- Dec 08, 2016
-
-
Patrick Wendell authored
-
Patrick Wendell authored
-
- Nov 28, 2016
-
-
Patrick Wendell authored
-
Patrick Wendell authored
-
- Nov 14, 2016
-
-
Michael Armbrust authored
This PR adds a new method `withWatermark` to the `Dataset` API, which can be used specify an _event time watermark_. An event time watermark allows the streaming engine to reason about the point in time after which we no longer expect to see late data. This PR also has augmented `StreamExecution` to use this watermark for several purposes: - To know when a given time window aggregation is finalized and thus results can be emitted when using output modes that do not allow updates (e.g. `Append` mode). - To minimize the amount of state that we need to keep for on-going aggregations, by evicting state for groups that are no longer expected to change. Although, we do still maintain all state if the query requires (i.e. if the event time is not present in the `groupBy` or when running in `Complete` mode). An example that emits windowed counts of records, waiting up to 5 minutes for late data to arrive. ```scala df.withWatermark("eventTime", "5 minutes") .groupBy(window($"eventTime", "1 minute") as 'window) .count() .writeStream .format("console") .mode("append") // In append mode, we only output finalized aggregations. .start() ``` ### Calculating the watermark. The current event time is computed by looking at the `MAX(eventTime)` seen this epoch across all of the partitions in the query minus some user defined _delayThreshold_. An additional constraint is that the watermark must increase monotonically. Note that since we must coordinate this value across partitions occasionally, the actual watermark used is only guaranteed to be at least `delay` behind the actual event time. In some cases we may still process records that arrive more than delay late. This mechanism was chosen for the initial implementation over processing time for two reasons: - it is robust to downtime that could affect processing delay - it does not require syncing of time or timezones between the producer and the processing engine. ### Other notable implementation details - A new trigger metric `eventTimeWatermark` outputs the current value of the watermark. - We mark the event time column in the `Attribute` metadata using the key `spark.watermarkDelay`. This allows downstream operations to know which column holds the event time. Operations like `window` propagate this metadata. - `explain()` marks the watermark with a suffix of `-T${delayMs}` to ease debugging of how this information is propagated. - Currently, we don't filter out late records, but instead rely on the state store to avoid emitting records that are both added and filtered in the same epoch. ### Remaining in this PR - [ ] The test for recovery is currently failing as we don't record the watermark used in the offset log. We will need to do so to ensure determinism, but this is deferred until #15626 is merged. ### Other follow-ups There are some natural additional features that we should consider for future work: - Ability to write records that arrive too late to some external store in case any out-of-band remediation is required. - `Update` mode so you can get partial results before a group is evicted. - Other mechanisms for calculating the watermark. In particular a watermark based on quantiles would be more robust to outliers. Author: Michael Armbrust <michael@databricks.com> Closes #15702 from marmbrus/watermarks. (cherry picked from commit c0718782) Signed-off-by:
Tathagata Das <tathagata.das1565@gmail.com>
-
- Oct 04, 2016
-
-
Tejas Patil authored
## What changes were proposed in this pull request? Jira : https://issues.apache.org/jira/browse/SPARK-17495 Spark internally uses Murmur3Hash for partitioning. This is different from the one used by Hive. For queries which use bucketing this leads to different results if one tries the same query on both engines. For us, we want users to have backward compatibility to that one can switch parts of applications across the engines without observing regressions. This PR includes `HiveHash`, `HiveHashFunction`, `HiveHasher` which mimics Hive's hashing at https://github.com/apache/hive/blob/master/serde/src/java/org/apache/hadoop/hive/serde2/objectinspector/ObjectInspectorUtils.java#L638 I am intentionally not introducing any usages of this hash function in rest of the code to keep this PR small. My eventual goal is to have Hive bucketing support in Spark. Once this PR gets in, I will make hash function pluggable in relevant areas (eg. `HashPartitioning`'s `partitionIdExpression` has Murmur3 hardcoded : https://github.com/apache/spark/blob/master/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/physical/partitioning.scala#L265) ## How was this patch tested? Added `HiveHashSuite` Author: Tejas Patil <tejasp@fb.com> Closes #15047 from tejasapatil/SPARK-17495_hive_hash.
