Skip to content
Snippets Groups Projects
sql-programming-guide.md 87.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • displayTitle: Spark SQL and DataFrame Guide
    title: Spark SQL and DataFrames
    
    ---
    
    * This will become a table of contents (this text will be scraped).
    {:toc}
    
    # Overview
    
    Spark SQL is a Spark module for structured data processing. It provides a programming abstraction called DataFrames and can also act as distributed SQL query engine.
    
    For how to enable Hive support, please refer to the [Hive Tables](#hive-tables) section.
    
    A DataFrame is a distributed collection of data organized into named columns. It is conceptually equivalent to a table in a relational database or a data frame in R/Python, but with richer optimizations under the hood. DataFrames can be constructed from a wide array of sources such as: structured data files, tables in Hive, external databases, or existing RDDs.
    
    The DataFrame API is available in [Scala](api/scala/index.html#org.apache.spark.sql.DataFrame), [Java](api/java/index.html?org/apache/spark/sql/DataFrame.html), [Python](api/python/pyspark.sql.html#pyspark.sql.DataFrame), and [R](api/R/index.html).
    
    All of the examples on this page use sample data included in the Spark distribution and can be run in the `spark-shell`, `pyspark` shell, or `sparkR` shell.
    
    ## Starting Point: `SQLContext`
    
    <div class="codetabs">
    <div data-lang="scala"  markdown="1">
    
    
    The entry point into all functionality in Spark SQL is the
    
    [`SQLContext`](api/scala/index.html#org.apache.spark.sql.`SQLContext`) class, or one of its
    descendants.  To create a basic `SQLContext`, all you need is a SparkContext.
    
    
    {% highlight scala %}
    val sc: SparkContext // An existing SparkContext.
    val sqlContext = new org.apache.spark.sql.SQLContext(sc)
    
    
    // this is used to implicitly convert an RDD to a DataFrame.
    import sqlContext.implicits._
    
    <div data-lang="java" markdown="1">
    
    The entry point into all functionality in Spark SQL is the
    
    [`SQLContext`](api/java/index.html#org.apache.spark.sql.SQLContext) class, or one of its
    descendants.  To create a basic `SQLContext`, all you need is a SparkContext.
    
    
    {% highlight java %}
    
    JavaSparkContext sc = ...; // An existing JavaSparkContext.
    
    SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc);
    
    <div data-lang="python"  markdown="1">
    
    The entry point into all relational functionality in Spark is the
    
    [`SQLContext`](api/python/pyspark.sql.html#pyspark.sql.SQLContext) class, or one
    
    of its decedents.  To create a basic `SQLContext`, all you need is a SparkContext.
    
    
    {% highlight python %}
    from pyspark.sql import SQLContext
    
    {% endhighlight %}
    
    
    </div>
    
    <div data-lang="r"  markdown="1">
    
    The entry point into all relational functionality in Spark is the
    `SQLContext` class, or one of its decedents.  To create a basic `SQLContext`, all you need is a SparkContext.
    
    {% highlight r %}
    sqlContext <- sparkRSQL.init(sc)
    {% endhighlight %}
    
    
    In addition to the basic `SQLContext`, you can also create a `HiveContext`, which provides a
    superset of the functionality provided by the basic `SQLContext`. Additional features include
    
    the ability to write queries using the more complete HiveQL parser, access to Hive UDFs, and the
    
    ability to read data from Hive tables.  To use a `HiveContext`, you do not need to have an
    existing Hive setup, and all of the data sources available to a `SQLContext` are still available.
    `HiveContext` is only packaged separately to avoid including all of Hive's dependencies in the default
    Spark build.  If these dependencies are not a problem for your application then using `HiveContext`
    is recommended for the 1.3 release of Spark.  Future releases will focus on bringing `SQLContext` up
    to feature parity with a `HiveContext`.
    
    The specific variant of SQL that is used to parse queries can also be selected using the
    
    `spark.sql.dialect` option.  This parameter can be changed using either the `setConf` method on
    
    a `SQLContext` or by using a `SET key=value` command in SQL.  For a `SQLContext`, the only dialect
    available is "sql" which uses a simple SQL parser provided by Spark SQL.  In a `HiveContext`, the
    
    default is "hiveql", though "sql" is also available.  Since the HiveQL parser is much more complete,
    
    this is recommended for most use cases.
    
