Skip to content
Snippets Groups Projects
sql-programming-guide.md 102 KiB
Newer Older
  • Learn to ignore specific revisions
  • displayTitle: Spark SQL, DataFrames and Datasets Guide
    
    title: Spark SQL and DataFrames
    
    ---
    
    * This will become a table of contents (this text will be scraped).
    {:toc}
    
    # Overview
    
    Spark SQL is a Spark module for structured data processing. Unlike the basic Spark RDD API, the interfaces provided
    by Spark SQL provide Spark with more information about the structure of both the data and the computation being performed. Internally,
    Spark SQL uses this extra information to perform extra optimizations. There are several ways to
    interact with Spark SQL including SQL, the DataFrames API and the Datasets API. When computing a result
    the same execution engine is used, independent of which API/language you are using to express the
    computation. This unification means that developers can easily switch back and forth between the
    various APIs based on which provides the most natural way to express a given transformation.
    
    All of the examples on this page use sample data included in the Spark distribution and can be run in
    the `spark-shell`, `pyspark` shell, or `sparkR` shell.
    
    One use of Spark SQL is to execute SQL queries written using either a basic SQL syntax or HiveQL.
    Spark SQL can also be used to read data from an existing Hive installation. For more on how to
    configure this feature, please refer to the [Hive Tables](#hive-tables) section. When running
    SQL from within another programming language the results will be returned as a [DataFrame](#DataFrames).
    You can also interact with the SQL interface using the [command-line](#running-the-spark-sql-cli)
    or over [JDBC/ODBC](#running-the-thrift-jdbcodbc-server).
    
    A DataFrame is a distributed collection of data organized into named columns. It is conceptually
    equivalent to a table in a relational database or a data frame in R/Python, but with richer
    optimizations under the hood. DataFrames can be constructed from a wide array of [sources](#data-sources) such
    as: structured data files, tables in Hive, external databases, or existing RDDs.
    
    The DataFrame API is available in [Scala](api/scala/index.html#org.apache.spark.sql.DataFrame),
    [Java](api/java/index.html?org/apache/spark/sql/DataFrame.html),
    [Python](api/python/pyspark.sql.html#pyspark.sql.DataFrame), and [R](api/R/index.html).
    
    ## Datasets
    
    A Dataset is a new experimental interface added in Spark 1.6 that tries to provide the benefits of
    RDDs (strong typing, ability to use powerful lambda functions) with the benefits of Spark SQL's
    optimized execution engine. A Dataset can be [constructed](#creating-datasets) from JVM objects and then manipulated
    using functional transformations (map, flatMap, filter, etc.).
    
    The unified Dataset API can be used both in [Scala](api/scala/index.html#org.apache.spark.sql.Dataset) and
    [Java](api/java/index.html?org/apache/spark/sql/Dataset.html). Python does not yet have support for
    the Dataset API, but due to its dynamic nature many of the benefits are already available (i.e. you can
    access the field of a row by name naturally `row.columnName`). Full python support will be added
    in a future release.
    
    # Getting Started
    
    ## Starting Point: SQLContext
    
    <div class="codetabs">
    <div data-lang="scala"  markdown="1">
    
    
    The entry point into all functionality in Spark SQL is the
    
    Bill Chambers's avatar
    Bill Chambers committed
    [`SQLContext`](api/scala/index.html#org.apache.spark.sql.SQLContext) class, or one of its
    
    descendants. To create a basic `SQLContext`, all you need is a SparkContext.
    
    
    {% highlight scala %}
    val sc: SparkContext // An existing SparkContext.
    val sqlContext = new org.apache.spark.sql.SQLContext(sc)
    
    
    // this is used to implicitly convert an RDD to a DataFrame.
    import sqlContext.implicits._
    
    <div data-lang="java" markdown="1">
    
    The entry point into all functionality in Spark SQL is the
    
    [`SQLContext`](api/java/index.html#org.apache.spark.sql.SQLContext) class, or one of its
    
    descendants. To create a basic `SQLContext`, all you need is a SparkContext.
    
    
    {% highlight java %}
    
    JavaSparkContext sc = ...; // An existing JavaSparkContext.
    
    SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc);
    
    <div data-lang="python"  markdown="1">
    
    The entry point into all relational functionality in Spark is the
    
    [`SQLContext`](api/python/pyspark.sql.html#pyspark.sql.SQLContext) class, or one
    
    of its decedents. To create a basic `SQLContext`, all you need is a SparkContext.
    
    
    {% highlight python %}
    from pyspark.sql import SQLContext
    
    {% endhighlight %}
    
    
    </div>
    
    <div data-lang="r"  markdown="1">
    
    The entry point into all relational functionality in Spark is the
    
    `SQLContext` class, or one of its decedents. To create a basic `SQLContext`, all you need is a SparkContext.
    
    
    {% highlight r %}
    sqlContext <- sparkRSQL.init(sc)
    {% endhighlight %}
    
    
    In addition to the basic `SQLContext`, you can also create a `HiveContext`, which provides a
    superset of the functionality provided by the basic `SQLContext`. Additional features include
    
    the ability to write queries using the more complete HiveQL parser, access to Hive UDFs, and the
    
    ability to read data from Hive tables. To use a `HiveContext`, you do not need to have an
    
    existing Hive setup, and all of the data sources available to a `SQLContext` are still available.
    `HiveContext` is only packaged separately to avoid including all of Hive's dependencies in the default
    
    Spark build. If these dependencies are not a problem for your application then using `HiveContext`
    is recommended for the 1.3 release of Spark. Future releases will focus on bringing `SQLContext` up
    
    to feature parity with a `HiveContext`.
    
    The specific variant of SQL that is used to parse queries can also be selected using the
    
    `spark.sql.dialect` option. This parameter can be changed using either the `setConf` method on
    a `SQLContext` or by using a `SET key=value` command in SQL. For a `SQLContext`, the only dialect
    available is "sql" which uses a simple SQL parser provided by Spark SQL. In a `HiveContext`, the
    default is "hiveql", though "sql" is also available. Since the HiveQL parser is much more complete,
    
    this is recommended for most use cases.
    
    ## Creating DataFrames
    
    With a `SQLContext`, applications can create `DataFrame`s from an <a href='#interoperating-with-rdds'>existing `RDD`</a>, from a Hive table, or from <a href='#data-sources'>data sources</a>.
    
    As an example, the following creates a `DataFrame` based on the content of a JSON file:
    
    <div class="codetabs">
    <div data-lang="scala"  markdown="1">
    {% highlight scala %}
    val sc: SparkContext // An existing SparkContext.
    val sqlContext = new org.apache.spark.sql.SQLContext(sc)
    
    
    val df = sqlContext.read.json("examples/src/main/resources/people.json")
    
    
    // Displays the content of the DataFrame to stdout
    
    {% endhighlight %}
    
    </div>
    
    <div data-lang="java" markdown="1">
    {% highlight java %}
    JavaSparkContext sc = ...; // An existing JavaSparkContext.
    SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc);
    
    
    DataFrame df = sqlContext.read().json("examples/src/main/resources/people.json");
    
    
    // Displays the content of the DataFrame to stdout
    df.show();
    {% endhighlight %}
    
    </div>
    
    <div data-lang="python"  markdown="1">
    {% highlight python %}
    from pyspark.sql import SQLContext
    sqlContext = SQLContext(sc)
    
    
    df = sqlContext.read.json("examples/src/main/resources/people.json")
    
    
    # Displays the content of the DataFrame to stdout
    df.show()
    {% endhighlight %}
    
    </div>
    
    
    <div data-lang="r"  markdown="1">
    {% highlight r %}
    sqlContext <- SQLContext(sc)
    
    df <- jsonFile(sqlContext, "examples/src/main/resources/people.json")
    
    # Displays the content of the DataFrame to stdout
    showDF(df)
    {% endhighlight %}
    
    </div>
    
    
    DataFrames provide a domain-specific language for structured data manipulation in [Scala](api/scala/index.html#org.apache.spark.sql.DataFrame), [Java](api/java/index.html?org/apache/spark/sql/DataFrame.html), [Python](api/python/pyspark.sql.html#pyspark.sql.DataFrame) and [R](api/R/DataFrame.html).
    
