- Apr 25, 2017
-
-
Patrick Wendell authored
-
- Apr 14, 2017
-
-
Patrick Wendell authored
-
Patrick Wendell authored
-
- Apr 10, 2017
-
-
Shixiong Zhu authored
## What changes were proposed in this pull request? This PR fixs the following failure: ``` sbt.ForkMain$ForkError: java.lang.AssertionError: null at org.junit.Assert.fail(Assert.java:86) at org.junit.Assert.assertTrue(Assert.java:41) at org.junit.Assert.assertTrue(Assert.java:52) at org.apache.spark.network.RequestTimeoutIntegrationSuite.furtherRequestsDelay(RequestTimeoutIntegrationSuite.java:230) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:497) at org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:50) at org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:12) at org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:47) at org.junit.internal.runners.statements.InvokeMethod.evaluate(InvokeMethod.java:17) at org.junit.internal.runners.statements.RunBefores.evaluate(RunBefores.java:26) at org.junit.internal.runners.statements.RunAfters.evaluate(RunAfters.java:27) at org.junit.runners.ParentRunner.runLeaf(ParentRunner.java:325) at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:78) at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:57) at org.junit.runners.ParentRunner$3.run(ParentRunner.java:290) at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:71) at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:288) at org.junit.runners.ParentRunner.access$000(ParentRunner.java:58) at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:268) at org.junit.runners.ParentRunner.run(ParentRunner.java:363) at org.junit.runners.Suite.runChild(Suite.java:128) at org.junit.runners.Suite.runChild(Suite.java:27) at org.junit.runners.ParentRunner$3.run(ParentRunner.java:290) at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:71) at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:288) at org.junit.runners.ParentRunner.access$000(ParentRunner.java:58) at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:268) at org.junit.runners.ParentRunner.run(ParentRunner.java:363) at org.junit.runner.JUnitCore.run(JUnitCore.java:137) at org.junit.runner.JUnitCore.run(JUnitCore.java:115) at com.novocode.junit.JUnitRunner$1.execute(JUnitRunner.java:132) at sbt.ForkMain$Run$2.call(ForkMain.java:296) at sbt.ForkMain$Run$2.call(ForkMain.java:286) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) ``` It happens several times per month on [Jenkins](http://spark-tests.appspot.com/test-details?suite_name=org.apache.spark.network.RequestTimeoutIntegrationSuite&test_name=furtherRequestsDelay). The failure is because `callback1` may not be called before `assertTrue(callback1.failure instanceof IOException);`. It's pretty easy to reproduce this error by adding a sleep before this line: https://github.com/apache/spark/blob/379b0b0bbdbba2278ce3bcf471bd75f6ffd9cf0d/common/network-common/src/test/java/org/apache/spark/network/RequestTimeoutIntegrationSuite.java#L267 The fix is straightforward: just use the latch to wait until `callback1` is called. ## How was this patch tested? Jenkins Author: Shixiong Zhu <shixiong@databricks.com> Closes #17599 from zsxwing/SPARK-17564. (cherry picked from commit 734dfbfc) Signed-off-by:
Reynold Xin <rxin@databricks.com>
-
- Apr 02, 2017
-
-
Kazuaki Ishizaki authored
[SPARK-19999][BACKPORT-2.1][CORE] Workaround JDK-8165231 to identify PPC64 architectures as supporting unaligned access ## What changes were proposed in this pull request? This PR is backport of #17472 to Spark 2.1 java.nio.Bits.unaligned() does not return true for the ppc64le arch. see [https://bugs.openjdk.java.net/browse/JDK-8165231](https://bugs.openjdk.java.net/browse/JDK-8165231) Check architecture in Platform.java ## How was this patch tested? unit test Author: Kazuaki Ishizaki <ishizaki@jp.ibm.com> Closes #17509 from kiszk/branch-2.1.