    ## Creating DataFrames
    
    With a `SQLContext`, applications can create `DataFrame`s from an <a href='#interoperating-with-rdds'>existing `RDD`</a>, from a Hive table, or from <a href='#data-sources'>data sources</a>.
    
    As an example, the following creates a `DataFrame` based on the content of a JSON file:
    
    <div class="codetabs">
    <div data-lang="scala"  markdown="1">
    {% highlight scala %}
    val sc: SparkContext // An existing SparkContext.
    val sqlContext = new org.apache.spark.sql.SQLContext(sc)
    
    val df = sqlContext.jsonFile("examples/src/main/resources/people.json")
    
    // Displays the content of the DataFrame to stdout
    
    {% endhighlight %}
    
    </div>
    
    <div data-lang="java" markdown="1">
    {% highlight java %}
    JavaSparkContext sc = ...; // An existing JavaSparkContext.
    SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc);
    
    DataFrame df = sqlContext.jsonFile("examples/src/main/resources/people.json");
    
    // Displays the content of the DataFrame to stdout
    df.show();
    {% endhighlight %}
    
    </div>
    
    <div data-lang="python"  markdown="1">
    {% highlight python %}
    from pyspark.sql import SQLContext
    sqlContext = SQLContext(sc)
    
    df = sqlContext.jsonFile("examples/src/main/resources/people.json")
    
    # Displays the content of the DataFrame to stdout
    df.show()
    {% endhighlight %}
    
    </div>
    
    
    <div data-lang="r"  markdown="1">
    {% highlight r %}
    sqlContext <- SQLContext(sc)
    
    df <- jsonFile(sqlContext, "examples/src/main/resources/people.json")
    
    # Displays the content of the DataFrame to stdout
    showDF(df)
    {% endhighlight %}
    
    </div>
    
    
    </div>
    
    
    ## DataFrame Operations
    
    DataFrames provide a domain-specific language for structured data manipulation in [Scala](api/scala/index.html#org.apache.spark.sql.DataFrame), [Java](api/java/index.html?org/apache/spark/sql/DataFrame.html), and [Python](api/python/pyspark.sql.html#pyspark.sql.DataFrame).
    
    Here we include some basic examples of structured data processing using DataFrames:
    
    <div class="codetabs">
    <div data-lang="scala"  markdown="1">
    {% highlight scala %}
    val sc: SparkContext // An existing SparkContext.
    val sqlContext = new org.apache.spark.sql.SQLContext(sc)
    
    // Create the DataFrame
    val df = sqlContext.jsonFile("examples/src/main/resources/people.json")
    
    // Show the content of the DataFrame
    df.show()
    
    
    // Print the schema in a tree format
    df.printSchema()
    // root
    // |-- age: long (nullable = true)
    // |-- name: string (nullable = true)
    
    // Select only the "name" column
    df.select("name").show()
    
    
    // Select everybody, but increment the age by 1
    
    df.select(df("name"), df("age") + 1).show()
    
    df.filter(df("age") > 21).show()
    
    // age name
    // 30  Andy
    
    // Count people by age
    df.groupBy("age").count().show()
    // age  count
    // null 1
    // 19   1
    // 30   1
    {% endhighlight %}
    
    </div>
    
    <div data-lang="java" markdown="1">
    {% highlight java %}
    
    JavaSparkContext sc // An existing SparkContext.
    SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc)
    
    
    // Create the DataFrame
    DataFrame df = sqlContext.jsonFile("examples/src/main/resources/people.json");
    
    // Show the content of the DataFrame
    df.show();
    
    
    // Print the schema in a tree format
    df.printSchema();
    // root
    // |-- age: long (nullable = true)
    // |-- name: string (nullable = true)
    
    // Select only the "name" column
    df.select("name").show();
    
    
    // Select everybody, but increment the age by 1
    
    df.select(df.col("name"), df.col("age").plus(1)).show();
    
    df.filter(df.col("age").gt(21)).show();
    
    // age name
    // 30  Andy
    
    // Count people by age
    df.groupBy("age").count().show();
    // age  count
    // null 1
    // 19   1
    // 30   1
    {% endhighlight %}
    
    </div>
    
    <div data-lang="python"  markdown="1">
    
    In Python it's possible to access a DataFrame's columns either by attribute
    (`df.age`) or by indexing (`df['age']`). While the former is convenient for
    interactive data exploration, users are highly encouraged to use the
    latter form, which is future proof and won't break with column names that
    are also attributes on the DataFrame class.
    
