRelation [_1#229L, _2#230] ``` Note that even the value is not null, Spark will cast the Long into Double first. Then if it's not null, Spark will cast it back to Long which results in losing precision. The behavior should be that the original value should not be changed if it's not null, but Spark will change the value which is wrong. With the PR, the logical plan will be ``` == Analyzed Logical Plan == a: bigint, b: double Project [coalesce(a#232L, cast(0.2 as bigint)) AS a#240L, coalesce(nanvl(b#233, cast(null as double)), cast(0.2 as double)) AS b#241] +- Project [_1#229L AS a#232L, _2#230 AS b#233] +- LocalRelation [_1#229L, _2#230] ``` which behaves correctly without changing the original Long values and also avoids extra cost of unnecessary casting. ## How was this patch tested? unit test added. +cc srowen rxin cloud-fan gatorsmile Thanks. Author: DB Tsai <dbt@netflix.com> Closes #17577 from dbtsai/fixnafill.
-
- Apr 09, 2017
-
-
Reynold Xin authored
## What changes were proposed in this pull request? sq/core module currently declares asm as a test scope dependency. Transitively it should actually be a normal dependency since the actual core module defines it. This occasionally confuses IntelliJ. ## How was this patch tested? N/A - This is a build change. Author: Reynold Xin <rxin@databricks.com> Closes #17574 from rxin/SPARK-20264.
-
Kazuaki Ishizaki authored
[SPARK-20253][SQL] Remove unnecessary nullchecks of a return value from Spark runtime routines in generated Java code ## What changes were proposed in this pull request? This PR elminates unnecessary nullchecks of a return value from known Spark runtime routines. We know whether a given Spark runtime routine returns ``null`` or not (e.g. ``ArrayData.toDoubleArray()`` never returns ``null``). Thus, we can eliminate a null check for the return value from the Spark runtime routine. When we run the following example program, now we get the Java code "Without this PR". In this code, since we know ``ArrayData.toDoubleArray()`` never returns ``null```, we can eliminate null checks at lines 90-92, and 97. ```java val ds = sparkContext.parallelize(Seq(Array(1.1, 2.2)), 1).toDS.cache ds.count ds.map(e => e).show ``` Without this PR ```java /* 050 */ protected void processNext() throws java.io.IOException { /* 051 */ while (inputadapter_input.hasNext() && !stopEarly()) { /* 052 */ InternalRow inputadapter_row = (InternalRow) inputadapter_input.next(); /* 053 */ boolean inputadapter_isNull = inputadapter_row.isNullAt(0); /* 054 */ ArrayData inputadapter_value = inputadapter_isNull ? null : (inputadapter_row.getArray(0)); /* 055 */ /* 056 */ ArrayData deserializetoobject_value1 = null; /* 057 */ /* 058 */ if (!inputadapter_isNull) { /* 059 */ int deserializetoobject_dataLength = inputadapter_value.numElements(); /* 060 */ /* 061 */ Double[] deserializetoobject_convertedArray = null; /* 062 */ deserializetoobject_convertedArray = new Double[deserializetoobject_dataLength]; /* 063 */ /* 064 */ int deserializetoobject_loopIndex = 0; /* 065 */ while (deserializetoobject_loopIndex < deserializetoobject_dataLength) { /* 066 */ MapObjects_loopValue2 = (double) (inputadapter_value.getDouble(deserializetoobject_loopIndex)); /* 067 */ MapObjects_loopIsNull2 = inputadapter_value.isNullAt(deserializetoobject_loopIndex); /* 068 */ /* 069 */ if (MapObjects_loopIsNull2) { /* 070 */ throw new RuntimeException(((java.lang.String) references[0])); /* 071 */ } /* 072 */ if (false) { /* 073 */ deserializetoobject_convertedArray[deserializetoobject_loopIndex] = null; /* 074 */ } else { /* 075 */ deserializetoobject_convertedArray[deserializetoobject_loopIndex] = MapObjects_loopValue2; /* 076 */ } /* 077 */ /* 078 */ deserializetoobject_loopIndex += 1; /* 079 */ } /* 080 */ /* 081 */ deserializetoobject_value1 = new org.apache.spark.sql.catalyst.util.GenericArrayData(deserializetoobject_convertedArray); /*###*/ /* 082 */ } /* 083 */ boolean deserializetoobject_isNull = true; /* 084 */ double[] deserializetoobject_value = null; /* 085 */ if (!inputadapter_isNull) { /* 086 */ deserializetoobject_isNull = false; /* 087 */ if (!deserializetoobject_isNull) { /* 088 */ Object deserializetoobject_funcResult = null; /* 089 */ deserializetoobject_funcResult = deserializetoobject_value1.toDoubleArray(); /* 090 */ if (deserializetoobject_funcResult == null) { /* 091 */ deserializetoobject_isNull = true; /* 092 */ } else { /* 093 */ deserializetoobject_value = (double[]) deserializetoobject_funcResult; /* 094 */ } /* 095 */ /* 096 */ } /* 097 */ deserializetoobject_isNull = deserializetoobject_value == null; /* 098 */ } /* 099 */ /* 100 */ boolean mapelements_isNull = true; /* 101 */ double[] mapelements_value = null; /* 102 */ if (!false) { /* 103 */ mapelements_resultIsNull = false; /* 104 */ /* 105 */ if (!mapelements_resultIsNull) { /* 106 */ mapelements_resultIsNull = deserializetoobject_isNull; /* 107 */ mapelements_argValue = deserializetoobject_value; /* 108 */ } /* 109 */ /* 110 */ mapelements_isNull = mapelements_resultIsNull; /* 111 */ if (!mapelements_isNull) { /* 112 */ Object mapelements_funcResult = null; /* 113 */ mapelements_funcResult = ((scala.Function1) references[1]).apply(mapelements_argValue); /* 114 */ if (mapelements_funcResult == null) { /* 115 */ mapelements_isNull = true; /* 116 */ } else { /* 117 */ mapelements_value = (double[]) mapelements_funcResult; /* 118 */ } /* 119 */ /* 120 */ } /* 121 */ mapelements_isNull = mapelements_value == null; /* 122 */ } /* 123 */ /* 124 */ serializefromobject_resultIsNull = false; /* 125 */ /* 126 */ if (!serializefromobject_resultIsNull) { /* 127 */ serializefromobject_resultIsNull = mapelements_isNull; /* 128 */ serializefromobject_argValue = mapelements_value; /* 129 */ } /* 130 */ /* 131 */ boolean serializefromobject_isNull = serializefromobject_resultIsNull; /* 132 */ final ArrayData serializefromobject_value = serializefromobject_resultIsNull ? null : org.apache.spark.sql.catalyst.expressions.UnsafeArrayData.fromPrimitiveArray(serializefromobject_argValue); /* 133 */ serializefromobject_isNull = serializefromobject_value == null; /* 134 */ serializefromobject_holder.reset(); /* 135 */ /* 136 */ serializefromobject_rowWriter.zeroOutNullBytes(); /* 137 */ /* 138 */ if (serializefromobject_isNull) { /* 139 */ serializefromobject_rowWriter.setNullAt(0); /* 140 */ } else { /* 141 */ // Remember the current cursor so that we can calculate how many bytes are /* 142 */ // written later. /* 143 */ final int serializefromobject_tmpCursor = serializefromobject_holder.cursor; /* 144 */ /* 145 */ if (serializefromobject_value instanceof UnsafeArrayData) { /* 146 */ final int serializefromobject_sizeInBytes = ((UnsafeArrayData) serializefromobject_value).getSizeInBytes(); /* 147 */ // grow the global buffer before writing data. /* 148 */ serializefromobject_holder.grow(serializefromobject_sizeInBytes); /* 149 */ ((UnsafeArrayData) serializefromobject_value).writeToMemory(serializefromobject_holder.buffer, serializefromobject_holder.cursor); /* 150 */ serializefromobject_holder.cursor += serializefromobject_sizeInBytes; /* 151 */ /* 152 */ } else { /* 153 */ final int serializefromobject_numElements = serializefromobject_value.numElements(); /* 154 */ serializefromobject_arrayWriter.initialize(serializefromobject_holder, serializefromobject_numElements, 8); /* 155 */ /* 156 */ for (int serializefromobject_index = 0; serializefromobject_index < serializefromobject_numElements; serializefromobject_index++) { /* 157 */ if (serializefromobject_value.isNullAt(serializefromobject_index)) { /* 158 */ serializefromobject_arrayWriter.setNullDouble(serializefromobject_index); /* 159 */ } else { /* 160 */ final double serializefromobject_element = serializefromobject_value.getDouble(serializefromobject_index); /* 161 */ serializefromobject_arrayWriter.write(serializefromobject_index, serializefromobject_element); /* 162 */ } /* 163 */ } /* 164 */ } /* 165 */ /* 166 */ serializefromobject_rowWriter.setOffsetAndSize(0, serializefromobject_tmpCursor, serializefromobject_holder.cursor - serializefromobject_tmpCursor); /* 167 */ } /* 168 */ serializefromobject_result.setTotalSize(serializefromobject_holder.totalSize()); /* 169 */ append(serializefromobject_result); /* 170 */ if (shouldStop()) return; /* 171 */ } /* 172 */ } ``` With this PR (removed most of lines 90-97 in the above code) ```java /* 050 */ protected void processNext() throws java.io.IOException { /* 051 */ while (inputadapter_input.hasNext() && !stopEarly()) { /* 052 */ InternalRow inputadapter_row = (InternalRow) inputadapter_input.next(); /* 053 */ boolean inputadapter_isNull = inputadapter_row.isNullAt(0); /* 054 */ ArrayData inputadapter_value = inputadapter_isNull ? null : (inputadapter_row.getArray(0)); /* 055 */ /* 056 */ ArrayData deserializetoobject_value1 = null; /* 057 */ /* 058 */ if (!inputadapter_isNull) { /* 059 */ int deserializetoobject_dataLength = inputadapter_value.numElements(); /* 060 */ /* 061 */ Double[] deserializetoobject_convertedArray = null; /* 062 */ deserializetoobject_convertedArray = new Double[deserializetoobject_dataLength]; /* 063 */ /* 064 */ int deserializetoobject_loopIndex = 0; /* 065 */ while (deserializetoobject_loopIndex < deserializetoobject_dataLength) { /* 066 */ MapObjects_loopValue2 = (double) (inputadapter_value.getDouble(deserializetoobject_loopIndex)); /* 067 */ MapObjects_loopIsNull2 = inputadapter_value.isNullAt(deserializetoobject_loopIndex); /* 068 */ /* 069 */ if (MapObjects_loopIsNull2) { /* 070 */ throw new RuntimeException(((java.lang.String) references[0])); /* 071 */ } /* 072 */ if (false) { /* 073 */ deserializetoobject_convertedArray[deserializetoobject_loopIndex] = null; /* 074 */ } else { /* 075 */ deserializetoobject_convertedArray[deserializetoobject_loopIndex] = MapObjects_loopValue2; /* 076 */ } /* 077 */ /* 078 */ deserializetoobject_loopIndex += 1; /* 079 */ } /* 080 */ /* 081 */ deserializetoobject_value1 = new org.apache.spark.sql.catalyst.util.GenericArrayData(deserializetoobject_convertedArray); /*###*/ /* 082 */ } /* 083 */ boolean deserializetoobject_isNull = true; /* 084 */ double[] deserializetoobject_value = null; /* 085 */ if (!inputadapter_isNull) { /* 086 */ deserializetoobject_isNull = false; /* 087 */ if (!deserializetoobject_isNull) { /* 088 */ Object deserializetoobject_funcResult = null; /* 089 */ deserializetoobject_funcResult = deserializetoobject_value1.toDoubleArray(); /* 090 */ deserializetoobject_value = (double[]) deserializetoobject_funcResult; /* 091 */ /* 092 */ } /* 093 */ /* 094 */ } /* 095 */ /* 096 */ boolean mapelements_isNull = true; /* 097 */ double[] mapelements_value = null; /* 098 */ if (!false) { /* 099 */ mapelements_resultIsNull = false; /* 100 */ /* 101 */ if (!mapelements_resultIsNull) { /* 102 */ mapelements_resultIsNull = deserializetoobject_isNull; /* 103 */ mapelements_argValue = deserializetoobject_value; /* 104 */ } /* 105 */ /* 106 */ mapelements_isNull = mapelements_resultIsNull; /* 107 */ if (!mapelements_isNull) { /* 108 */ Object mapelements_funcResult = null; /* 109 */ mapelements_funcResult = ((scala.Function1) references[1]).apply(mapelements_argValue); /* 110 */ if (mapelements_funcResult == null) { /* 111 */ mapelements_isNull = true; /* 112 */ } else { /* 113 */ mapelements_value = (double[]) mapelements_funcResult; /* 114 */ } /* 115 */ /* 116 */ } /* 117 */ mapelements_isNull = mapelements_value == null; /* 118 */ } /* 119 */ /* 120 */ serializefromobject_resultIsNull = false; /* 121 */ /* 122 */ if (!serializefromobject_resultIsNull) { /* 123 */ serializefromobject_resultIsNull = mapelements_isNull; /* 124 */ serializefromobject_argValue = mapelements_value; /* 125 */ } /* 126 */ /* 127 */ boolean serializefromobject_isNull = serializefromobject_resultIsNull; /* 128 */ final ArrayData serializefromobject_value = serializefromobject_resultIsNull ? null : org.apache.spark.sql.catalyst.expressions.UnsafeArrayData.fromPrimitiveArray(serializefromobject_argValue); /* 129 */ serializefromobject_isNull = serializefromobject_value == null; /* 130 */ serializefromobject_holder.reset(); /* 131 */ /* 132 */ serializefromobject_rowWriter.zeroOutNullBytes(); /* 133 */ /* 134 */ if (serializefromobject_isNull) { /* 135 */ serializefromobject_rowWriter.setNullAt(0); /* 136 */ } else { /* 137 */ // Remember the current cursor so that we can calculate how many bytes are /* 138 */ // written later. /* 139 */ final int serializefromobject_tmpCursor = serializefromobject_holder.cursor; /* 140 */ /* 141 */ if (serializefromobject_value instanceof UnsafeArrayData) { /* 142 */ final int serializefromobject_sizeInBytes = ((UnsafeArrayData) serializefromobject_value).getSizeInBytes(); /* 143 */ // grow the global buffer before writing data. /* 144 */ serializefromobject_holder.grow(serializefromobject_sizeInBytes); /* 145 */ ((UnsafeArrayData) serializefromobject_value).writeToMemory(serializefromobject_holder.buffer, serializefromobject_holder.cursor); /* 146 */ serializefromobject_holder.cursor += serializefromobject_sizeInBytes; /* 147 */ /* 148 */ } else { /* 149 */ final int serializefromobject_numElements = serializefromobject_value.numElements(); /* 150 */ serializefromobject_arrayWriter.initialize(serializefromobject_holder, serializefromobject_numElements, 8); /* 151 */ /* 152 */ for (int serializefromobject_index = 0; serializefromobject_index < serializefromobject_numElements; serializefromobject_index++) { /* 153 */ if (serializefromobject_value.isNullAt(serializefromobject_index)) { /* 154 */ serializefromobject_arrayWriter.setNullDouble(serializefromobject_index); /* 155 */ } else { /* 156 */ final double serializefromobject_element = serializefromobject_value.getDouble(serializefromobject_index); /* 157 */ serializefromobject_arrayWriter.write(serializefromobject_index, serializefromobject_element); /* 158 */ } /* 159 */ } /* 160 */ } /* 161 */ /* 162 */ serializefromobject_rowWriter.setOffsetAndSize(0, serializefromobject_tmpCursor, serializefromobject_holder.cursor - serializefromobject_tmpCursor); /* 163 */ } /* 164 */ serializefromobject_result.setTotalSize(serializefromobject_holder.totalSize()); /* 165 */ append(serializefromobject_result); /* 166 */ if (shouldStop()) return; /* 167 */ } /* 168 */ } ``` ## How was this patch tested? Add test suites to ``DatasetPrimitiveSuite`` Author: Kazuaki Ishizaki <ishizaki@jp.ibm.com> Closes #17569 from kiszk/SPARK-20253.
-
Vijay Ramesh authored
## What changes were proposed in this pull request? This error message doesn't get properly formatted because of a missing `s`. Currently the error looks like: ``` Caused by: java.lang.IllegalArgumentException: requirement failed: indices should be one-based and in ascending order; found current=$current, previous=$previous; line="$line" ``` (note the literal `$current` instead of the interpolated value) Please review http://spark.apache.org/contributing.html before opening a pull request. Author: Vijay Ramesh <vramesh@demandbase.com> Closes #17572 from vijaykramesh/master.
