- Jul 02, 2016
-
-
WeichenXu authored
[SPARK-16345][DOCUMENTATION][EXAMPLES][GRAPHX] Extract graphx programming guide example snippets from source files instead of hard code them ## What changes were proposed in this pull request? I extract 6 example programs from GraphX programming guide and replace them with `include_example` label. The 6 example programs are: - AggregateMessagesExample.scala - SSSPExample.scala - TriangleCountingExample.scala - ConnectedComponentsExample.scala - ComprehensiveExample.scala - PageRankExample.scala All the example code can run using `bin/run-example graphx.EXAMPLE_NAME` ## How was this patch tested? Manual. Author: WeichenXu <WeichenXu123@outlook.com> Closes #14015 from WeichenXu123/graphx_example_plugin.
-
WeichenXu authored
## What changes were proposed in this pull request? There are two test data files used for graphx examples existing in directory "graphx/data" I move it into "data/" directory because the "graphx" directory is used for code files and other test data files (such as mllib, streaming test data) are all in there. I also update the graphx document where reference the data files which I move place. ## How was this patch tested? N/A Author: WeichenXu <WeichenXu123@outlook.com> Closes #14010 from WeichenXu123/move_graphx_data_dir.
-
- Jul 01, 2016
-
-
peng.zhang authored
## What changes were proposed in this pull request? Yarn cluster mode should return correct state for SparkLauncher ## How was this patch tested? unit test Author: peng.zhang <peng.zhang@xiaomi.com> Closes #13962 from renozhang/SPARK-16095-spark-launcher-wrong-state.
-
Dongjoon Hyun authored
## What changes were proposed in this pull request? ORC test should be enabled only when HiveContext is available. ## How was this patch tested? Manual. ``` $ R/run-tests.sh ... 1. create DataFrame from RDD (test_sparkSQL.R#200) - Hive is not build with SparkSQL, skipped 2. test HiveContext (test_sparkSQL.R#1021) - Hive is not build with SparkSQL, skipped 3. read/write ORC files (test_sparkSQL.R#1728) - Hive is not build with SparkSQL, skipped 4. enableHiveSupport on SparkSession (test_sparkSQL.R#2448) - Hive is not build with SparkSQL, skipped 5. sparkJars tag in SparkContext (test_Windows.R#21) - This test is only for Windows, skipped DONE =========================================================================== Tests passed. ``` Author: Dongjoon Hyun <dongjoon@apache.org> Closes #14019 from dongjoon-hyun/SPARK-16233.
-
Reynold Xin authored
## What changes were proposed in this pull request? In structured streaming, Spark does not report errors when the specified directory does not exist. This is a behavior different from the batch mode. This patch changes the behavior to fail if the directory does not exist (when the path is not a glob pattern). ## How was this patch tested? Updated unit tests to reflect the new behavior. Author: Reynold Xin <rxin@databricks.com> Closes #14002 from rxin/SPARK-16335.
-
Sun Rui authored
[SPARK-16299][SPARKR] Capture errors from R workers in daemon.R to avoid deletion of R session temporary directory. ## What changes were proposed in this pull request? Capture errors from R workers in daemon.R to avoid deletion of R session temporary directory. See detailed description at https://issues.apache.org/jira/browse/SPARK-16299 ## How was this patch tested? SparkR unit tests. Author: Sun Rui <sunrui2016@gmail.com> Closes #13975 from sun-rui/SPARK-16299.
-
Narine Kokhlikyan authored
[SPARK-16012][SPARKR] Implement gapplyCollect which will apply a R function on each group similar to gapply and collect the result back to R data.frame ## What changes were proposed in this pull request? gapplyCollect() does gapply() on a SparkDataFrame and collect the result back to R. Compared to gapply() + collect(), gapplyCollect() offers performance optimization as well as programming convenience, as no schema is needed to be provided. This is similar to dapplyCollect(). ## How was this patch tested? Added test cases for gapplyCollect similar to dapplyCollect Author: Narine Kokhlikyan <narine@slice.com> Closes #13760 from NarineK/gapplyCollect.