    
    {% highlight python %}
    from pyspark.sql import SQLContext
    sqlContext = SQLContext(sc)
    
    # Create the DataFrame
    df = sqlContext.jsonFile("examples/src/main/resources/people.json")
    
    # Show the content of the DataFrame
    df.show()
    
    
    # Print the schema in a tree format
    df.printSchema()
    ## root
    ## |-- age: long (nullable = true)
    ## |-- name: string (nullable = true)
    
    # Select only the "name" column
    df.select("name").show()
    
    
    # Select everybody, but increment the age by 1
    
    ## age name
    ## 30  Andy
    
    # Count people by age
    df.groupBy("age").count().show()
    ## age  count
    ## null 1
    ## 19   1
    ## 30   1
    
    {% endhighlight %}
    
    </div>
    
    
    <div data-lang="r"  markdown="1">
    {% highlight r %}
    sqlContext <- sparkRSQL.init(sc)
    
    # Create the DataFrame
    df <- jsonFile(sqlContext, "examples/src/main/resources/people.json")
    
    # Show the content of the DataFrame
    showDF(df)
    ## age  name
    ## null Michael
    ## 30   Andy
    ## 19   Justin
    
    # Print the schema in a tree format
    printSchema(df)
    ## root
    ## |-- age: long (nullable = true)
    ## |-- name: string (nullable = true)
    
    # Select only the "name" column
    showDF(select(df, "name"))
    ## name
    ## Michael
    ## Andy
    ## Justin
    
    # Select everybody, but increment the age by 1
    showDF(select(df, df$name, df$age + 1))
    ## name    (age + 1)
    ## Michael null
    ## Andy    31
    ## Justin  20
    
    # Select people older than 21
    showDF(where(df, df$age > 21))
    ## age name
    ## 30  Andy
    
    # Count people by age
    showDF(count(groupBy(df, "age")))
    ## age  count
    ## null 1
    ## 19   1
    ## 30   1
    
    {% endhighlight %}
    
    </div>
    
    
    </div>
    
    
    ## Running SQL Queries Programmatically
    
    The `sql` function on a `SQLContext` enables applications to run SQL queries programmatically and returns the result as a `DataFrame`.
    
    <div class="codetabs">
    <div data-lang="scala"  markdown="1">
    {% highlight scala %}
    val sqlContext = ...  // An existing SQLContext
    val df = sqlContext.sql("SELECT * FROM table")
    {% endhighlight %}
    </div>
    
    <div data-lang="java" markdown="1">
    {% highlight java %}
    
    SQLContext sqlContext = ...  // An existing SQLContext
    DataFrame df = sqlContext.sql("SELECT * FROM table")
    
    {% endhighlight %}
    </div>
    
    <div data-lang="python"  markdown="1">
    {% highlight python %}
    from pyspark.sql import SQLContext
    sqlContext = SQLContext(sc)
    df = sqlContext.sql("SELECT * FROM table")
    {% endhighlight %}
    </div>
    
    
    <div data-lang="r"  markdown="1">
    {% highlight r %}
    sqlContext <- sparkRSQL.init(sc)
    df <- sql(sqlContext, "SELECT * FROM table")
    {% endhighlight %}
    </div>
    
    
    Spark SQL supports two different methods for converting existing RDDs into DataFrames.  The first
    
    method uses reflection to infer the schema of an RDD that contains specific types of objects.  This
    
    reflection based approach leads to more concise code and works well when you already know the schema
    
    while writing your Spark application.
    
    The second method for creating DataFrames is through a programmatic interface that allows you to
    
    construct a schema and then apply it to an existing RDD.  While this method is more verbose, it allows
    
    you to construct DataFrames when the columns and their types are not known until runtime.
    