    
    Here we include some basic examples of structured data processing using DataFrames:
    
    <div class="codetabs">
    <div data-lang="scala"  markdown="1">
    {% highlight scala %}
    val sc: SparkContext // An existing SparkContext.
    val sqlContext = new org.apache.spark.sql.SQLContext(sc)
    
    // Create the DataFrame
    
    val df = sqlContext.read.json("examples/src/main/resources/people.json")
    
    
    // Show the content of the DataFrame
    df.show()
    
    
    // Print the schema in a tree format
    df.printSchema()
    // root
    // |-- age: long (nullable = true)
    // |-- name: string (nullable = true)
    
    // Select only the "name" column
    df.select("name").show()
    
    
    // Select everybody, but increment the age by 1
    
    df.select(df("name"), df("age") + 1).show()
    
    df.filter(df("age") > 21).show()
    
    // age name
    // 30  Andy
    
    // Count people by age
    df.groupBy("age").count().show()
    // age  count
    // null 1
    // 19   1
    // 30   1
    {% endhighlight %}
    
    
    For a complete list of the types of operations that can be performed on a DataFrame refer to the [API Documentation](api/scala/index.html#org.apache.spark.sql.DataFrame).
    
    
    In addition to simple column references and expressions, DataFrames also have a rich library of functions including string manipulation, date arithmetic, common math operations and more. The complete list is available in the [DataFrame Function Reference](api/scala/index.html#org.apache.spark.sql.functions$).
    
    </div>
    
    <div data-lang="java" markdown="1">
    {% highlight java %}
    
    JavaSparkContext sc // An existing SparkContext.
    SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc)
    
    DataFrame df = sqlContext.read().json("examples/src/main/resources/people.json");
    
    
    // Show the content of the DataFrame
    df.show();
    
    
    // Print the schema in a tree format
    df.printSchema();
    // root
    // |-- age: long (nullable = true)
    // |-- name: string (nullable = true)
    
    // Select only the "name" column
    df.select("name").show();
    
    
    // Select everybody, but increment the age by 1
    
    df.select(df.col("name"), df.col("age").plus(1)).show();
    
    df.filter(df.col("age").gt(21)).show();
    
    // age name
    // 30  Andy
    
    // Count people by age
    df.groupBy("age").count().show();
    // age  count
    // null 1
    // 19   1
    // 30   1
    {% endhighlight %}
    
    
    For a complete list of the types of operations that can be performed on a DataFrame refer to the [API Documentation](api/java/org/apache/spark/sql/DataFrame.html).
    
    
    In addition to simple column references and expressions, DataFrames also have a rich library of functions including string manipulation, date arithmetic, common math operations and more. The complete list is available in the [DataFrame Function Reference](api/java/org/apache/spark/sql/functions.html).
    
    </div>
    
    <div data-lang="python"  markdown="1">
    
    In Python it's possible to access a DataFrame's columns either by attribute
    (`df.age`) or by indexing (`df['age']`). While the former is convenient for
    interactive data exploration, users are highly encouraged to use the
    latter form, which is future proof and won't break with column names that
    are also attributes on the DataFrame class.
    
    
    {% highlight python %}
    from pyspark.sql import SQLContext
    sqlContext = SQLContext(sc)
    
    # Create the DataFrame
    
    df = sqlContext.read.json("examples/src/main/resources/people.json")
    
    
    # Show the content of the DataFrame
    df.show()
    
    
    # Print the schema in a tree format
    df.printSchema()
    ## root
    ## |-- age: long (nullable = true)
    ## |-- name: string (nullable = true)
    
    # Select only the "name" column
    df.select("name").show()
    
    
    # Select everybody, but increment the age by 1
    
    ## age name
    ## 30  Andy
    
    # Count people by age
    df.groupBy("age").count().show()
    ## age  count
    ## null 1
    ## 19   1
    ## 30   1
    
    {% endhighlight %}
    
    
    For a complete list of the types of operations that can be performed on a DataFrame refer to the [API Documentation](api/python/pyspark.sql.html#pyspark.sql.DataFrame).
    
    
    In addition to simple column references and expressions, DataFrames also have a rich library of functions including string manipulation, date arithmetic, common math operations and more. The complete list is available in the [DataFrame Function Reference](api/python/pyspark.sql.html#module-pyspark.sql.functions).
    