-
Dongjoon Hyun authored
## What changes were proposed in this pull request? This PR adds a new logical optimizer, `PropagateEmptyRelation`, to collapse a logical plans consisting of only empty LocalRelations. **Optimizer Targets** 1. Binary(or Higher)-node Logical Plans - Union with all empty children. - Join with one or two empty children (including Intersect/Except). 2. Unary-node Logical Plans - Project/Filter/Sample/Join/Limit/Repartition with all empty children. - Aggregate with all empty children and without AggregateFunction expressions, COUNT. - Generate with Explode because other UserDefinedGenerators like Hive UDTF returns results. **Sample Query** ```sql WITH t1 AS (SELECT a FROM VALUES 1 t(a)), t2 AS (SELECT b FROM VALUES 1 t(b) WHERE 1=2) SELECT a,b FROM t1, t2 WHERE a=b GROUP BY a,b HAVING a>1 ORDER BY a,b ``` **Before** ```scala scala> sql("with t1 as (select a from values 1 t(a)), t2 as (select b from values 1 t(b) where 1=2) select a,b from t1, t2 where a=b group by a,b having a>1 order by a,b").explain == Physical Plan == *Sort [a#0 ASC, b#1 ASC], true, 0 +- Exchange rangepartitioning(a#0 ASC, b#1 ASC, 200) +- *HashAggregate(keys=[a#0, b#1], functions=[]) +- Exchange hashpartitioning(a#0, b#1, 200) +- *HashAggregate(keys=[a#0, b#1], functions=[]) +- *BroadcastHashJoin [a#0], [b#1], Inner, BuildRight :- *Filter (isnotnull(a#0) && (a#0 > 1)) : +- LocalTableScan [a#0] +- BroadcastExchange HashedRelationBroadcastMode(List(cast(input[0, int, false] as bigint))) +- *Filter (isnotnull(b#1) && (b#1 > 1)) +- LocalTableScan <empty>, [b#1] ``` **After** ```scala scala> sql("with t1 as (select a from values 1 t(a)), t2 as (select b from values 1 t(b) where 1=2) select a,b from t1, t2 where a=b group by a,b having a>1 order by a,b").explain == Physical Plan == LocalTableScan <empty>, [a#0, b#1] ``` ## How was this patch tested? Pass the Jenkins tests (including a new testsuite). Author: Dongjoon Hyun <dongjoon@apache.org> Closes #13906 from dongjoon-hyun/SPARK-16208.
-
gatorsmile authored
#### What changes were proposed in this pull request? For JDBC data sources, users can specify `batchsize` for multi-row inserts and `fetchsize` for multi-row fetch. A few issues exist: - The property keys are case sensitive. Thus, the existing test cases for `fetchsize` use incorrect names, `fetchSize`. Basically, the test cases are broken. - No test case exists for `batchsize`. - We do not detect the illegal input values for `fetchsize` and `batchsize`. For example, when `batchsize` is zero, we got the following exception: ``` Job aborted due to stage failure: Task 0 in stage 0.0 failed 1 times, most recent failure: Lost task 0.0 in stage 0.0 (TID 0, localhost): java.lang.ArithmeticException: / by zero ``` when `fetchsize` is less than zero, we got the exception from the underlying JDBC driver: ``` Job aborted due to stage failure: Task 0 in stage 0.0 failed 1 times, most recent failure: Lost task 0.0 in stage 0.0 (TID 0, localhost): org.h2.jdbc.JdbcSQLException: Invalid value "-1" for parameter "rows" [90008-183] ``` This PR fixes all the above issues, and issue the appropriate exceptions when detecting the illegal inputs for `fetchsize` and `batchsize`. Also update the function descriptions. #### How was this patch tested? Test cases are fixed and added. Author: gatorsmile <gatorsmile@gmail.com> Closes #13919 from gatorsmile/jdbcProperties.
-
MechCoder authored
## What changes were proposed in this pull request? I would like to use IPython with Python 3.5. It is annoying when it fails with IPython requires Python 2.7+; please install python2.7 or set PYSPARK_PYTHON when I have a version greater than 2.7 ## How was this patch tested It now works with IPython and Python3 Author: MechCoder <mks542@nyu.edu> Closes #13503 from MechCoder/spark-15761.