    ### Inferring the Schema Using Reflection
    
    <div class="codetabs">
    
    <div data-lang="scala"  markdown="1">
    
    
    The Scala interface for Spark SQL supports automatically converting an RDD containing case classes
    
    to a DataFrame.  The case class
    
    defines the schema of the table.  The names of the arguments to the case class are read using
    reflection and become the names of the columns. Case classes can also be nested or contain complex
    
    types such as Sequences or Arrays. This RDD can be implicitly converted to a DataFrame and then be
    
    registered as a table.  Tables can be used in subsequent SQL statements.
    
    // sc is an existing SparkContext.
    
    val sqlContext = new org.apache.spark.sql.SQLContext(sc)
    
    // this is used to implicitly convert an RDD to a DataFrame.
    import sqlContext.implicits._
    
    
    // Define the schema using a case class.
    
    // Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit,
    
    // you can use custom classes that implement the Product interface.
    
    case class Person(name: String, age: Int)
    
    // Create an RDD of Person objects and register it as a table.
    
    val people = sc.textFile("examples/src/main/resources/people.txt").map(_.split(",")).map(p => Person(p(0), p(1).trim.toInt)).toDF()
    
    people.registerTempTable("people")
    
    
    // SQL statements can be run by using the sql methods provided by sqlContext.
    
    val teenagers = sqlContext.sql("SELECT name, age FROM people WHERE age >= 13 AND age <= 19")
    
    // The results of SQL queries are DataFrames and support all the normal RDD operations.
    
    // The columns of a row in the result can be accessed by field index:
    
    teenagers.map(t => "Name: " + t(0)).collect().foreach(println)
    
    
    // or by field name:
    teenagers.map(t => "Name: " + t.getAs[String]("name")).collect().foreach(println)
    
    // row.getValuesMap[T] retrieves multiple columns at once into a Map[String, T]
    teenagers.map(_.getValuesMap[Any](List("name", "age"))).collect().foreach(println)
    // Map("name" -> "Justin", "age" -> 19)
    
    </div>
    
    <div data-lang="java"  markdown="1">
    
    
    Spark SQL supports automatically converting an RDD of [JavaBeans](http://stackoverflow.com/questions/3295496/what-is-a-javabean-exactly)
    
    into a DataFrame.  The BeanInfo, obtained using reflection, defines the schema of the table.
    
    Currently, Spark SQL does not support JavaBeans that contain
    
    nested or contain complex types such as Lists or Arrays.  You can create a JavaBean by creating a
    class that implements Serializable and has getters and setters for all of its fields.
    
    {% highlight java %}
    
    public static class Person implements Serializable {
      private String name;
      private int age;
    
    
      public String getName() {
    
      public void setName(String name) {
    
      public int getAge() {
    
      public void setAge(int age) {
    
    A schema can be applied to an existing RDD by calling `createDataFrame` and providing the Class object
    
    for the JavaBean.
    
    {% highlight java %}
    
    // sc is an existing JavaSparkContext.
    
    SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc);
    
    
    // Load a text file and convert each line to a JavaBean.
    
    JavaRDD<Person> people = sc.textFile("examples/src/main/resources/people.txt").map(
    
      new Function<String, Person>() {
        public Person call(String line) throws Exception {
          String[] parts = line.split(",");
    
          Person person = new Person();
          person.setName(parts[0]);
          person.setAge(Integer.parseInt(parts[1].trim()));
    
          return person;
        }
      });
    
    // Apply a schema to an RDD of JavaBeans and register it as a table.
    
    DataFrame schemaPeople = sqlContext.createDataFrame(people, Person.class);
    
    schemaPeople.registerTempTable("people");
    
    
    // SQL can be run over RDDs that have been registered as tables.
    
    DataFrame teenagers = sqlContext.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19")
    
    // The results of SQL queries are DataFrames and support all the normal RDD operations.
    
    // The columns of a row in the result can be accessed by ordinal.
    