-
sumansomasundar authored
## What changes were proposed in this pull request? Made changes to record length offsets to make them uniform throughout various areas of Spark core and unsafe ## How was this patch tested? This change affects only SPARC architectures and was tested on X86 architectures as well for regression. Author: sumansomasundar <suman.somasundar@oracle.com> Closes #14762 from sumansomasundar/master.
-
- Sep 27, 2016
-
-
Kazuaki Ishizaki authored
## What changes were proposed in this pull request? This PR introduces more compact representation for ```UnsafeArrayData```. ```UnsafeArrayData``` needs to accept ```null``` value in each entry of an array. In the current version, it has three parts ``` [numElements] [offsets] [values] ``` `Offsets` has the number of `numElements`, and represents `null` if its value is negative. It may increase memory footprint, and introduces an indirection for accessing each of `values`. This PR uses bitvectors to represent nullability for each element like `UnsafeRow`, and eliminates an indirection for accessing each element. The new ```UnsafeArrayData``` has four parts. ``` [numElements][null bits][values or offset&length][variable length portion] ``` In the `null bits` region, we store 1 bit per element, represents whether an element is null. Its total size is ceil(numElements / 8) bytes, and it is aligned to 8-byte boundaries. In the `values or offset&length` region, we store the content of elements. For fields that hold fixed-length primitive types, such as long, double, or int, we store the value directly in the field. For fields with non-primitive or variable-length values, we store a relative offset (w.r.t. the base address of the array) that points to the beginning of the variable-length field and length (they are combined into a long). Each is word-aligned. For `variable length portion`, each is aligned to 8-byte boundaries. The new format can reduce memory footprint and improve performance of accessing each element. An example of memory foot comparison: 1024x1024 elements integer array Size of ```baseObject``` for ```UnsafeArrayData```: 8 + 1024x1024 + 1024x1024 = 2M bytes Size of ```baseObject``` for ```UnsafeArrayData```: 8 + 1024x1024/8 + 1024x1024 = 1.25M bytes In summary, we got 1.0-2.6x performance improvements over the code before applying this PR. Here are performance results of [benchmark programs](https://github.com/kiszk/spark/blob/04d2e4b6dbdc4eff43ce18b3c9b776e0129257c7/sql/core/src/test/scala/org/apache/spark/sql/execution/benchmark/UnsafeArrayDataBenchmark.scala): **Read UnsafeArrayData**: 1.7x and 1.6x performance improvements over the code before applying this PR ```` OpenJDK 64-Bit Server VM 1.8.0_91-b14 on Linux 4.4.11-200.fc22.x86_64 Intel Xeon E3-12xx v2 (Ivy Bridge) Without SPARK-15962 Read UnsafeArrayData: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ Int 430 / 436 390.0 2.6 1.0X Double 456 / 485 367.8 2.7 0.9X With SPARK-15962 Read UnsafeArrayData: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ Int 252 / 260 666.1 1.5 1.0X Double 281 / 292 597.7 1.7 0.9X ```` **Write UnsafeArrayData**: 1.0x and 1.1x performance improvements over the code before applying this PR ```` OpenJDK 64-Bit Server VM 1.8.0_91-b14 on Linux 4.0.4-301.fc22.x86_64 Intel Xeon E3-12xx v2 (Ivy Bridge) Without SPARK-15962 Write UnsafeArrayData: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ Int 203 / 273 103.4 9.7 1.0X Double 239 / 356 87.9 11.4 0.8X With SPARK-15962 Write UnsafeArrayData: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ Int 196 / 249 107.0 9.3 1.0X Double 227 / 367 92.3 10.8 0.9X ```` **Get primitive array from UnsafeArrayData**: 2.6x and 1.6x performance improvements over the code before applying this PR ```` OpenJDK 64-Bit Server VM 1.8.0_91-b14 on Linux 4.0.4-301.fc22.x86_64 Intel Xeon E3-12xx v2 (Ivy Bridge) Without SPARK-15962 Get primitive array from UnsafeArrayData: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ Int 207 / 217 304.2 3.3 1.0X Double 257 / 363 245.2 4.1 0.8X With SPARK-15962 Get primitive array from UnsafeArrayData: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ Int 