    
    <div data-lang="r"  markdown="1">
    {% highlight r %}
    sqlContext <- sparkRSQL.init(sc)
    
    # Create the DataFrame
    df <- jsonFile(sqlContext, "examples/src/main/resources/people.json")
    
    # Show the content of the DataFrame
    showDF(df)
    ## age  name
    ## null Michael
    ## 30   Andy
    ## 19   Justin
    
    # Print the schema in a tree format
    printSchema(df)
    ## root
    ## |-- age: long (nullable = true)
    ## |-- name: string (nullable = true)
    
    # Select only the "name" column
    showDF(select(df, "name"))
    ## name
    ## Michael
    ## Andy
    ## Justin
    
    # Select everybody, but increment the age by 1
    showDF(select(df, df$name, df$age + 1))
    ## name    (age + 1)
    ## Michael null
    ## Andy    31
    ## Justin  20
    
    # Select people older than 21
    showDF(where(df, df$age > 21))
    ## age name
    ## 30  Andy
    
    # Count people by age
    showDF(count(groupBy(df, "age")))
    ## age  count
    ## null 1
    ## 19   1
    ## 30   1
    
    {% endhighlight %}
    
    
    For a complete list of the types of operations that can be performed on a DataFrame refer to the [API Documentation](api/R/index.html).
    
    
    In addition to simple column references and expressions, DataFrames also have a rich library of functions including string manipulation, date arithmetic, common math operations and more. The complete list is available in the [DataFrame Function Reference](api/R/index.html).
    
    
    ## Running SQL Queries Programmatically
    
    The `sql` function on a `SQLContext` enables applications to run SQL queries programmatically and returns the result as a `DataFrame`.
    
    <div class="codetabs">
    <div data-lang="scala"  markdown="1">
    {% highlight scala %}
    
    val sqlContext = ... // An existing SQLContext
    
    val df = sqlContext.sql("SELECT * FROM table")
    {% endhighlight %}
    </div>
    
    <div data-lang="java" markdown="1">
    {% highlight java %}
    
    SQLContext sqlContext = ... // An existing SQLContext
    
    DataFrame df = sqlContext.sql("SELECT * FROM table")
    
    {% endhighlight %}
    </div>
    
    <div data-lang="python"  markdown="1">
    {% highlight python %}
    from pyspark.sql import SQLContext
    sqlContext = SQLContext(sc)
    df = sqlContext.sql("SELECT * FROM table")
    {% endhighlight %}
    </div>
    
    
    <div data-lang="r"  markdown="1">
    {% highlight r %}
    sqlContext <- sparkRSQL.init(sc)
    df <- sql(sqlContext, "SELECT * FROM table")
    {% endhighlight %}
    </div>
    
    
    ## Creating Datasets
    
    Datasets are similar to RDDs, however, instead of using Java Serialization or Kryo they use
    a specialized [Encoder](api/scala/index.html#org.apache.spark.sql.Encoder) to serialize the objects
    for processing or transmitting over the network. While both encoders and standard serialization are
    responsible for turning an object into bytes, encoders are code generated dynamically and use a format
    that allows Spark to perform many operations like filtering, sorting and hashing without deserializing
    the bytes back into an object.
    
    <div class="codetabs">
    <div data-lang="scala"  markdown="1">
    
    {% highlight scala %}
    // Encoders for most common types are automatically provided by importing sqlContext.implicits._
    val ds = Seq(1, 2, 3).toDS()
    ds.map(_ + 1).collect() // Returns: Array(2, 3, 4)
    
    // Encoders are also created for case classes.
    case class Person(name: String, age: Long)
    val ds = Seq(Person("Andy", 32)).toDS()
    
    // DataFrames can be converted to a Dataset by providing a class. Mapping will be done by name.
    val path = "examples/src/main/resources/people.json"
    val people = sqlContext.read.json(path).as[Person]
    
    {% endhighlight %}
    
    </div>
    
    <div data-lang="java" markdown="1">
    
    {% highlight java %}
    JavaSparkContext sc = ...; // An existing JavaSparkContext.
    SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc);
    {% endhighlight %}
    
    </div>
    </div>
    
    
    Spark SQL supports two different methods for converting existing RDDs into DataFrames. The first
    method uses reflection to infer the schema of an RDD that contains specific types of objects. This
    
    reflection based approach leads to more concise code and works well when you already know the schema
    
    while writing your Spark application.
    
    The second method for creating DataFrames is through a programmatic interface that allows you to
    
    construct a schema and then apply it to an existing RDD. While this method is more verbose, it allows
    
    you to construct DataFrames when the columns and their types are not known until runtime.
    