-
Sean Owen authored
[SPARK-16182][CORE] Utils.scala -- terminateProcess() should call Process.destroyForcibly() if and only if Process.destroy() fails ## What changes were proposed in this pull request? Utils.terminateProcess should `destroy()` first and only fall back to `destroyForcibly()` if it fails. It's kind of bad that we're force-killing executors -- and only in Java 8. See JIRA for an example of the impact: no shutdown While here: `Utils.waitForProcess` should use the Java 8 method if available instead of a custom implementation. ## How was this patch tested? Existing tests, which cover the force-kill case, and Amplab tests, which will cover both Java 7 and Java 8 eventually. However I tested locally on Java 8 and the PR builder will try Java 7 here. Author: Sean Owen <sowen@cloudera.com> Closes #13973 from srowen/SPARK-16182.
-
cody koeninger authored
## What changes were proposed in this pull request? This is an alternative to the refactoring proposed by https://github.com/apache/spark/pull/13996 ## How was this patch tested? unit tests also tested under scala 2.10 via mvn -Dscala-2.10 Author: cody koeninger <cody@koeninger.org> Closes #13998 from koeninger/kafka-0-10-refactor.
-
- Jun 30, 2016
-
-
Hiroshi Inoue authored
## What changes were proposed in this pull request? During the code generation, a `LocalRelation` often has a huge `Vector` object as `data`. In the simple example below, a `LocalRelation` has a Vector with 1000000 elements of `UnsafeRow`. ``` val numRows = 1000000 val ds = (1 to numRows).toDS().persist() benchmark.addCase("filter+reduce") { iter => ds.filter(a => (a & 1) == 0).reduce(_ + _) } ``` At `TreeNode.transformChildren`, all elements of the vector is unnecessarily iterated to check whether any children exist in the vector since `Vector` is Traversable. This part significantly increases code generation time. This patch avoids this overhead by checking the number of children before iterating all elements; `LocalRelation` does not have children since it extends `LeafNode`. The performance of the above example ``` without this patch Java HotSpot(TM) 64-Bit Server VM 1.8.0_91-b14 on Mac OS X 10.11.5 Intel(R) Core(TM) i5-5257U CPU 2.70GHz compilationTime: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ filter+reduce 4426 / 4533 0.2 4426.0 1.0X with this patch compilationTime: Best/Avg Time(ms) Rate(M/s) Per Row(ns) Relative ------------------------------------------------------------------------------------------------ filter+reduce 3117 / 3391 0.3 3116.6 1.0X ``` ## How was this patch tested? using existing unit tests Author: Hiroshi Inoue <inouehrs@jp.ibm.com> Closes #14000 from inouehrs/compilation-time-reduction.
-
Yuhao Yang authored
## What changes were proposed in this pull request? jira: https://issues.apache.org/jira/browse/SPARK-14608 PipelineStage.transformSchema currently has minimal documentation. It should have more to explain it can: check schema check parameter interactions ## How was this patch tested? unit test Author: Yuhao Yang <hhbyyh@gmail.com> Author: Yuhao Yang <yuhao.yang@intel.com> Closes #12384 from hhbyyh/transformSchemaDoc.
-
Reynold Xin authored
## What changes were proposed in this pull request? This patch introduces a flag to disable loading test tables in TestHiveSparkSession and disables that in Python. This fixes an issue in which python/run-tests would fail due to failure to load test tables. Note that these test tables are not used outside of HiveCompatibilitySuite. In the long run we should probably decouple the loading of test tables from the test Hive setup. ## How was this patch tested? This is a test only change. Author: Reynold Xin <rxin@databricks.com> Closes #14005 from rxin/SPARK-15954.
-
Nick Pentreath authored
This PR adds the breaking changes from [SPARK-14810](https://issues.apache.org/jira/browse/SPARK-14810) to the migration guide. ## How was this patch tested? Built docs locally. Author: Nick Pentreath <nickp@za.ibm.com> Closes #13924 from MLnick/SPARK-15643-migration-guide.
-
Nick Pentreath authored
The move to `ml.linalg` created `asML`/`fromML` utility methods in Scala/Java for converting between representations. These are missing in Python, this PR adds them. ## How was this patch tested? New doctests. Author: Nick Pentreath <nickp@za.ibm.com> Closes #13997 from MLnick/SPARK-16328-python-linalg-convert.
-
petermaxlee authored
## What changes were proposed in this pull request? This patch implements the elt function, as it is implemented in Hive. ## How was this patch tested? Added expression unit test in StringExpressionsSuite and end-to-end test in StringFunctionsSuite. Author: petermaxlee <petermaxlee@gmail.com> Closes #13966 from petermaxlee/SPARK-16276.