151 / 198 415.8 2.4 1.0X Double 214 / 394 293.6 3.4 0.7X ```` **Create UnsafeArrayData from primitive array**: 1.7x and 2.1x performance improvements over the code before applying this PR ```` OpenJDK 64-Bit Server VM 1.8.0_91-b14 on Linux 4.0.4-301.fc22.x86_64 Intel Xeon E3-12xx v2 (Ivy Bridge) Without SPARK-15962 Create UnsafeArrayData from primitive array: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ Int 340 / 385 185.1 5.4 1.0X Double 479 / 705 131.3 7.6 0.7X With SPARK-15962 Create UnsafeArrayData from primitive array: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ Int 206 / 211 306.0 3.3 1.0X Double 232 / 406 271.6 3.7 0.9X ```` 1.7x and 1.4x performance improvements in [```UDTSerializationBenchmark```](https://github.com/apache/spark/blob/master/mllib/src/test/scala/org/apache/spark/mllib/linalg/UDTSerializationBenchmark.scala) over the code before applying this PR ```` OpenJDK 64-Bit Server VM 1.8.0_91-b14 on Linux 4.4.11-200.fc22.x86_64 Intel Xeon E3-12xx v2 (Ivy Bridge) Without SPARK-15962 VectorUDT de/serialization: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ serialize 442 / 533 0.0 441927.1 1.0X deserialize 217 / 274 0.0 217087.6 2.0X With SPARK-15962 VectorUDT de/serialization: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ serialize 265 / 318 0.0 265138.5 1.0X deserialize 155 / 197 0.0 154611.4 1.7X ```` ## How was this patch tested? Added unit tests into ```UnsafeArraySuite``` Author: Kazuaki Ishizaki <ishizaki@jp.ibm.com> Closes #13680 from kiszk/SPARK-15962.
-
- Sep 06, 2016
-
-
Sandeep Singh authored
## What changes were proposed in this pull request? TRIM/LTRIM/RTRIM should not strips characters other than spaces, we were trimming all chars small than ASCII 0x20(space) ## How was this patch tested? fixed existing tests. Author: Sandeep Singh <sandeep@techaddict.me> Closes #14924 from techaddict/SPARK-17299.
-
- Sep 01, 2016
-
-
Sean Owen authored
## What changes were proposed in this pull request? Avoid allocating some 0-length arrays, esp. in UTF8String, and by using Array.empty in Scala over Array[T]() ## How was this patch tested? Jenkins Author: Sean Owen <sowen@cloudera.com> Closes #14895 from srowen/SPARK-17331.
-
- Aug 22, 2016
-
-
Richael authored
## # What changes were proposed in this pull request? From the spark of version 2.0.0 , when MemoryMode.OFF_HEAP is set , whether the architecture supports unaligned access or not is checked. If the check doesn't pass, exception is raised. We know that AArch64 also supports unaligned access , but now only i386, x86, amd64, and X86_64 are included. I think we should include aarch64 when performing the check. ## How was this patch tested? Unit test suite Author: Richael <Richael.Zhuang@arm.com> Closes #14700 from yimuxi/zym_change_unsafe.
-
- Jul 19, 2016
-
-
Xin Ren authored
[SPARK-16535][BUILD] In pom.xml, remove groupId which is redundant definition and inherited from the parent https://issues.apache.org/jira/browse/SPARK-16535 ## What changes were proposed in this pull request? When I scan through the pom.xml of sub projects, I found this warning as below and attached screenshot ``` Definition of groupId is redundant, because it's inherited from the parent ```  I've tried to remove some of the lines with groupId definition, and the build on my local machine is still ok. ``` <groupId>org.apache.spark</groupId> ``` As I just find now `<maven.version>3.3.9</maven.version>` is being used in Spark 2.x, and Maven-3 supports versionless parent elements: Maven 3 will remove the need to specify the parent version in sub modules. THIS is great (in Maven 3.1). ref: http://stackoverflow.com/questions/3157240/maven-3-worth-it/3166762#3166762 ## How was this patch tested? I've tested by re-building the project, and build succeeded. Author: Xin Ren <iamshrek@126.com> Closes #14189 from keypointt/SPARK-16535.
-
- Jul 13, 2016
-
-
Xin Ren authored
## What changes were proposed in this pull request? Fix Java style errors and remove unused imports, which are randomly found ## How was this patch tested? Tested on my local machine. Author: Xin Ren <iamshrek@126.com> Closes #14161 from keypointt/SPARK-16437.