    ### Inferring the Schema Using Reflection
    
    <div class="codetabs">
    
    <div data-lang="scala"  markdown="1">
    
    
    The Scala interface for Spark SQL supports automatically converting an RDD containing case classes
    
    to a DataFrame. The case class
    defines the schema of the table. The names of the arguments to the case class are read using
    
    reflection and become the names of the columns. Case classes can also be nested or contain complex
    
    types such as Sequences or Arrays. This RDD can be implicitly converted to a DataFrame and then be
    
    registered as a table. Tables can be used in subsequent SQL statements.
    
    // sc is an existing SparkContext.
    
    val sqlContext = new org.apache.spark.sql.SQLContext(sc)
    
    // this is used to implicitly convert an RDD to a DataFrame.
    import sqlContext.implicits._
    
    
    // Define the schema using a case class.
    
    // Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit,
    
    // you can use custom classes that implement the Product interface.
    
    case class Person(name: String, age: Int)
    
    // Create an RDD of Person objects and register it as a table.
    
    val people = sc.textFile("examples/src/main/resources/people.txt").map(_.split(",")).map(p => Person(p(0), p(1).trim.toInt)).toDF()
    
    people.registerTempTable("people")
    
    
    // SQL statements can be run by using the sql methods provided by sqlContext.
    
    val teenagers = sqlContext.sql("SELECT name, age FROM people WHERE age >= 13 AND age <= 19")
    
    // The results of SQL queries are DataFrames and support all the normal RDD operations.
    
    // The columns of a row in the result can be accessed by field index:
    
    teenagers.map(t => "Name: " + t(0)).collect().foreach(println)
    
    
    // or by field name:
    teenagers.map(t => "Name: " + t.getAs[String]("name")).collect().foreach(println)
    
    // row.getValuesMap[T] retrieves multiple columns at once into a Map[String, T]
    teenagers.map(_.getValuesMap[Any](List("name", "age"))).collect().foreach(println)
    // Map("name" -> "Justin", "age" -> 19)
    
    </div>
    
    <div data-lang="java"  markdown="1">
    
    
    Spark SQL supports automatically converting an RDD of [JavaBeans](http://stackoverflow.com/questions/3295496/what-is-a-javabean-exactly)
    
    into a DataFrame. The BeanInfo, obtained using reflection, defines the schema of the table.
    
    Currently, Spark SQL does not support JavaBeans that contain
    
    nested or contain complex types such as Lists or Arrays. You can create a JavaBean by creating a
    
    class that implements Serializable and has getters and setters for all of its fields.
    
    {% highlight java %}
    
    public static class Person implements Serializable {
      private String name;
      private int age;
    
    
      public String getName() {
    
      public void setName(String name) {
    
      public int getAge() {
    
      public void setAge(int age) {
    
    A schema can be applied to an existing RDD by calling `createDataFrame` and providing the Class object
    
    for the JavaBean.
    
    {% highlight java %}
    
    // sc is an existing JavaSparkContext.
    
    SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc);
    
    
    // Load a text file and convert each line to a JavaBean.
    
    JavaRDD<Person> people = sc.textFile("examples/src/main/resources/people.txt").map(
    
      new Function<String, Person>() {
        public Person call(String line) throws Exception {
          String[] parts = line.split(",");
    
          Person person = new Person();
          person.setName(parts[0]);
          person.setAge(Integer.parseInt(parts[1].trim()));
    
          return person;
        }
      });
    
    // Apply a schema to an RDD of JavaBeans and register it as a table.
    
    DataFrame schemaPeople = sqlContext.createDataFrame(people, Person.class);
    
    schemaPeople.registerTempTable("people");
    
    
    // SQL can be run over RDDs that have been registered as tables.
    
    DataFrame teenagers = sqlContext.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19")
    
    // The results of SQL queries are DataFrames and support all the normal RDD operations.
    
    // The columns of a row in the result can be accessed by ordinal.
    