-
Reynold Xin authored
## What changes were proposed in this pull request? Spark silently drops exceptions during file listing. This is a very bad behavior because it can mask legitimate errors and the resulting plan will silently have 0 rows. This patch changes it to not silently drop the errors. ## How was this patch tested? Manually verified. Author: Reynold Xin <rxin@databricks.com> Closes #13987 from rxin/SPARK-16313.
-
petermaxlee authored
## What changes were proposed in this pull request? This patch appends a message to suggest users running refresh table or reloading data frames when Spark sees a FileNotFoundException due to stale, cached metadata. ## How was this patch tested? Added a unit test for this in MetadataCacheSuite. Author: petermaxlee <petermaxlee@gmail.com> Closes #14003 from petermaxlee/SPARK-16336.
-
Tathagata Das authored
Author: Tathagata Das <tathagata.das1565@gmail.com> Closes #14001 from tdas/SPARK-16256-2.
-
cody koeninger authored
## What changes were proposed in this pull request? code cleanup in kafka-0-8 to match suggested changes for kafka-0-10 branch ## How was this patch tested? unit tests Author: cody koeninger <cody@koeninger.org> Closes #13908 from koeninger/kafka-0-8-cleanup.
-
Dongjoon Hyun authored
## What changes were proposed in this pull request? This PR implements `posexplode` table generating function. Currently, master branch raises the following exception for `map` argument. It's different from Hive. **Before** ```scala scala> sql("select posexplode(map('a', 1, 'b', 2))").show org.apache.spark.sql.AnalysisException: No handler for Hive UDF ... posexplode() takes an array as a parameter; line 1 pos 7 ``` **After** ```scala scala> sql("select posexplode(map('a', 1, 'b', 2))").show +---+---+-----+ |pos|key|value| +---+---+-----+ | 0| a| 1| | 1| b| 2| +---+---+-----+ ``` For `array` argument, `after` is the same with `before`. ``` scala> sql("select posexplode(array(1, 2, 3))").show +---+---+ |pos|col| +---+---+ | 0| 1| | 1| 2| | 2| 3| +---+---+ ``` ## How was this patch tested? Pass the Jenkins tests with newly added testcases. Author: Dongjoon Hyun <dongjoon@apache.org> Closes #13971 from dongjoon-hyun/SPARK-16289.
-
Imran Rashid authored
## What changes were proposed in this pull request? Before this change, when you turn on blacklisting with `spark.scheduler.executorTaskBlacklistTime`, but you have fewer than `spark.task.maxFailures` executors, you can end with a job "hung" after some task failures. Whenever a taskset is unable to schedule anything on resourceOfferSingleTaskSet, we check whether the last pending task can be scheduled on *any* known executor. If not, the taskset (and any corresponding jobs) are failed. * Worst case, this is O(maxTaskFailures + numTasks). But unless many executors are bad, this should be small * This does not fail as fast as possible -- when a task becomes unschedulable, we keep scheduling other tasks. This is to avoid an O(numPendingTasks * numExecutors) operation * Also, it is conceivable this fails too quickly. You may be 1 millisecond away from unblacklisting a place for a task to run, or acquiring a new executor. ## How was this patch tested? Added unit test which failed before the change, ran new test 5k times manually, ran all scheduler tests manually, and the full suite via jenkins. Author: Imran Rashid <irashid@cloudera.com> Closes #13603 from squito/progress_w_few_execs_and_blacklist.
-
Sital Kedia authored
## What changes were proposed in this pull request? Force the sorter to Spill when number of elements in the pointer array reach a certain size. This is to workaround the issue of timSort failing on large buffer size. ## How was this patch tested? Tested by running a job which was failing without this change due to TimSort bug. Author: Sital Kedia <skedia@fb.com> Closes #13107 from sitalkedia/fix_TimSort.
-
WeichenXu authored
## What changes were proposed in this pull request? Add Catalog.refreshTable API into python interface for Spark-SQL. ## How was this patch tested? Existing test. Author: WeichenXu <WeichenXu123@outlook.com> Closes #13558 from WeichenXu123/update_python_sql_interface_refreshTable.