-
- Jul 11, 2016
-
-
Reynold Xin authored
## What changes were proposed in this pull request? After SPARK-16476 (committed earlier today as #14128), we can finally bump the version number. ## How was this patch tested? N/A Author: Reynold Xin <rxin@databricks.com> Closes #14130 from rxin/SPARK-16477.
-
- Jul 06, 2016
-
-
Eric Liang authored
## What changes were proposed in this pull request? This patches `MemoryAllocator` to fill clean and freed memory with known byte values, similar to https://github.com/jemalloc/jemalloc/wiki/Use-Case:-Find-a-memory-corruption-bug . Memory filling is flag-enabled in test only by default. ## How was this patch tested? Unit test that it's on in test. cc sameeragarwal Author: Eric Liang <ekl@databricks.com> Closes #13983 from ericl/spark-16021.
-
- Jun 03, 2016
-
-
Davies Liu authored
## What changes were proposed in this pull request? Currently, the memory for temporary buffer used by TimSort is always allocated as on-heap without bookkeeping, it could cause OOM both in on-heap and off-heap mode. This PR will try to manage that by preallocate it together with the pointer array, same with RadixSort. It both works for on-heap and off-heap mode. This PR also change the loadFactor of BytesToBytesMap to 0.5 (it was 0.70), it enables use to radix sort also makes sure that we have enough memory for timsort. ## How was this patch tested? Existing tests. Author: Davies Liu <davies@databricks.com> Closes #13318 from davies/fix_timsort.
-
- May 29, 2016
-
-
Sean Owen authored
## What changes were proposed in this pull request? This change resolves a number of build warnings that have accumulated, before 2.x. It does not address a large number of deprecation warnings, especially related to the Accumulator API. That will happen separately. ## How was this patch tested? Jenkins Author: Sean Owen <sowen@cloudera.com> Closes #13377 from srowen/BuildWarnings.
-
- May 17, 2016
-
-
Sean Owen authored
## What changes were proposed in this pull request? (See https://github.com/apache/spark/pull/12416 where most of this was already reviewed and committed; this is just the module structure and move part. This change does not move the annotations into test scope, which was the apparently problem last time.) Rename `spark-test-tags` -> `spark-tags`; move common annotations like `Since` to `spark-tags` ## How was this patch tested? Jenkins tests. Author: Sean Owen <sowen@cloudera.com> Closes #13074 from srowen/SPARK-15290.
-
- Apr 28, 2016
-
-
Pravin Gadakh authored
## What changes were proposed in this pull request? This PR adds `since` tag into the matrix and vector classes in spark-mllib-local. ## How was this patch tested? Scala-style checks passed. Author: Pravin Gadakh <prgadakh@in.ibm.com> Closes #12416 from pravingadakh/SPARK-14613.
- Apr 26, 2016
-
-
Azeem Jiva authored
## What changes were proposed in this pull request? Use Long.parseLong which returns a primative. Use a series of appends() reduces the creation of an extra StringBuilder type ## How was this patch tested? Unit tests Author: Azeem Jiva <azeemj@gmail.com> Closes #12520 from javawithjiva/minor.