    List<String> teenagerNames = teenagers.javaRDD().map(new Function<Row, String>() {
    
      public String call(Row row) {
        return "Name: " + row.getString(0);
      }
    }).collect();
    
    {% endhighlight %}
    
    </div>
    
    
    <div data-lang="python"  markdown="1">
    
    
    Spark SQL can convert an RDD of Row objects to a DataFrame, inferring the datatypes.  Rows are constructed by passing a list of
    
    key/value pairs as kwargs to the Row class. The keys of this list define the column names of the table,
    
    and the types are inferred by looking at the first row.  Since we currently only look at the first
    
    row, it is important that there is no missing data in the first row of the RDD. In future versions we
    
    plan to more completely infer the schema by looking at more data, similar to the inference that is
    performed on JSON files.
    
    
    {% highlight python %}
    
    # sc is an existing SparkContext.
    
    from pyspark.sql import SQLContext, Row
    
    # Load a text file and convert each line to a Row.
    
    lines = sc.textFile("examples/src/main/resources/people.txt")
    parts = lines.map(lambda l: l.split(","))
    
    people = parts.map(lambda p: Row(name=p[0], age=int(p[1])))
    
    # Infer the schema, and register the DataFrame as a table.
    
    schemaPeople = sqlContext.createDataFrame(people)
    
    schemaPeople.registerTempTable("people")
    
    # SQL can be run over DataFrames that have been registered as a table.
    
    teenagers = sqlContext.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19")
    
    
    # The results of SQL queries are RDDs and support all the normal RDD operations.
    teenNames = teenagers.map(lambda p: "Name: " + p.name)
    
    for teenName in teenNames.collect():
      print teenName
    
    {% endhighlight %}
    
    </div>
    
    
    ### Programmatically Specifying the Schema
    
    <div class="codetabs">
    
    <div data-lang="scala"  markdown="1">
    
    
    When case classes cannot be defined ahead of time (for example,
    the structure of records is encoded in a string, or a text dataset will be parsed
    
    and fields will be projected differently for different users),
    
    a `DataFrame` can be created programmatically with three steps.
    
    
    1. Create an RDD of `Row`s from the original RDD;
    2. Create the schema represented by a `StructType` matching the structure of
    
    `Row`s in the RDD created in Step 1.
    
    3. Apply the schema to the RDD of `Row`s via `createDataFrame` method provided
    
    by `SQLContext`.
    
    For example:
    {% highlight scala %}
    // sc is an existing SparkContext.
    val sqlContext = new org.apache.spark.sql.SQLContext(sc)
    
    // Create an RDD
    val people = sc.textFile("examples/src/main/resources/people.txt")
    
    // The schema is encoded in a string
    val schemaString = "name age"
    
    
    // Import Row.
    import org.apache.spark.sql.Row;
    
    // Import Spark SQL data types
    import org.apache.spark.sql.types.{StructType,StructField,StringType};
    
    
    // Generate the schema based on the string of schema
    val schema =
      StructType(
        schemaString.split(" ").map(fieldName => StructField(fieldName, StringType, true)))
    
    // Convert records of the RDD (people) to Rows.
    val rowRDD = people.map(_.split(",")).map(p => Row(p(0), p(1).trim))
    
    // Apply the schema to the RDD.
    
    val peopleDataFrame = sqlContext.createDataFrame(rowRDD, schema)
    
    // Register the DataFrames as a table.
    peopleDataFrame.registerTempTable("people")
    
    
    // SQL statements can be run by using the sql methods provided by sqlContext.
    val results = sqlContext.sql("SELECT name FROM people")
    
    
    // The results of SQL queries are DataFrames and support all the normal RDD operations.
    
    // The columns of a row in the result can be accessed by field index or by field name.
    
    results.map(t => "Name: " + t(0)).collect().foreach(println)
    {% endhighlight %}
    
    
    </div>
    
    <div data-lang="java"  markdown="1">
    
    
    When JavaBean classes cannot be defined ahead of time (for example,
    the structure of records is encoded in a string, or a text dataset will be parsed and
    
    fields will be projected differently for different users),
    
    a `DataFrame` can be created programmatically with three steps.
    
    
    1. Create an RDD of `Row`s from the original RDD;
    2. Create the schema represented by a `StructType` matching the structure of
    
    `Row`s in the RDD created in Step 1.
    
    3. Apply the schema to the RDD of `Row`s via `createDataFrame` method provided
    
    by `SQLContext`.
    