    List<String> teenagerNames = teenagers.javaRDD().map(new Function<Row, String>() {
    
      public String call(Row row) {
        return "Name: " + row.getString(0);
      }
    }).collect();
    
    {% endhighlight %}
    
    </div>
    
    
    <div data-lang="python"  markdown="1">
    
    
    Spark SQL can convert an RDD of Row objects to a DataFrame, inferring the datatypes. Rows are constructed by passing a list of
    
    key/value pairs as kwargs to the Row class. The keys of this list define the column names of the table,
    
    and the types are inferred by looking at the first row. Since we currently only look at the first
    
    row, it is important that there is no missing data in the first row of the RDD. In future versions we
    
    plan to more completely infer the schema by looking at more data, similar to the inference that is
    performed on JSON files.
    
    
    {% highlight python %}
    
    # sc is an existing SparkContext.
    
    from pyspark.sql import SQLContext, Row
    
    # Load a text file and convert each line to a Row.
    
    lines = sc.textFile("examples/src/main/resources/people.txt")
    parts = lines.map(lambda l: l.split(","))
    
    people = parts.map(lambda p: Row(name=p[0], age=int(p[1])))
    
    # Infer the schema, and register the DataFrame as a table.
    
    schemaPeople = sqlContext.createDataFrame(people)
    
    schemaPeople.registerTempTable("people")
    
    # SQL can be run over DataFrames that have been registered as a table.
    
    teenagers = sqlContext.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19")
    
    
    # The results of SQL queries are RDDs and support all the normal RDD operations.
    teenNames = teenagers.map(lambda p: "Name: " + p.name)
    
    for teenName in teenNames.collect():
    
    {% endhighlight %}
    
    </div>
    
    
    ### Programmatically Specifying the Schema
    
    <div class="codetabs">
    
    <div data-lang="scala"  markdown="1">
    
    
    When case classes cannot be defined ahead of time (for example,
    the structure of records is encoded in a string, or a text dataset will be parsed
    
    and fields will be projected differently for different users),
    
    a `DataFrame` can be created programmatically with three steps.
    
    
    1. Create an RDD of `Row`s from the original RDD;
    2. Create the schema represented by a `StructType` matching the structure of
    
    `Row`s in the RDD created in Step 1.
    
    3. Apply the schema to the RDD of `Row`s via `createDataFrame` method provided
    
    by `SQLContext`.
    
    For example:
    {% highlight scala %}
    // sc is an existing SparkContext.
    val sqlContext = new org.apache.spark.sql.SQLContext(sc)
    
    // Create an RDD
    val people = sc.textFile("examples/src/main/resources/people.txt")
    
    // The schema is encoded in a string
    val schemaString = "name age"
    
    
    // Import Row.
    import org.apache.spark.sql.Row;
    
    // Import Spark SQL data types
    import org.apache.spark.sql.types.{StructType,StructField,StringType};
    
    
    // Generate the schema based on the string of schema
    val schema =
      StructType(
        schemaString.split(" ").map(fieldName => StructField(fieldName, StringType, true)))
    
    // Convert records of the RDD (people) to Rows.
    val rowRDD = people.map(_.split(",")).map(p => Row(p(0), p(1).trim))
    
    // Apply the schema to the RDD.
    
    val peopleDataFrame = sqlContext.createDataFrame(rowRDD, schema)
    
    // Register the DataFrames as a table.
    peopleDataFrame.registerTempTable("people")
    
    
    // SQL statements can be run by using the sql methods provided by sqlContext.
    val results = sqlContext.sql("SELECT name FROM people")
    
    
    // The results of SQL queries are DataFrames and support all the normal RDD operations.
    
    // The columns of a row in the result can be accessed by field index or by field name.
    
    results.map(t => "Name: " + t(0)).collect().foreach(println)
    {% endhighlight %}
    
    
    </div>
    
    <div data-lang="java"  markdown="1">
    
    
    When JavaBean classes cannot be defined ahead of time (for example,
    the structure of records is encoded in a string, or a text dataset will be parsed and
    
    fields will be projected differently for different users),
    
    a `DataFrame` can be created programmatically with three steps.
    
    
    1. Create an RDD of `Row`s from the original RDD;
    2. Create the schema represented by a `StructType` matching the structure of
    
    `Row`s in the RDD created in Step 1.
    
    3. Apply the schema to the RDD of `Row`s via `createDataFrame` method provided
    
    by `SQLContext`.
    