-
- Apr 01, 2016
-
-
Josh Rosen authored
This patch adds support for caching blocks in the executor processes using direct / off-heap memory. ## User-facing changes **Updated semantics of `OFF_HEAP` storage level**: In Spark 1.x, the `OFF_HEAP` storage level indicated that an RDD should be cached in Tachyon. Spark 2.x removed the external block store API that Tachyon caching was based on (see #10752 / SPARK-12667), so `OFF_HEAP` became an alias for `MEMORY_ONLY_SER`. As of this patch, `OFF_HEAP` means "serialized and cached in off-heap memory or on disk". Via the `StorageLevel` constructor, `useOffHeap` can be set if `serialized == true` and can be used to construct custom storage levels which support replication. **Storage UI reporting**: the storage UI will now report whether in-memory blocks are stored on- or off-heap. **Only supported by UnifiedMemoryManager**: for simplicity, this feature is only supported when the default UnifiedMemoryManager is used; applications which use the legacy memory manager (`spark.memory.useLegacyMode=true`) are not currently able to allocate off-heap storage memory, so using off-heap caching will fail with an error when legacy memory management is enabled. Given that we plan to eventually remove the legacy memory manager, this is not a significant restriction. **Memory management policies:** the policies for dividing available memory between execution and storage are the same for both on- and off-heap memory. For off-heap memory, the total amount of memory available for use by Spark is controlled by `spark.memory.offHeap.size`, which is an absolute size. Off-heap storage memory obeys `spark.memory.storageFraction` in order to control the amount of unevictable storage memory. For example, if `spark.memory.offHeap.size` is 1 gigabyte and Spark uses the default `storageFraction` of 0.5, then up to 500 megabytes of off-heap cached blocks will be protected from eviction due to execution memory pressure. If necessary, we can split `spark.memory.storageFraction` into separate on- and off-heap configurations, but this doesn't seem necessary now and can be done later without any breaking changes. **Use of off-heap memory does not imply use of off-heap execution (or vice-versa)**: for now, the settings controlling the use of off-heap execution memory (`spark.memory.offHeap.enabled`) and off-heap caching are completely independent, so Spark SQL can be configured to use off-heap memory for execution while continuing to cache blocks on-heap. If desired, we can change this in a followup patch so that `spark.memory.offHeap.enabled` affect the default storage level for cached SQL tables. ## Internal changes - Rename `ByteArrayChunkOutputStream` to `ChunkedByteBufferOutputStream` - It now returns a `ChunkedByteBuffer` instead of an array of byte arrays. - Its constructor now accept an `allocator` function which is called to allocate `ByteBuffer`s. This allows us to control whether it allocates regular ByteBuffers or off-heap DirectByteBuffers. - Because block serialization is now performed during the unroll process, a `ChunkedByteBufferOutputStream` which is configured with a `DirectByteBuffer` allocator will use off-heap memory for both unroll and storage memory. - The `MemoryStore`'s MemoryEntries now tracks whether blocks are stored on- or off-heap. - `evictBlocksToFreeSpace()` now accepts a `MemoryMode` parameter so that we don't try to evict off-heap blocks in response to on-heap memory pressure (or vice-versa). - Make sure that off-heap buffers are properly de-allocated during MemoryStore eviction. - The JVM limits the total size of allocated direct byte buffers using the `-XX:MaxDirectMemorySize` flag and the default tends to be fairly low (< 512 megabytes in some JVMs). To work around this limitation, this patch adds a custom DirectByteBuffer allocator which ignores this memory limit. Author: Josh Rosen <joshrosen@databricks.com> Closes #11805 from JoshRosen/off-heap-caching.
-
- Mar 29, 2016
-
-
tedyu authored
## What changes were proposed in this pull request? For MemoryMode.OFF_HEAP, Unsafe.getInt etc. are used with no restriction. However, the Oracle implementation uses these methods only if the class variable unaligned (commented as "Cached unaligned-access capability") is true, which seems to be calculated whether the architecture is i386, x86, amd64, or x86_64. I think we should perform similar check for the use of Unsafe. Reference: https://github.com/netty/netty/blob/4.1/common/src/main/java/io/netty/util/internal/PlatformDependent0.java#L112 ## How was this patch tested? Unit test suite Author: tedyu <yuzhihong@gmail.com> Closes #11943 from tedyu/master.
-
- Mar 21, 2016
-
-
Dongjoon Hyun authored
## What changes were proposed in this pull request? [Spark Coding Style Guide](https://cwiki.apache.org/confluence/display/SPARK/Spark+Code+Style+Guide) has 100-character limit on lines, but it's disabled for Java since 11/09/15. This PR enables **LineLength** checkstyle again. To help that, this also introduces **RedundantImport** and **RedundantModifier**, too. The following is the diff on `checkstyle.xml`. ```xml - <!-- TODO: 11/09/15 disabled - the lengths are currently > 100 in many places --> - <!-- <module name="LineLength"> <property name="max" value="100"/> <property name="ignorePattern" value="^package.*|^import.*|a href|href|http://|https://|ftp://"/> </module> - --> <module name="NoLineWrap"/> <module name="EmptyBlock"> <property name="option" value="TEXT"/> -167,5 +164,7 </module> <module name="CommentsIndentation"/> <module name="UnusedImports"/> + <module name="RedundantImport"/> + <module name="RedundantModifier"/> ``` ## How was this patch tested? Currently, `lint-java` is disabled in Jenkins. It needs a manual test. After passing the Jenkins tests, `dev/lint-java` should passes locally. Author: Dongjoon Hyun <dongjoon@apache.org> Closes #11831 from dongjoon-hyun/SPARK-14011.