    
    For example:
    {% highlight java %}
    
    import org.apache.spark.api.java.function.Function;
    // Import factory methods provided by DataTypes.
    import org.apache.spark.sql.types.DataTypes;
    
    // Import StructType and StructField
    
    import org.apache.spark.sql.types.StructType;
    import org.apache.spark.sql.types.StructField;
    
    // Import Row.
    
    import org.apache.spark.sql.Row;
    
    // Import RowFactory.
    import org.apache.spark.sql.RowFactory;
    
    
    // sc is an existing JavaSparkContext.
    
    SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc);
    
    
    // Load a text file and convert each line to a JavaBean.
    JavaRDD<String> people = sc.textFile("examples/src/main/resources/people.txt");
    
    // The schema is encoded in a string
    String schemaString = "name age";
    
    // Generate the schema based on the string of schema
    List<StructField> fields = new ArrayList<StructField>();
    for (String fieldName: schemaString.split(" ")) {
    
      fields.add(DataTypes.createStructField(fieldName, DataTypes.StringType, true));
    
    StructType schema = DataTypes.createStructType(fields);
    
    
    // Convert records of the RDD (people) to Rows.
    JavaRDD<Row> rowRDD = people.map(
      new Function<String, Row>() {
        public Row call(String record) throws Exception {
          String[] fields = record.split(",");
    
          return RowFactory.create(fields[0], fields[1].trim());
    
        }
      });
    
    // Apply the schema to the RDD.
    
    DataFrame peopleDataFrame = sqlContext.createDataFrame(rowRDD, schema);
    
    // Register the DataFrame as a table.
    peopleDataFrame.registerTempTable("people");
    
    
    // SQL can be run over RDDs that have been registered as tables.
    
    DataFrame results = sqlContext.sql("SELECT name FROM people");
    
    // The results of SQL queries are DataFrames and support all the normal RDD operations.
    
    // The columns of a row in the result can be accessed by ordinal.
    
    List<String> names = results.javaRDD().map(new Function<Row, String>() {
    
      public String call(Row row) {
        return "Name: " + row.getString(0);
      }
    }).collect();
    
    {% endhighlight %}
    
    </div>
    
    <div data-lang="python"  markdown="1">
    
    
    When a dictionary of kwargs cannot be defined ahead of time (for example,
    the structure of records is encoded in a string, or a text dataset will be parsed and
    fields will be projected differently for different users),
    
    a `DataFrame` can be created programmatically with three steps.
    
    
    1. Create an RDD of tuples or lists from the original RDD;
    2. Create the schema represented by a `StructType` matching the structure of
    tuples or lists in the RDD created in the step 1.
    
    3. Apply the schema to the RDD via `createDataFrame` method provided by `SQLContext`.
    
    
    For example:
    {% highlight python %}
    # Import SQLContext and data types
    
    from pyspark.sql import SQLContext
    from pyspark.sql.types import *
    
    
    # sc is an existing SparkContext.
    sqlContext = SQLContext(sc)
    
    # Load a text file and convert each line to a tuple.
    lines = sc.textFile("examples/src/main/resources/people.txt")
    parts = lines.map(lambda l: l.split(","))
    people = parts.map(lambda p: (p[0], p[1].strip()))
    
    # The schema is encoded in a string.
    schemaString = "name age"
    
    fields = [StructField(field_name, StringType(), True) for field_name in schemaString.split()]
    schema = StructType(fields)
    
    # Apply the schema to the RDD.
    
    schemaPeople = sqlContext.createDataFrame(people, schema)
    
    # Register the DataFrame as a table.
    
    schemaPeople.registerTempTable("people")
    
    
    # SQL can be run over DataFrames that have been registered as a table.
    
    results = sqlContext.sql("SELECT name FROM people")
    
    # The results of SQL queries are RDDs and support all the normal RDD operations.
    names = results.map(lambda p: "Name: " + p.name)
    for name in names.collect():
      print name
    {% endhighlight %}
    
    </div>
    
    </div>
    
    
    # Data Sources
    
    Spark SQL supports operating on a variety of data sources through the `DataFrame` interface.
    A DataFrame can be operated on as normal RDDs and can also be registered as a temporary table.
    Registering a DataFrame as a table allows you to run SQL queries over its data.  This section
    
    describes the general methods for loading and saving data using the Spark Data Sources and then
    goes into specific options that are available for the built-in data sources.
    