-
- Mar 28, 2017
-
-
Patrick Wendell authored
-
Patrick Wendell authored
-
- Mar 21, 2017
-
-
Patrick Wendell authored
-
Patrick Wendell authored
-
- Feb 13, 2017
-
-
Josh Rosen authored
This patch replaces a single `awaitUninterruptibly()` call with a plain `await()` call in Spark's `network-common` library in order to fix a bug which may cause tasks to be uncancellable. In Spark's Netty RPC layer, `TransportClientFactory.createClient()` calls `awaitUninterruptibly()` on a Netty future while waiting for a connection to be established. This creates problem when a Spark task is interrupted while blocking in this call (which can happen in the event of a slow connection which will eventually time out). This has bad impacts on task cancellation when `interruptOnCancel = true`. As an example of the impact of this problem, I experienced significant numbers of uncancellable "zombie tasks" on a production cluster where several tasks were blocked trying to connect to a dead shuffle server and then continued running as zombies after I cancelled the associated Spark stage. The zombie tasks ran for several minutes with the following stack: ``` java.lang.Object.wait(Native Method) java.lang.Object.wait(Object.java:460) io.netty.util.concurrent.DefaultPromise.await0(DefaultPromise.java:607) io.netty.util.concurrent.DefaultPromise.awaitUninterruptibly(DefaultPromise.java:301) org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:224) org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:179) => holding Monitor(java.lang.Object1849476028}) org.apache.spark.network.shuffle.ExternalShuffleClient$1.createAndStart(ExternalShuffleClient.java:105) org.apache.spark.network.shuffle.RetryingBlockFetcher.fetchAllOutstanding(RetryingBlockFetcher.java:140) org.apache.spark.network.shuffle.RetryingBlockFetcher.start(RetryingBlockFetcher.java:120) org.apache.spark.network.shuffle.ExternalShuffleClient.fetchBlocks(ExternalShuffleClient.java:114) org.apache.spark.storage.ShuffleBlockFetcherIterator.sendRequest(ShuffleBlockFetcherIterator.scala:169) org.apache.spark.storage.ShuffleBlockFetcherIterator.fetchUpToMaxBytes(ShuffleBlockFetcherIterator.scala: 350) org.apache.spark.storage.ShuffleBlockFetcherIterator.initialize(ShuffleBlockFetcherIterator.scala:286) org.apache.spark.storage.ShuffleBlockFetcherIterator.<init>(ShuffleBlockFetcherIterator.scala:120) org.apache.spark.shuffle.BlockStoreShuffleReader.read(BlockStoreShuffleReader.scala:45) org.apache.spark.sql.execution.ShuffledRowRDD.compute(ShuffledRowRDD.scala:169) org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) org.apache.spark.rdd.RDD.iterator(RDD.scala:287) [...] ``` As far as I can tell, `awaitUninterruptibly()` might have been used in order to avoid having to declare that methods throw `InterruptedException` (this code is written in Java, hence the need to use checked exceptions). This patch simply replaces this with a regular, interruptible `await()` call,. This required several interface changes to declare a new checked exception (these are internal interfaces, though, and this change doesn't significantly impact binary compatibility). An alternative approach would be to wrap `InterruptedException` into `IOException` in order to avoid having to change interfaces. The problem with this approach is that the `network-shuffle` project's `RetryingBlockFetcher` code treats `IOExceptions` as transitive failures when deciding whether to retry fetches, so throwing a wrapped `IOException` might cause an interrupted shuffle fetch to be retried, further prolonging the lifetime of a cancelled zombie task. Note that there are three other `awaitUninterruptibly()` in the codebase, but those calls have a hard 10 second timeout and are waiting on a `close()` operation which is expected to complete near instantaneously, so the impact of uninterruptibility there is much smaller. Manually. Author: Josh Rosen <joshrosen@databricks.com> Closes #16866 from JoshRosen/SPARK-19529. (cherry picked from commit 1c4d10b1) Signed-off-by:
Cheng Lian <lian@databricks.com>
-
Shixiong Zhu authored