    
    For example:
    {% highlight java %}
    
    import org.apache.spark.api.java.function.Function;
    // Import factory methods provided by DataTypes.
    import org.apache.spark.sql.types.DataTypes;
    
    // Import StructType and StructField
    
    import org.apache.spark.sql.types.StructType;
    import org.apache.spark.sql.types.StructField;
    
    // Import Row.
    
    import org.apache.spark.sql.Row;
    
    // Import RowFactory.
    import org.apache.spark.sql.RowFactory;
    
    
    // sc is an existing JavaSparkContext.
    
    SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc);
    
    
    // Load a text file and convert each line to a JavaBean.
    JavaRDD<String> people = sc.textFile("examples/src/main/resources/people.txt");
    
    // The schema is encoded in a string
    String schemaString = "name age";
    
    // Generate the schema based on the string of schema
    List<StructField> fields = new ArrayList<StructField>();
    for (String fieldName: schemaString.split(" ")) {
    
      fields.add(DataTypes.createStructField(fieldName, DataTypes.StringType, true));
    
    StructType schema = DataTypes.createStructType(fields);
    
    
    // Convert records of the RDD (people) to Rows.
    JavaRDD<Row> rowRDD = people.map(
      new Function<String, Row>() {
        public Row call(String record) throws Exception {
          String[] fields = record.split(",");
    
          return RowFactory.create(fields[0], fields[1].trim());
    
        }
      });
    
    // Apply the schema to the RDD.
    
    DataFrame peopleDataFrame = sqlContext.createDataFrame(rowRDD, schema);
    
    // Register the DataFrame as a table.
    peopleDataFrame.registerTempTable("people");
    
    
    // SQL can be run over RDDs that have been registered as tables.
    
    DataFrame results = sqlContext.sql("SELECT name FROM people");
    
    // The results of SQL queries are DataFrames and support all the normal RDD operations.
    
    // The columns of a row in the result can be accessed by ordinal.
    
    List<String> names = results.javaRDD().map(new Function<Row, String>() {
    
      public String call(Row row) {
        return "Name: " + row.getString(0);
      }
    }).collect();
    
    {% endhighlight %}
    
    </div>
    
    <div data-lang="python"  markdown="1">
    
    
    When a dictionary of kwargs cannot be defined ahead of time (for example,
    the structure of records is encoded in a string, or a text dataset will be parsed and
    fields will be projected differently for different users),
    
    a `DataFrame` can be created programmatically with three steps.
    
    
    1. Create an RDD of tuples or lists from the original RDD;
    2. Create the schema represented by a `StructType` matching the structure of
    tuples or lists in the RDD created in the step 1.
    
    3. Apply the schema to the RDD via `createDataFrame` method provided by `SQLContext`.
    
    
    For example:
    {% highlight python %}
    # Import SQLContext and data types
    
    from pyspark.sql import SQLContext
    from pyspark.sql.types import *
    
    
    # sc is an existing SparkContext.
    sqlContext = SQLContext(sc)
    
    # Load a text file and convert each line to a tuple.
    lines = sc.textFile("examples/src/main/resources/people.txt")
    parts = lines.map(lambda l: l.split(","))
    people = parts.map(lambda p: (p[0], p[1].strip()))
    
    # The schema is encoded in a string.
    schemaString = "name age"
    
    fields = [StructField(field_name, StringType(), True) for field_name in schemaString.split()]
    schema = StructType(fields)
    
    # Apply the schema to the RDD.
    
    schemaPeople = sqlContext.createDataFrame(people, schema)
    
    # Register the DataFrame as a table.
    
    schemaPeople.registerTempTable("people")
    
    
    # SQL can be run over DataFrames that have been registered as a table.
    
    results = sqlContext.sql("SELECT name FROM people")
    
    # The results of SQL queries are RDDs and support all the normal RDD operations.
    names = results.map(lambda p: "Name: " + p.name)
    for name in names.collect():
    
    {% endhighlight %}
    
    </div>
    
    </div>
    
    
    # Data Sources
    
    Spark SQL supports operating on a variety of data sources through the `DataFrame` interface.
    A DataFrame can be operated on as normal RDDs and can also be registered as a temporary table.
    
    Registering a DataFrame as a table allows you to run SQL queries over its data. This section
    
    describes the general methods for loading and saving data using the Spark Data Sources and then
    goes into specific options that are available for the built-in data sources.
    