    ## Generic Load/Save Functions
    
    In the simplest form, the default data source (`parquet` unless otherwise configured by
    `spark.sql.sources.default`) will be used for all operations.
    
    <div class="codetabs">
    <div data-lang="scala"  markdown="1">
    
    {% highlight scala %}
    
    val df = sqlContext.load("examples/src/main/resources/users.parquet")
    df.select("name", "favorite_color").save("namesAndFavColors.parquet")
    
    {% endhighlight %}
    
    </div>
    
    <div data-lang="java"  markdown="1">
    
    {% highlight java %}
    
    
    DataFrame df = sqlContext.load("examples/src/main/resources/users.parquet");
    df.select("name", "favorite_color").save("namesAndFavColors.parquet");
    
    
    {% endhighlight %}
    
    </div>
    
    <div data-lang="python"  markdown="1">
    
    {% highlight python %}
    
    
    df = sqlContext.load("examples/src/main/resources/users.parquet")
    df.select("name", "favorite_color").save("namesAndFavColors.parquet")
    
    </div>
    
    <div data-lang="r"  markdown="1">
    
    {% highlight r %}
    df <- loadDF(sqlContext, "people.parquet")
    saveDF(select(df, "name", "age"), "namesAndAges.parquet")
    {% endhighlight %}
    
    
    </div>
    </div>
    
    ### Manually Specifying Options
    
    You can also manually specify the data source that will be used along with any extra options
    that you would like to pass to the data source.  Data sources are specified by their fully qualified
    name (i.e., `org.apache.spark.sql.parquet`), but for built-in sources you can also use the shorted
    name (`json`, `parquet`, `jdbc`).  DataFrames of any type can be converted into other types
    using this syntax.
    
    <div class="codetabs">
    <div data-lang="scala"  markdown="1">
    
    {% highlight scala %}
    
    val df = sqlContext.load("examples/src/main/resources/people.json", "json")
    
    df.select("name", "age").save("namesAndAges.parquet", "parquet")
    {% endhighlight %}
    
    </div>
    
    <div data-lang="java"  markdown="1">
    
    {% highlight java %}
    
    
    DataFrame df = sqlContext.load("examples/src/main/resources/people.json", "json");
    
    df.select("name", "age").save("namesAndAges.parquet", "parquet");
    
    {% endhighlight %}
    
    </div>
    
    <div data-lang="python"  markdown="1">
    
    {% highlight python %}
    
    
    df = sqlContext.load("examples/src/main/resources/people.json", "json")
    
    df.select("name", "age").save("namesAndAges.parquet", "parquet")
    
    {% endhighlight %}
    
    
    </div>
    <div data-lang="r"  markdown="1">
    
    {% highlight r %}
    
    df <- loadDF(sqlContext, "people.json", "json")
    saveDF(select(df, "name", "age"), "namesAndAges.parquet", "parquet")
    
    {% endhighlight %}
    
    
    </div>
    </div>
    
    ### Save Modes
    
    Save operations can optionally take a `SaveMode`, that specifies how to handle existing data if
    present.  It is important to realize that these save modes do not utilize any locking and are not
    atomic.  Thus, it is not safe to have multiple writers attempting to write to the same location.
    Additionally, when performing a `Overwrite`, the data will be deleted before writing out the
    new data.
    
    <table class="table">
    <tr><th>Scala/Java</th><th>Python</th><th>Meaning</th></tr>
    <tr>
      <td><code>SaveMode.ErrorIfExists</code> (default)</td>
      <td><code>"error"</code> (default)</td>
      <td>
        When saving a DataFrame to a data source, if data already exists,
        an exception is expected to be thrown.
      </td>
    </tr>
    <tr>
      <td><code>SaveMode.Append</code></td>
      <td><code>"append"</code></td>
      <td>
        When saving a DataFrame to a data source, if data/table already exists,
        contents of the DataFrame are expected to be appended to existing data.
      </td>
    </tr>
    <tr>
      <td><code>SaveMode.Overwrite</code></td>
      <td><code>"overwrite"</code></td>
      <td>
        Overwrite mode means that when saving a DataFrame to a data source,
        if data/table already exists, existing data is expected to be overwritten by the contents of
        the DataFrame.
      </td>
    </tr>
    <tr>
      <td><code>SaveMode.Ignore</code></td>
      <td><code>"ignore"</code></td>
      <td>
        Ignore mode means that when saving a DataFrame to a data source, if data already exists,
        the save operation is expected to not save the contents of the DataFrame and to not
    
        change the existing data.  This is similar to a <code>CREATE TABLE IF NOT EXISTS</code> in SQL.
    