[SPARK-17714][CORE][TEST-MAVEN][TEST-HADOOP2.6] Avoid using ExecutorClassLoader to load Netty generated classes ## What changes were proposed in this pull request? Netty's `MessageToMessageEncoder` uses [Javassist](https://github.com/netty/netty/blob/91a0bdc17a8298437d6de08a8958d753799bd4a6/common/src/main/java/io/netty/util/internal/JavassistTypeParameterMatcherGenerator.java#L62 ) to generate a matcher class and the implementation calls `Class.forName` to check if this class is already generated. If `MessageEncoder` or `MessageDecoder` is created in `ExecutorClassLoader.findClass`, it will cause `ClassCircularityError`. This is because loading this Netty generated class will call `ExecutorClassLoader.findClass` to search this class, and `ExecutorClassLoader` will try to use RPC to load it and cause to load the non-exist matcher class again. JVM will report `ClassCircularityError` to prevent such infinite recursion. ##### Why it only happens in Maven builds It's because Maven and SBT have different class loader tree. The Maven build will set a URLClassLoader as the current context class loader to run the tests and expose this issue. The class loader tree is as following: ``` bootstrap class loader ------ ... ----- REPL class loader ---- ExecutorClassLoader | | URLClasssLoader ``` The SBT build uses the bootstrap class loader directly and `ReplSuite.test("propagation of local properties")` is the first test in ReplSuite, which happens to load `io/netty/util/internal/__matchers__/org/apache/spark/network/protocol/MessageMatcher` into the bootstrap class loader (Note: in maven build, it's loaded into URLClasssLoader so it cannot be found in ExecutorClassLoader). This issue can be reproduced in SBT as well. Here are the produce steps: - Enable `hadoop.caller.context.enabled`. - Replace `Class.forName` with `Utils.classForName` in `object CallerContext`. - Ignore `ReplSuite.test("propagation of local properties")`. - Run `ReplSuite` using SBT. This PR just creates a singleton MessageEncoder and MessageDecoder and makes sure they are created before switching to ExecutorClassLoader. TransportContext will be created when creating RpcEnv and that happens before creating ExecutorClassLoader. ## How was this patch tested? Jenkins Author: Shixiong Zhu <shixiong@databricks.com> Closes #16859 from zsxwing/SPARK-17714. (cherry picked from commit 905fdf0c) Signed-off-by:
Shixiong Zhu <shixiong@databricks.com>
-
- Jan 13, 2017
-
-
Wenchen Fan authored
## What changes were proposed in this pull request? When we convert a string to integral, we will convert that string to `decimal(20, 0)` first, so that we can turn a string with decimal format to truncated integral, e.g. `CAST('1.2' AS int)` will return `1`. However, this brings problems when we convert a string with large numbers to integral, e.g. `CAST('1234567890123' AS int)` will return `1912276171`, while Hive returns null as we expected. This is a long standing bug(seems it was there the first day Spark SQL was created), this PR fixes this bug by adding the native support to convert `UTF8String` to integral. ## How was this patch tested? new regression tests Author: Wenchen Fan <wenchen@databricks.com> Closes #16550 from cloud-fan/string-to-int. (cherry picked from commit 6b34e745) Signed-off-by:
Wenchen Fan <wenchen@databricks.com>
-
- Dec 28, 2016
-
-
Sean Owen authored
[SPARK-18993][BUILD] Unable to build/compile Spark in IntelliJ due to missing Scala deps in spark-tags ## What changes were proposed in this pull request? This adds back a direct dependency on Scala library classes from spark-tags because its Scala annotations need them. ## How was this patch tested? Existing tests Author: Sean Owen <sowen@cloudera.com> Closes #16418 from srowen/SPARK-18993. (cherry picked from commit d7bce3bd) Signed-off-by:
Sean Owen <sowen@cloudera.com>
-
- Dec 22, 2016
-
-
Shixiong Zhu authored
## What changes were proposed in this pull request? Right now the name of threads created by Netty for Spark RPC are `shuffle-client-**` and `shuffle-server-**`. It's pretty confusing. This PR just uses the module name in TransportConf to set the thread name. In addition, it also includes the following minor fixes: - TransportChannelHandler.channelActive and channelInactive should call the corresponding super methods. - Make ShuffleBlockFetcherIterator throw NoSuchElementException if it has no more elements. Otherwise, if the caller calls `next` without `hasNext`, it will just hang. ## How was this patch tested? Jenkins Author: Shixiong Zhu <shixiong@databricks.com> Closes #16380 from zsxwing/SPARK-18972. (cherry picked from commit f252cb5d) Signed-off-by:
Shixiong Zhu <shixiong@databricks.com>
-
Ryan Williams authored