-
Sean Zhong authored
## What changes were proposed in this pull request? This PR Checks the size limit when doubling the array size in BufferHolder to avoid integer overflow. ## How was this patch tested? Manual test. Author: Sean Zhong <seanzhong@databricks.com> Closes #13829 from clockfly/SPARK-16071_2.
-
Tathagata Das authored
## What changes were proposed in this pull request? The commented lines failed scala 2.10 build. This is because of change in behavior of case classes between 2.10 and 2.11. In scala 2.10, if companion object of a case class has explicitly defined apply(), then the implicit apply method is not generated. In scala 2.11 it is generated. Hence, the lines compile fine in 2.11 but not in 2.10. This simply comments the tests to fix broken build. Correct solution is pending. Author: Tathagata Das <tathagata.das1565@gmail.com> Closes #13992 from tdas/SPARK-12177.
-
zlpmichelle authored
## What changes were proposed in this pull request? model loading backward compatibility for ml NaiveBayes ## How was this patch tested? existing ut and manual test for loading models saved by Spark 1.6. Author: zlpmichelle <zlpmichelle@gmail.com> Closes #13940 from zlpmichelle/naivebayes.
-
Tathagata Das authored
Author: Tathagata Das <tathagata.das1565@gmail.com> Closes #13978 from tdas/SPARK-16256-1.
-
cody koeninger authored
## What changes were proposed in this pull request? New Kafka consumer api for the released 0.10 version of Kafka ## How was this patch tested? Unit tests, manual tests Author: cody koeninger <cody@koeninger.org> Closes #11863 from koeninger/kafka-0.9.
-
Cheng Lian authored
## What changes were proposed in this pull request? This PR adds labelling support for the `include_example` Jekyll plugin, so that we may split a single source file into multiple line blocks with different labels, and include them in multiple code snippets in the generated HTML page. ## How was this patch tested? Manually tested. <img width="923" alt="screenshot at jun 29 19-53-21" src="https://cloud.githubusercontent.com/assets/230655/16451099/66a76db2-3e33-11e6-84fb-63104c2f0688.png"> Author: Cheng Lian <lian@databricks.com> Closes #13972 from liancheng/include-example-with-labels.
-
- Jun 29, 2016
-
-
petermaxlee authored
## What changes were proposed in this pull request? This patch implements xpath_boolean expression for Spark SQL, a xpath function that returns true or false. The implementation is modelled after Hive's xpath_boolean, except that how the expression handles null inputs. Hive throws a NullPointerException at runtime if either of the input is null. This implementation returns null if either of the input is null. ## How was this patch tested? Created two new test suites. One for unit tests covering the expression, and the other for end-to-end test in SQL. Author: petermaxlee <petermaxlee@gmail.com> Closes #13964 from petermaxlee/SPARK-16274.
-
Dongjoon Hyun authored
## What changes were proposed in this pull request? After SPARK-15674, `DDLStrategy` prints out the following deprecation messages in the testsuites. ``` 12:10:53.284 WARN org.apache.spark.sql.execution.SparkStrategies$DDLStrategy: CREATE TEMPORARY TABLE normal_orc_source USING... is deprecated, please use CREATE TEMPORARY VIEW viewName USING... instead ``` Total : 40 - JDBCWriteSuite: 14 - DDLSuite: 6 - TableScanSuite: 6 - ParquetSourceSuite: 5 - OrcSourceSuite: 2 - SQLQuerySuite: 2 - HiveCommandSuite: 2 - JsonSuite: 1 - PrunedScanSuite: 1 - FilteredScanSuite 1 This PR replaces `CREATE TEMPORARY TABLE` with `CREATE TEMPORARY VIEW` in order to remove the deprecation messages in the above testsuites except `DDLSuite`, `SQLQuerySuite`, `HiveCommandSuite`. The Jenkins results shows only remaining 10 messages. https://amplab.cs.berkeley.edu/jenkins/job/SparkPullRequestBuilder/61422/consoleFull ## How was this patch tested? This is a testsuite-only change. Author: Dongjoon Hyun <dongjoon@apache.org> Closes #13956 from dongjoon-hyun/SPARK-16267.