-
Sean Owen authored
## What changes were proposed in this pull request? Avoid `NoSuchElementException` every time `ConfigProvider.get(val, default)` falls back to default. This apparently causes non-trivial overhead in at least one path, and can easily be avoided. See https://github.com/apache/spark/pull/17329 ## How was this patch tested? Existing tests Author: Sean Owen <sowen@cloudera.com> Closes #17567 from srowen/SPARK-19991.
-
asmith26 authored
## What changes were proposed in this pull request? Came across the term "slice" when running some spark scala code. Consequently, a Google search indicated that "slices" and "partitions" refer to the same things; indeed see: - [This issue](https://issues.apache.org/jira/browse/SPARK-1701) - [This pull request](https://github.com/apache/spark/pull/2305) - [This StackOverflow answer](http://stackoverflow.com/questions/23436640/what-is-the-difference-between-an-rdd-partition-and-a-slice) and [this one](http://stackoverflow.com/questions/24269495/what-are-the-differences-between-slices-and-partitions-of-rdds) Thus this pull request fixes the occurrence of slice I came accross. Nonetheless, [it would appear](https://github.com/apache/spark/search?utf8=%E2%9C%93&q=slice&type=) there are still many references to "slice/slices" - thus I thought I'd raise this Pull Request to address the issue (sorry if this is the wrong place, I'm not too familar with raising apache issues). ## How was this patch tested? (Not tested locally - only a minor exception message change.) Please review http://spark.apache.org/contributing.html before opening a pull request. Author: asmith26 <asmith26@users.noreply.github.com> Closes #17565 from asmith26/master.
-
- Apr 07, 2017
-
-
Reynold Xin authored
## What changes were proposed in this pull request? AssertNotNull currently throws RuntimeException. It should throw NullPointerException, which is more specific. ## How was this patch tested? N/A Author: Reynold Xin <rxin@databricks.com> Closes #17573 from rxin/SPARK-20262.
-
Wenchen Fan authored
[SPARK-20246][SQL] should not push predicate down through aggregate with non-deterministic expressions ## What changes were proposed in this pull request? Similar to `Project`, when `Aggregate` has non-deterministic expressions, we should not push predicate down through it, as it will change the number of input rows and thus change the evaluation result of non-deterministic expressions in `Aggregate`. ## How was this patch tested? new regression test Author: Wenchen Fan <wenchen@databricks.com> Closes #17562 from cloud-fan/filter.
-
Adrian Ionescu authored
## What changes were proposed in this pull request Trying to get a grip on the `FileIndex` hierarchy, I was confused by the following inconsistency: On the one hand, `PartitioningAwareFileIndex` defines `leafFiles` and `leafDirToChildrenFiles` as abstract, but on the other it fully implements `listLeafFiles` which does all the listing of files. However, the latter is only used by `InMemoryFileIndex`. I'm hereby proposing to move this method (and all its dependencies) to the implementation class that actually uses it, and thus unclutter the `PartitioningAwareFileIndex` interface. ## How was this patch tested? `./build/sbt sql/test` Author: Adrian Ionescu <adrian@databricks.com> Closes #17570 from adrian-ionescu/list-leaf-files.
-
actuaryzhang authored
[SPARK-20258][DOC][SPARKR] Fix SparkR logistic regression example in programming guide (did not converge) ## What changes were proposed in this pull request? SparkR logistic regression example did not converge in programming guide (for IRWLS). All estimates are essentially zero: ``` training2 <- read.df("data/mllib/sample_binary_classification_data.txt", source = "libsvm") df_list2 <- randomSplit(training2, c(7,3), 2) binomialDF <- df_list2[[1]] binomialTestDF <- df_list2[[2]] binomialGLM <- spark.glm(binomialDF, label ~ features, family = "binomial") 17/04/07 11:42:03 WARN WeightedLeastSquares: Cholesky solver failed due to singular covariance matrix. Retrying with Quasi-Newton solver. > summary(binomialGLM) Coefficients: Estimate (Intercept) 9.0255e+00 features_0 0.0000e+00 features_1 0.0000e+00 features_2 0.0000e+00 features_3 0.0000e+00 features_4 0.0000e+00 features_5 0.0000e+00 features_6 0.0000e+00 features_7 0.0000e+00 ``` Author: actuaryzhang <actuaryzhang10@gmail.com> Closes #17571 from actuaryzhang/programGuide2.