Remove spark-tag's compile-scope dependency (and, indirectly, spark-core's compile-scope transitive-dependency) on scalatest by splitting test-oriented tags into spark-tags' test JAR. Alternative to #16303. Author: Ryan Williams <ryan.blake.williams@gmail.com> Closes #16311 from ryan-williams/tt. (cherry picked from commit afd9bc1d) Signed-off-by:
Marcelo Vanzin <vanzin@cloudera.com>
-
- Dec 15, 2016
-
-
Patrick Wendell authored
-
Patrick Wendell authored
-
Patrick Wendell authored
-
Patrick Wendell authored
-
Patrick Wendell authored
-
- Dec 08, 2016
-
-
Patrick Wendell authored
-
Patrick Wendell authored
-
- Nov 28, 2016
-
-
Patrick Wendell authored
-
Patrick Wendell authored
-
- Nov 14, 2016
-
-
Michael Armbrust authored
This PR adds a new method `withWatermark` to the `Dataset` API, which can be used specify an _event time watermark_. An event time watermark allows the streaming engine to reason about the point in time after which we no longer expect to see late data. This PR also has augmented `StreamExecution` to use this watermark for several purposes: - To know when a given time window aggregation is finalized and thus results can be emitted when using output modes that do not allow updates (e.g. `Append` mode). - To minimize the amount of state that we need to keep for on-going aggregations, by evicting state for groups that are no longer expected to change. Although, we do still maintain all state if the query requires (i.e. if the event time is not present in the `groupBy` or when running in `Complete` mode). An example that emits windowed counts of records, waiting up to 5 minutes for late data to arrive. ```scala df.withWatermark("eventTime", "5 minutes") .groupBy(window($"eventTime", "1 minute") as 'window) .count() .writeStream .format("console") .mode("append") // In append mode, we only output finalized aggregations. .start() ``` ### Calculating the watermark. The current event time is computed by looking at the `MAX(eventTime)` seen this epoch across all of the partitions in the query minus some user defined _delayThreshold_. An additional constraint is that the watermark must increase monotonically. Note that since we must coordinate this value across partitions occasionally, the actual watermark used is only guaranteed to be at least `delay` behind the actual event time. In some cases we may still process records that arrive more than delay late. This mechanism was chosen for the initial implementation over processing time for two reasons: - it is robust to downtime that could affect processing delay - it does not require syncing of time or timezones between the producer and the processing engine. ### Other notable implementation details - A new trigger metric `eventTimeWatermark` outputs the current value of the watermark. - We mark the event time column in the `Attribute` metadata using the key `spark.watermarkDelay`. This allows downstream operations to know which column holds the event time. Operations like `window` propagate this metadata. - `explain()` marks the watermark with a suffix of `-T${delayMs}` to ease debugging of how this information is propagated. - Currently, we don't filter out late records, but instead rely on the state store to avoid emitting records that are both added and filtered in the same epoch. ### Remaining in this PR - [ ] The test for recovery is currently failing as we don't record the watermark used in the offset log. We will need to do so to ensure determinism, but this is deferred until #15626 is merged. ### Other follow-ups There are some natural additional features that we should consider for future work: - Ability to write records that arrive too late to some external store in case any out-of-band remediation is required. - `Update` mode so you can get partial results before a group is evicted. - Other mechanisms for calculating the watermark. In particular a watermark based on quantiles would be more robust to outliers. Author: Michael Armbrust <michael@databricks.com> Closes #15702 from marmbrus/watermarks. (cherry picked from commit c0718782) Signed-off-by:
Tathagata Das <tathagata.das1565@gmail.com>
-
- Oct 07, 2016
-
-
Reynold Xin authored
## What changes were proposed in this pull request? This patch introduces three new annotations under InterfaceStability: - Stable - Evolving - Unstable This is inspired by Hadoop's InterfaceStability, and the first step towards switching over to a new API stability annotation framework. ## How was this patch tested? N/A Author: Reynold Xin <rxin@databricks.com> Closes #15374 from rxin/SPARK-17800.