    ## Generic Load/Save Functions
    
    In the simplest form, the default data source (`parquet` unless otherwise configured by
    `spark.sql.sources.default`) will be used for all operations.
    
    <div class="codetabs">
    <div data-lang="scala"  markdown="1">
    
    {% highlight scala %}
    
    val df = sqlContext.read.load("examples/src/main/resources/users.parquet")
    df.select("name", "favorite_color").write.save("namesAndFavColors.parquet")
    
    {% endhighlight %}
    
    </div>
    
    <div data-lang="java"  markdown="1">
    
    {% highlight java %}
    
    
    DataFrame df = sqlContext.read().load("examples/src/main/resources/users.parquet");
    df.select("name", "favorite_color").write().save("namesAndFavColors.parquet");
    
    
    {% endhighlight %}
    
    </div>
    
    <div data-lang="python"  markdown="1">
    
    {% highlight python %}
    
    
    df = sqlContext.read.load("examples/src/main/resources/users.parquet")
    df.select("name", "favorite_color").write.save("namesAndFavColors.parquet")
    
    </div>
    
    <div data-lang="r"  markdown="1">
    
    {% highlight r %}
    df <- loadDF(sqlContext, "people.parquet")
    saveDF(select(df, "name", "age"), "namesAndAges.parquet")
    {% endhighlight %}
    
    
    </div>
    </div>
    
    ### Manually Specifying Options
    
    You can also manually specify the data source that will be used along with any extra options
    
    that you would like to pass to the data source. Data sources are specified by their fully qualified
    
    name (i.e., `org.apache.spark.sql.parquet`), but for built-in sources you can also use their short
    
    names (`json`, `parquet`, `jdbc`). DataFrames of any type can be converted into other types
    
    using this syntax.
    
    <div class="codetabs">
    <div data-lang="scala"  markdown="1">
    
    {% highlight scala %}
    
    val df = sqlContext.read.format("json").load("examples/src/main/resources/people.json")
    
    df.select("name", "age").write.format("parquet").save("namesAndAges.parquet")
    
    {% endhighlight %}
    
    </div>
    
    <div data-lang="java"  markdown="1">
    
    {% highlight java %}
    
    
    DataFrame df = sqlContext.read().format("json").load("examples/src/main/resources/people.json");
    df.select("name", "age").write().format("parquet").save("namesAndAges.parquet");
    
    
    {% endhighlight %}
    
    </div>
    
    <div data-lang="python"  markdown="1">
    
    {% highlight python %}
    
    
    df = sqlContext.read.load("examples/src/main/resources/people.json", format="json")
    df.select("name", "age").write.save("namesAndAges.parquet", format="parquet")
    
    </div>
    <div data-lang="r"  markdown="1">
    
    {% highlight r %}
    
    df <- loadDF(sqlContext, "people.json", "json")
    saveDF(select(df, "name", "age"), "namesAndAges.parquet", "parquet")
    
    {% endhighlight %}
    
    
    ### Run SQL on files directly
    
    Instead of using read API to load a file into DataFrame and query it, you can also query that
    file directly with SQL.
    
    <div class="codetabs">
    <div data-lang="scala"  markdown="1">
    
    {% highlight scala %}
    val df = sqlContext.sql("SELECT * FROM parquet.`examples/src/main/resources/users.parquet`")
    {% endhighlight %}
    
    </div>
    
    <div data-lang="java"  markdown="1">
    
    {% highlight java %}
    DataFrame df = sqlContext.sql("SELECT * FROM parquet.`examples/src/main/resources/users.parquet`");
    {% endhighlight %}
    </div>
    
    <div data-lang="python"  markdown="1">
    
    {% highlight python %}
    df = sqlContext.sql("SELECT * FROM parquet.`examples/src/main/resources/users.parquet`")
    {% endhighlight %}
    
    </div>
    
    <div data-lang="r"  markdown="1">
    
    {% highlight r %}
    df <- sql(sqlContext, "SELECT * FROM parquet.`examples/src/main/resources/users.parquet`")
    {% endhighlight %}
    
    </div>
    </div>
    
    
    ### Save Modes
    
    Save operations can optionally take a `SaveMode`, that specifies how to handle existing data if
    
    present. It is important to realize that these save modes do not utilize any locking and are not
    atomic. Additionally, when performing a `Overwrite`, the data will be deleted before writing out the