-
- Mar 16, 2016
-
-
Sean Owen authored
## What changes were proposed in this pull request? Follow up to https://github.com/apache/spark/pull/11657 - Also update `String.getBytes("UTF-8")` to use `StandardCharsets.UTF_8` - And fix one last new Coverity warning that turned up (use of unguarded `wait()` replaced by simpler/more robust `java.util.concurrent` classes in tests) - And while we're here cleaning up Coverity warnings, just fix about 15 more build warnings ## How was this patch tested? Jenkins tests Author: Sean Owen <sowen@cloudera.com> Closes #11725 from srowen/SPARK-13823.2.
-
- Mar 13, 2016
-
-
Sean Owen authored
[SPARK-13823][CORE][STREAMING][SQL] Always specify Charset in String <-> byte[] conversions (and remaining Coverity items) ## What changes were proposed in this pull request? - Fixes calls to `new String(byte[])` or `String.getBytes()` that rely on platform default encoding, to use UTF-8 - Same for `InputStreamReader` and `OutputStreamWriter` constructors - Standardizes on UTF-8 everywhere - Standardizes specifying the encoding with `StandardCharsets.UTF-8`, not the Guava constant or "UTF-8" (which means handling `UnuspportedEncodingException`) - (also addresses the other remaining Coverity scan issues, which are pretty trivial; these are separated into commit https://github.com/srowen/spark/commit/1deecd8d9ca986d8adb1a42d315890ce5349d29c ) ## How was this patch tested? Jenkins tests Author: Sean Owen <sowen@cloudera.com> Closes #11657 from srowen/SPARK-13823.
-
- Mar 09, 2016
-
-
Dongjoon Hyun authored
## What changes were proposed in this pull request? This issue fixes the following potential bugs and Java coding style detected by Coverity and Checkstyle. - Implement both null and type checking in equals functions. - Fix wrong type casting logic in SimpleJavaBean2.equals. - Add `implement Cloneable` to `UTF8String` and `SortedIterator`. - Remove dereferencing before null check in `AbstractBytesToBytesMapSuite`. - Fix coding style: Add '{}' to single `for` statement in mllib examples. - Remove unused imports in `ColumnarBatch` and `JavaKinesisStreamSuite`. - Remove unused fields in `ChunkFetchIntegrationSuite`. - Add `stop()` to prevent resource leak. Please note that the last two checkstyle errors exist on newly added commits after [SPARK-13583](https://issues.apache.org/jira/browse/SPARK-13583). ## How was this patch tested? manual via `./dev/lint-java` and Coverity site. Author: Dongjoon Hyun <dongjoon@apache.org> Closes #11530 from dongjoon-hyun/SPARK-13692.
-
- Mar 03, 2016
-
-
Sean Owen authored
## What changes were proposed in this pull request? Make some cross-cutting code improvements according to static analysis. These are individually up for discussion since they exist in separate commits that can be reverted. The changes are broadly: - Inner class should be static - Mismatched hashCode/equals - Overflow in compareTo - Unchecked warnings - Misuse of assert, vs junit.assert - get(a) + getOrElse(b) -> getOrElse(a,b) - Array/String .size -> .length (occasionally, -> .isEmpty / .nonEmpty) to avoid implicit conversions - Dead code - tailrec - exists(_ == ) -> contains find + nonEmpty -> exists filter + size -> count - reduce(_+_) -> sum map + flatten -> map The most controversial may be .size -> .length simply because of its size. It is intended to avoid implicits that might be expensive in some places. ## How was the this patch tested? Existing Jenkins unit tests. Author: Sean Owen <sowen@cloudera.com> Closes #11292 from srowen/SPARK-13423.
-
- Mar 01, 2016
-
-
Reynold Xin authored
## What changes were proposed in this pull request? This patch moves tags and unsafe modules into common directory to remove 2 top level non-user-facing directories. ## How was this patch tested? Jenkins should suffice. Author: Reynold Xin <rxin@databricks.com> Closes #11426 from rxin/SPARK-13548.
-