-
- Oct 04, 2016
-
-
Tejas Patil authored
## What changes were proposed in this pull request? Jira : https://issues.apache.org/jira/browse/SPARK-17495 Spark internally uses Murmur3Hash for partitioning. This is different from the one used by Hive. For queries which use bucketing this leads to different results if one tries the same query on both engines. For us, we want users to have backward compatibility to that one can switch parts of applications across the engines without observing regressions. This PR includes `HiveHash`, `HiveHashFunction`, `HiveHasher` which mimics Hive's hashing at https://github.com/apache/hive/blob/master/serde/src/java/org/apache/hadoop/hive/serde2/objectinspector/ObjectInspectorUtils.java#L638 I am intentionally not introducing any usages of this hash function in rest of the code to keep this PR small. My eventual goal is to have Hive bucketing support in Spark. Once this PR gets in, I will make hash function pluggable in relevant areas (eg. `HashPartitioning`'s `partitionIdExpression` has Murmur3 hardcoded : https://github.com/apache/spark/blob/master/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/physical/partitioning.scala#L265) ## How was this patch tested? Added `HiveHashSuite` Author: Tejas Patil <tejasp@fb.com> Closes #15047 from tejasapatil/SPARK-17495_hive_hash.
-
sumansomasundar authored
## What changes were proposed in this pull request? Made changes to record length offsets to make them uniform throughout various areas of Spark core and unsafe ## How was this patch tested? This change affects only SPARC architectures and was tested on X86 architectures as well for regression. Author: sumansomasundar <suman.somasundar@oracle.com> Closes #14762 from sumansomasundar/master.
-
- Sep 27, 2016
-
-
Kazuaki Ishizaki authored
## What changes were proposed in this pull request? This PR introduces more compact representation for ```UnsafeArrayData```. ```UnsafeArrayData``` needs to accept ```null``` value in each entry of an array. In the current version, it has three parts ``` [numElements] [offsets] [values] ``` `Offsets` has the number of `numElements`, and represents `null` if its value is negative. It may increase memory footprint, and introduces an indirection for accessing each of `values`. This PR uses bitvectors to represent nullability for each element like `UnsafeRow`, and eliminates an indirection for accessing each element. The new ```UnsafeArrayData``` has four parts. ``` [numElements][null bits][values or offset&length][variable length portion] ``` In the `null bits` region, we store 1 bit per element, represents whether an element is null. Its total size is ceil(numElements / 8) bytes, and it is aligned to 8-byte boundaries. In the `values or offset&length` region, we store the content of elements. For fields that hold fixed-length primitive types, such as long, double, or int, we store the value directly in the field. For fields with non-primitive or variable-length values, we store a relative offset (w.r.t. the base address of the array) that points to the beginning of the variable-length field and length (they are combined into a long). Each is word-aligned. For `variable length portion`, each is aligned to 8-byte boundaries. The new format can reduce memory footprint and improve performance of accessing each element. An example of memory foot comparison: 1024x1024 elements integer array Size of ```baseObject``` for ```UnsafeArrayData```: 8 + 1024x1024 + 1024x1024 = 2M bytes Size of ```baseObject``` for ```UnsafeArrayData```: 8 + 1024x1024/8 + 1024x1024 = 1.25M bytes In summary, we got 1.0-2.6x performance improvements over the code before applying this PR. Here are performance results of [benchmark programs](https://github.com/kiszk/spark/blob/04d2e4b6dbdc4eff43ce18b3c9b776e0129257c7/sql/core/src/test/scala/org/apache/spark/sql/execution/benchmark/UnsafeArrayDataBenchmark.scala): **Read UnsafeArrayData**: 1.7x and 1.6x performance improvements over the code before applying this PR ```` OpenJDK 64-Bit Server VM 1.8.0_91-b14 on Linux 4.4.11-200.fc22.x86_64 Intel Xeon E3-12xx v2 (Ivy Bridge) Without SPARK-15962 Read UnsafeArrayData: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ Int 430 / 436 390.0 2.6 1.0X Double 456 / 485 367.8 2.7 0.9X With SPARK-15962 Read UnsafeArrayData: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ Int 252 / 260 666.1 1.5 1.0X Double 281 / 292 597.7 1.7 0.9X ```` **Write UnsafeArrayData**: 1.0x and 1.1x performance improvements over the code before applying this PR ```` OpenJDK 64-Bit Server VM 1.8.0_91-b14 on Linux 4.0.4-301.fc22.x86_64 Intel Xeon E3-12xx v2 (Ivy Bridge) Without SPARK-15962 Write UnsafeArrayData: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ Int 203 / 273 103.4 9.7 1.0X Double 239 / 356 87.9 11.4 0.8X With SPARK-15962 Write UnsafeArrayData: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ Int 196 / 249 107.0 9.3 1.0X Double 227 / 367 92.3 10.8 0.9X ```` **Get primitive array from UnsafeArrayData**: 2.6x and 1.6x performance improvements over the code before applying this PR ```` OpenJDK 64-Bit Server VM 1.8.0_91-b14 on Linux 4.0.4-301.fc22.x86_64 Intel Xeon E3-12xx v2 (Ivy Bridge) Without SPARK-15962 Get primitive array from UnsafeArrayData: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ Int 207 / 217 304.2 3.3 1.0X Double 257 / 363 245.2 4.1 0.8X With SPARK-15962 Get primitive array from UnsafeArrayData: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ Int 151 / 198 415.8 2.4 1.0X Double 214 / 394 293.6 3.4 0.7X ```` **Create UnsafeArrayData from primitive array**: 1.7x and 2.1x performance improvements over the code before applying this PR ```` OpenJDK 64-Bit Server VM 1.8.0_91-b14 on Linux 4.0.4-301.fc22.x86_64 Intel Xeon E3-12xx v2 (Ivy Bridge) Without SPARK-15962 Create UnsafeArrayData from primitive array: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ Int 340 / 385 185.1 5.4 1.0X Double 479 / 705 131.3 7.6 0.7X With SPARK-15962 Create UnsafeArrayData from primitive array: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ Int 206 / 211 306.0 3.3 1.0X Double 232 / 406 271.6 3.7 0.9X ```` 1.7x and 1.4x performance improvements in [```UDTSerializationBenchmark```](https://github.com/apache/spark/blob/master/mllib/src/test/scala/org/apache/spark/mllib/linalg/UDTSerializationBenchmark.scala) over the code before applying this PR ```` OpenJDK 64-Bit Server VM 1.8.0_91-b14 on Linux 4.4.11-200.fc22.x86_64 Intel Xeon E3-12xx v2 (Ivy Bridge) Without SPARK-15962 VectorUDT de/serialization: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ serialize 442 / 533 0.0 441927.1 1.0X deserialize 217 / 274 0.0 217087.6 2.0X With SPARK-15962 VectorUDT de/serialization: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ serialize 265 / 318 0.0 265138.5 1.0X deserialize 155 / 197 0.0 154611.4 1.7X ```` ## How was this patch tested? Added unit tests into ```UnsafeArraySuite``` Author: Kazuaki Ishizaki <ishizaki@jp.ibm.com> Closes #13680 from kiszk/SPARK-15962.