-
Felix Cheung authored
## What changes were proposed in this pull request? Test failed because SPARK_HOME is not set before Spark is installed. Author: Felix Cheung <felixcheung_m@hotmail.com> Closes #17516 from felixcheung/rdircheckincran.
-
actuaryzhang authored
## What changes were proposed in this pull request? Add Tweedie example for SparkR in programming guide. The doc was already updated in #17103. Author: actuaryzhang <actuaryzhang10@gmail.com> Closes #17553 from actuaryzhang/programGuide.
-
郭小龙 10207633 authored
## What changes were proposed in this pull request? 1. '/applications/[app-id]/stages' in rest api.status should add description '?status=[active|complete|pending|failed] list only stages in the state.' Now the lack of this description, resulting in the use of this api do not know the use of the status through the brush stage list. 2.'/applications/[app-id]/stages/[stage-id]' in REST API,remove redundant description ‘?status=[active|complete|pending|failed] list only stages in the state.’. Because only one stage is determined based on stage-id. code: GET def stageList(QueryParam("status") statuses: JList[StageStatus]): Seq[StageData] = { val listener = ui.jobProgressListener val stageAndStatus = AllStagesResource.stagesAndStatus(ui) val adjStatuses = { if (statuses.isEmpty()) { Arrays.asList(StageStatus.values(): _*) } else { statuses } }; ## How was this patch tested? manual tests Please review http://spark.apache.org/contributing.html before opening a pull request. Author: 郭小龙 10207633 <guo.xiaolong1@zte.com.cn> Closes #17534 from guoxiaolongzte/SPARK-20218.
-
Liang-Chi Hsieh authored
## What changes were proposed in this pull request? The Dataframes-based support for the correlation statistics is added in #17108. This patch adds the Python interface for it. ## How was this patch tested? Python unit test. Please review http://spark.apache.org/contributing.html before opening a pull request. Author: Liang-Chi Hsieh <viirya@gmail.com> Closes #17494 from viirya/correlation-python-api.
-
Wenchen Fan authored
## What changes were proposed in this pull request? Currently `LogicalRelation` has a `expectedOutputAttributes` parameter, which makes it hard to reason about what the actual output is. Like other leaf nodes, `LogicalRelation` should also take `output` as a parameter, to simplify the logic ## How was this patch tested? existing tests Author: Wenchen Fan <wenchen@databricks.com> Closes #17552 from cloud-fan/minor.
-
- Apr 06, 2017
-
-
Reynold Xin authored
## What changes were proposed in this pull request? This is a tiny addendum to SPARK-19495 to remove the private visibility for copy, which is the only package private method in the entire file. ## How was this patch tested? N/A - no semantic change. Author: Reynold Xin <rxin@databricks.com> Closes #17555 from rxin/SPARK-19495-2.
-
Dustin Koupal authored
## What changes were proposed in this pull request? Fix typo in hive examples from "DaraFrames" to "DataFrames" ## How was this patch tested? N/A Please review http://spark.apache.org/contributing.html before opening a pull request. Author: Dustin Koupal <dkoupal@blizzard.com> Closes #17554 from cooper6581/typo-daraframes.
-
jerryshao authored
## What changes were proposed in this pull request? With [SPARK-13992](https://issues.apache.org/jira/browse/SPARK-13992), Spark supports persisting data into off-heap memory, but the usage of on-heap and off-heap memory is not exposed currently, it is not so convenient for user to monitor and profile, so here propose to expose off-heap memory as well as on-heap memory usage in various places: 1. Spark UI's executor page will display both on-heap and off-heap memory usage. 2. REST request returns both on-heap and off-heap memory. 3. Also this can be gotten from MetricsSystem. 4. Last this usage can be obtained programmatically from SparkListener. Attach the UI changes:  Backward compatibility is also considered for event-log and REST API. Old event log can still be replayed with off-heap usage displayed as 0. For REST API, only adds the new fields, so JSON backward compatibility can still be kept. ## How was this patch tested? Unit test added and manual verification. Author: jerryshao <sshao@hortonworks.com> Closes #14617 from jerryshao/SPARK-17019.
-
Felix Cheung authored
## What changes were proposed in this pull request? Following up on #17483, add createTable (which is new in 2.2.0) and deprecate createExternalTable, plus a number of minor fixes ## How was this patch tested? manual, unit tests Author: Felix Cheung <felixcheung_m@hotmail.com> Closes #17511 from felixcheung/rceatetable.
-