-
Wenchen Fan authored
## What changes were proposed in this pull request? This PR adds 3 optimizer rules for typed filter: 1. push typed filter down through `SerializeFromObject` and eliminate the deserialization in filter condition. 2. pull typed filter up through `SerializeFromObject` and eliminate the deserialization in filter condition. 3. combine adjacent typed filters and share the deserialized object among all the condition expressions. This PR also adds `TypedFilter` logical plan, to separate it from normal filter, so that the concept is more clear and it's easier to write optimizer rules. ## How was this patch tested? `TypedFilterOptimizationSuite` Author: Wenchen Fan <wenchen@databricks.com> Closes #13846 from cloud-fan/filter.
-
Dongjoon Hyun authored
[SPARK-16228][SQL] HiveSessionCatalog should return `double`-param functions for decimal param lookups ## What changes were proposed in this pull request? This PR supports a fallback lookup by casting `DecimalType` into `DoubleType` for the external functions with `double`-type parameter. **Reported Error Scenarios** ```scala scala> sql("select percentile(value, 0.5) from values 1,2,3 T(value)") org.apache.spark.sql.AnalysisException: ... No matching method for class org.apache.hadoop.hive.ql.udf.UDAFPercentile with (int, decimal(38,18)). Possible choices: _FUNC_(bigint, array<double>) _FUNC_(bigint, double) ; line 1 pos 7 scala> sql("select percentile_approx(value, 0.5) from values 1.0,2.0,3.0 T(value)") org.apache.spark.sql.AnalysisException: ... Only a float/double or float/double array argument is accepted as parameter 2, but decimal(38,18) was passed instead.; line 1 pos 7 ``` ## How was this patch tested? Pass the Jenkins tests (including a new testcase). Author: Dongjoon Hyun <dongjoon@apache.org> Closes #13930 from dongjoon-hyun/SPARK-16228.
-
Eric Liang authored
## What changes were proposed in this pull request? This extends SPARK-15860 to include metrics for the actual bytecode size of janino-generated methods. They can be accessed in the same way as any other codahale metric, e.g. ``` scala> org.apache.spark.metrics.source.CodegenMetrics.METRIC_GENERATED_CLASS_BYTECODE_SIZE.getSnapshot().getValues() res7: Array[Long] = Array(532, 532, 532, 542, 1479, 2670, 3585, 3585) scala> org.apache.spark.metrics.source.CodegenMetrics.METRIC_GENERATED_METHOD_BYTECODE_SIZE.getSnapshot().getValues() res8: Array[Long] = Array(5, 5, 5, 5, 10, 10, 10, 10, 15, 15, 15, 38, 63, 79, 88, 94, 94, 94, 132, 132, 165, 165, 220, 220) ``` ## How was this patch tested? Small unit test, also verified manually that the performance impact is minimal (<10%). hvanhovell Author: Eric Liang <ekl@databricks.com> Closes #13934 from ericl/spark-16238.
-
Dongjoon Hyun authored
## What changes were proposed in this pull request? This PR allows `emptyDataFrame.write` since the user didn't specify any partition columns. **Before** ```scala scala> spark.emptyDataFrame.write.parquet("/tmp/t1") org.apache.spark.sql.AnalysisException: Cannot use all columns for partition columns; scala> spark.emptyDataFrame.write.csv("/tmp/t1") org.apache.spark.sql.AnalysisException: Cannot use all columns for partition columns; ``` After this PR, there occurs no exceptions and the created directory has only one file, `_SUCCESS`, as expected. ## How was this patch tested? Pass the Jenkins tests including updated test cases. Author: Dongjoon Hyun <dongjoon@apache.org> Closes #13730 from dongjoon-hyun/SPARK-16006.
-
Yin Huai authored
[SPARK-16301] [SQL] The analyzer rule for resolving using joins should respect the case sensitivity setting. ## What changes were proposed in this pull request? The analyzer rule for resolving using joins should respect the case sensitivity setting. ## How was this patch tested? New tests in ResolveNaturalJoinSuite Author: Yin Huai <yhuai@databricks.com> Closes #13977 from yhuai/SPARK-16301.
-
hyukjinkwon authored
## What changes were proposed in this pull request? This PR corrects ORC compression option for PySpark as well. I think this was missed mistakenly in https://github.com/apache/spark/pull/13948. ## How was this patch tested? N/A Author: hyukjinkwon <gurwls223@gmail.com> Closes #13963 from HyukjinKwon/minor-orc-compress.
-