-
- Sep 20, 2016
-
-
Weiqing Yang authored
## What changes were proposed in this pull request? This PR is to fix the code style errors before 2.0.1 release. ## How was this patch tested? Manual. Before: ``` ./dev/lint-java Using `mvn` from path: /usr/local/bin/mvn Checkstyle checks failed at following occurrences: [ERROR] src/main/java/org/apache/spark/network/client/TransportClient.java:[153] (sizes) LineLength: Line is longer than 100 characters (found 107). [ERROR] src/main/java/org/apache/spark/network/client/TransportClient.java:[196] (sizes) LineLength: Line is longer than 100 characters (found 108). [ERROR] src/main/java/org/apache/spark/network/client/TransportClient.java:[239] (sizes) LineLength: Line is longer than 100 characters (found 115). [ERROR] src/main/java/org/apache/spark/network/server/TransportRequestHandler.java:[119] (sizes) LineLength: Line is longer than 100 characters (found 107). [ERROR] src/main/java/org/apache/spark/network/server/TransportRequestHandler.java:[129] (sizes) LineLength: Line is longer than 100 characters (found 104). [ERROR] src/main/java/org/apache/spark/network/util/LevelDBProvider.java:[124,11] (modifier) ModifierOrder: 'static' modifier out of order with the JLS suggestions. [ERROR] src/main/java/org/apache/spark/network/util/TransportConf.java:[26] (regexp) RegexpSingleline: No trailing whitespace allowed. [ERROR] src/main/java/org/apache/spark/util/collection/unsafe/sort/PrefixComparators.java:[33] (sizes) LineLength: Line is longer than 100 characters (found 110). [ERROR] src/main/java/org/apache/spark/util/collection/unsafe/sort/PrefixComparators.java:[38] (sizes) LineLength: Line is longer than 100 characters (found 110). [ERROR] src/main/java/org/apache/spark/util/collection/unsafe/sort/PrefixComparators.java:[43] (sizes) LineLength: Line is longer than 100 characters (found 106). [ERROR] src/main/java/org/apache/spark/util/collection/unsafe/sort/PrefixComparators.java:[48] (sizes) LineLength: Line is longer than 100 characters (found 110). [ERROR] src/main/java/org/apache/spark/util/collection/unsafe/sort/UnsafeInMemorySorter.java:[0] (misc) NewlineAtEndOfFile: File does not end with a newline. [ERROR] src/main/java/org/apache/spark/util/collection/unsafe/sort/UnsafeSorterSpillReader.java:[67] (sizes) LineLength: Line is longer than 100 characters (found 106). [ERROR] src/main/java/org/apache/spark/network/yarn/YarnShuffleService.java:[200] (regexp) RegexpSingleline: No trailing whitespace allowed. [ERROR] src/main/java/org/apache/spark/network/yarn/YarnShuffleService.java:[309] (regexp) RegexpSingleline: No trailing whitespace allowed. [ERROR] src/main/java/org/apache/spark/network/yarn/YarnShuffleService.java:[332] (regexp) RegexpSingleline: No trailing whitespace allowed. [ERROR] src/main/java/org/apache/spark/network/yarn/YarnShuffleService.java:[348] (regexp) RegexpSingleline: No trailing whitespace allowed. ``` After: ``` ./dev/lint-java Using `mvn` from path: /usr/local/bin/mvn Checkstyle checks passed. ``` Author: Weiqing Yang <yangweiqing001@gmail.com> Closes #15170 from Sherry302/fixjavastyle.
-
Marcelo Vanzin authored
Currently, the code is just swallowing exceptions, and not really checking whether the auth information was being recorded properly. Fix both problems, and also avoid tests inadvertently affecting other tests by modifying the shared config variable (by making it not shared). Author: Marcelo Vanzin <vanzin@cloudera.com> Closes #15161 from vanzin/SPARK-17611.