      </td>
    </tr>
    </table>
    
    ### Saving to Persistent Tables
    
    When working with a `HiveContext`, `DataFrames` can also be saved as persistent tables using the
    `saveAsTable` command.  Unlike the `registerTempTable` command, `saveAsTable` will materialize the
    contents of the dataframe and create a pointer to the data in the HiveMetastore.  Persistent tables
    will still exist even after your Spark program has restarted, as long as you maintain your connection
    to the same metastore.  A DataFrame for a persistent table can be created by calling the `table`
    
    method on a `SQLContext` with the name of the table.
    
    
    By default `saveAsTable` will create a "managed table", meaning that the location of the data will
    be controlled by the metastore.  Managed tables will also have their data deleted automatically
    when a table is dropped.
    
    [Parquet](http://parquet.io) is a columnar format that is supported by many other data processing systems.
    Spark SQL provides support for both reading and writing Parquet files that automatically preserves the schema
    
    of the original data.
    
    
    ### Loading Data Programmatically
    
    Using the data from the above example:
    
    <div class="codetabs">
    
    <div data-lang="scala"  markdown="1">
    
    
    // sqlContext from the previous example is used in this example.
    
    // This is used to implicitly convert an RDD to a DataFrame.
    import sqlContext.implicits._
    
    val people: RDD[Person] = ... // An RDD of case class objects, from the previous example.
    
    // The RDD is implicitly converted to a DataFrame by implicits, allowing it to be stored using Parquet.
    
    people.saveAsParquetFile("people.parquet")
    
    // Read in the parquet file created above.  Parquet files are self-describing so the schema is preserved.
    
    // The result of loading a Parquet file is also a DataFrame.
    
    val parquetFile = sqlContext.parquetFile("people.parquet")
    
    //Parquet files can also be registered as tables and then used in SQL statements.
    
    parquetFile.registerTempTable("parquetFile")
    
    val teenagers = sqlContext.sql("SELECT name FROM parquetFile WHERE age >= 13 AND age <= 19")
    teenagers.map(t => "Name: " + t(0)).collect().foreach(println)
    
    </div>
    
    <div data-lang="java"  markdown="1">
    
    {% highlight java %}
    
    // sqlContext from the previous example is used in this example.
    
    DataFrame schemaPeople = ... // The DataFrame from the previous example.
    
    // DataFrames can be saved as Parquet files, maintaining the schema information.
    
    schemaPeople.saveAsParquetFile("people.parquet");
    
    
    // Read in the Parquet file created above.  Parquet files are self-describing so the schema is preserved.
    
    // The result of loading a parquet file is also a DataFrame.
    DataFrame parquetFile = sqlContext.parquetFile("people.parquet");
    
    
    //Parquet files can also be registered as tables and then used in SQL statements.
    
    parquetFile.registerTempTable("parquetFile");
    
    DataFrame teenagers = sqlContext.sql("SELECT name FROM parquetFile WHERE age >= 13 AND age <= 19");
    
    List<String> teenagerNames = teenagers.javaRDD().map(new Function<Row, String>() {
    
      public String call(Row row) {
        return "Name: " + row.getString(0);
      }
    }).collect();
    
    {% endhighlight %}
    
    </div>
    
    <div data-lang="python"  markdown="1">
    
    {% highlight python %}
    
    # sqlContext from the previous example is used in this example.
    
    schemaPeople # The DataFrame from the previous example.
    
    # DataFrames can be saved as Parquet files, maintaining the schema information.
    
    schemaPeople.saveAsParquetFile("people.parquet")
    
    # Read in the Parquet file created above.  Parquet files are self-describing so the schema is preserved.