-
- Sep 16, 2016
-
-
Jagadeesan authored
## What changes were proposed in this pull request? The Maven module `common/network-shuffle` does not have a log4j configuration file for its test cases. So, added `log4j.properties` in the directory `src/test/resources`. …shuffle] Author: Jagadeesan <as2@us.ibm.com> Closes #15108 from jagadeesanas2/SPARK-17543.
-
- Sep 15, 2016
-
-
Adam Roberts authored
## What changes were proposed in this pull request? Upgrade netty-all to latest in the 4.0.x line which is 4.0.41, mentions several bug fixes and performance improvements we may find useful, see netty.io/news/2016/08/29/4-0-41-Final-4-1-5-Final.html. Initially tried to use 4.1.5 but noticed it's not backwards compatible. ## How was this patch tested? Existing unit tests against branch-1.6 and branch-2.0 using IBM Java 8 on Intel, Power and Z architectures Author: Adam Roberts <aroberts@uk.ibm.com> Closes #14961 from a-roberts/netty.
-
- Sep 09, 2016
-
-
Thomas Graves authored
The secrets leveldb isn't being moved if you run spark shuffle services without yarn nm recovery on and then turn it on. This fixes that. I unfortunately missed this when I ported the patch from our internal branch 2 to master branch due to the changes for the recovery path. Note this only applies to master since it is the only place the yarn nm recovery dir is used. Unit tests ran and tested on 8 node cluster. Fresh startup with NM recovery, fresh startup no nm recovery, switching between no nm recovery and recovery. Also tested running applications to make sure wasn't affected by rolling upgrade. Author: Thomas Graves <tgraves@prevailsail.corp.gq1.yahoo.com> Author: Tom Graves <tgraves@apache.org> Closes #14999 from tgravescs/SPARK-17433.
-
- Sep 06, 2016
-
-
Sandeep Singh authored
## What changes were proposed in this pull request? TRIM/LTRIM/RTRIM should not strips characters other than spaces, we were trimming all chars small than ASCII 0x20(space) ## How was this patch tested? fixed existing tests. Author: Sandeep Singh <sandeep@techaddict.me> Closes #14924 from techaddict/SPARK-17299.
-
- Sep 02, 2016
-
-
Thomas Graves authored
The Spark Yarn Shuffle Service doesn't re-initialize the application credentials early enough which causes any other spark executors trying to fetch from that node during a rolling upgrade to fail with "java.lang.NullPointerException: Password cannot be null if SASL is enabled". Right now the spark shuffle service relies on the Yarn nodemanager to re-register the applications, unfortunately this is after we open the port for other executors to connect. If other executors connected before the re-register they get a null pointer exception which isn't a re-tryable exception and cause them to fail pretty quickly. To solve this I added another leveldb file so that it can save and re-initialize all the applications before opening the port for other executors to connect to it. Adding another leveldb was simpler from the code structure point of view. Most of the code changes are moving things to common util class. Patch was tested manually on a Yarn cluster with rolling upgrade was happing while spark job was running. Without the patch I consistently get the NullPointerException, with the patch the job gets a few Connection refused exceptions but the retries kick in and the it succeeds. Author: Thomas Graves <tgraves@staydecay.corp.gq1.yahoo.com> Closes #14718 from tgravescs/SPARK-16711.
-
- Sep 01, 2016
-
-
Sean Owen authored
## What changes were proposed in this pull request? Avoid allocating some 0-length arrays, esp. in UTF8String, and by using Array.empty in Scala over Array[T]() ## How was this patch tested? Jenkins Author: Sean Owen <sowen@cloudera.com> Closes #14895 from srowen/SPARK-17331.
-
- Aug 31, 2016
-
-
Sean Owen authored
## What changes were proposed in this pull request? Make all Java Loggers static members ## How was this patch tested? Jenkins Author: Sean Owen <sowen@cloudera.com> Closes #14896 from srowen/SPARK-17332.
-