Newer
Older
#!/usr/bin/env python3
import itertools
import json
import matplotlib.pyplot as plt
import traceback
from typing import Dict, Hashable, List, Tuple
import numpy as np
import z3
from dtree_learner import DTreeLearner as Learner
from dtree_teacher_gem_stanley import DTreeGEMStanleyGurobiTeacher as Teacher
def load_examples(file_name: str, spec) -> Tuple[List[Tuple[float, ...]], List[Tuple[float, ...]]]:
print("Loading examples")
with open(file_name, "rb") as pickle_file_io:
pkl_data = pickle.load(pickle_file_io)
truth_samples_seq = pkl_data["truth_samples"]
# Convert from sampled states and percepts to positive and negative examples for learning
pos_exs, neg_exs, num_excl_exs = [], [], 0
for _, ss in truth_samples_seq:
for s in ss:
pos_exs.append(s)
else:
neg_exs.append(s)
print("# Exculded NaN examples:", num_excl_exs)
""" Test using filtered data where we know an abstraction exists. """
# Initialize Teacher
teacher.set_old_state_bound(lb=[0.0, -1.0, 0.2], ub=[32.0, -0.9, 0.22])
init_positive_examples, init_negative_examples = load_examples(
"data/collect_images_2021-11-22-17-59-46.cs598.filtered.pickle",
teacher.is_positive_example)
print("# positive examples: %d" % len(init_positive_examples))
print("# negative examples: %d" % len(init_negative_examples))
ex_dim = len(init_positive_examples[0])
print("Dimension of each example: %d" % ex_dim)
assert all(len(ex) == ex_dim and not any(np.isnan(ex))
assert teacher.state_dim + teacher.perc_dim == ex_dim
learner = Learner(state_dim=teacher.state_dim,
perc_dim=teacher.perc_dim, timeout=20000)
# Let z = [z_0, z_1] = [d, psi]; x = [x_0, x_1, x_2] = [x, y, theta]
# a_mat_0 @ [x, y, theta] + b_vec_0 = [-y, -theta]
# z - (a_mat_0 @ x + b_vec_0) = [d, psi] - [-y, -theta] = [d+y, psi+theta] defined as [fvar0_A0, fvar1_A0]
learner.set_grammar([(a_mat_0, b_vec_0)])
learner.add_positive_examples(*init_positive_examples)
learner.add_negative_examples(*init_negative_examples)
synth_dtree(learner, teacher, num_max_iterations=2000)
def synth_dtree(learner: Learner, teacher: Teacher, num_max_iterations: int = 10):
past_candidate_list = []
for k in range(num_max_iterations):
print(f"Iteration {k}:", sep='')
print("learning ....")
print(f"candidate: {candidate}")
past_candidate_list.append(candidate)
# QUERYING TEACHER IF THERE ARE NEGATIVE EXAMPLES
result = teacher.check(candidate)
if result == z3.sat:
negative_examples = teacher.model()
print(f"negative examples: {negative_examples}")
# assert validate_cexs(teacher.state_dim, teacher.perc_dim, candidate, negative_examples)
learner.add_negative_examples(*negative_examples)
continue
elif result == z3.unsat:
return True, (k, z3.simplify(candidate, arith_lhs=True).sexpr())
return False, f"Reason Unknown {teacher.reason_unknown()}"
return False, f"Reached max iteration {num_max_iterations}."
def validate_cexs(state_dim: int, perc_dim: int,
cexs: List[Tuple[float]]) -> bool:
spurious_cexs = [cex for cex in cexs
if Teacher.is_spurious_example(state_dim, perc_dim, candidate, cex)]
if not spurious_cexs:
return True
else:
print("Spurious CEXs:", *spurious_cexs, sep='\n')
return False
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
def search_part(partition, state):
assert len(partition) == len(state)
bounds = []
for sorted_list, v in zip(partition, state):
i = np.searchsorted(sorted_list, v)
if i == 0 or i == len(sorted_list):
return None
bounds.append( (sorted_list[i-1], sorted_list[i]) )
return tuple(bounds)
def load_partitioned_examples(file_name: str, teacher: Teacher, partition) \
-> Dict[Hashable, Tuple[List[Tuple[float, ...]], List[Tuple[float, ...]], int]]:
print("Loading examples")
with open(file_name, "rb") as pickle_file_io:
pkl_data = pickle.load(pickle_file_io)
truth_samples_seq = pkl_data["truth_samples"]
bound_list = list(list(zip(x_arr[:-1], x_arr[1:])) for x_arr in partition)
ret = {part: [[], [], 0] for part in itertools.product(*bound_list)}
# Convert from sampled states and percepts to positive and negative examples for learning
num_excl_samples = 0
for _, ss in truth_samples_seq:
for s in ss:
state = s[0:teacher.state_dim]
part = search_part(partition, state)
if part is None:
num_excl_samples += 1
continue
if np.any(np.isnan(s)):
ret[part][2] += 1
elif teacher.is_positive_example(s):
ret[part][0].append(s)
else:
ret[part][1].append(s)
print("# excluded samples:", num_excl_samples)
return ret
def main():
X_LIM = np.inf
X_ARR = np.array([-X_LIM, X_LIM])
Y_LIM = 1.2
NUM_Y_PARTS = 4
Y_ARR = np.linspace(-Y_LIM, Y_LIM, NUM_Y_PARTS + 1)
YAW_LIM = np.pi / 12
NUM_YAW_PARTS = 10
YAW_ARR = np.linspace(-YAW_LIM, YAW_LIM, NUM_YAW_PARTS + 1)
PARTITION = (X_ARR, Y_ARR, YAW_ARR)
PKL_FILE_PATH = "data/800_truths-uniform_partition_4x20-1.2m-pi_12-one_straight_road-2021-10-27-08-49-17.bag.pickle"
NORM_ORD = 1
NUM_MAX_ITER = 500
teacher = Teacher(norm_ord=NORM_ORD)
part_to_examples = load_partitioned_examples(
file_name=PKL_FILE_PATH,
teacher=teacher, partition=PARTITION
)
result = []
for part, (pos_exs, neg_exs, num_nan) in part_to_examples.items():
print("#"*80)
print(f"# positive: {len(pos_exs)}; "
f"# negative: {len(neg_exs)}; "
f"# NaN: {num_nan}")
lb, ub = np.asfarray(part).T
# XXX Create new teacher and learner for each part to avoid solutions from other parts
# TODO incremental solving
teacher = Teacher(norm_ord=NORM_ORD)
teacher.set_old_state_bound(lb=lb, ub=ub)
learner = Learner(state_dim=teacher.state_dim,
perc_dim=teacher.perc_dim, timeout=20000)
learner.set_grammar([(Teacher.PERC_GT, np.zeros(2))])
if pos_exs:
pos_fv_arr = np.asfarray([learner._s2f_func(exs) for exs in pos_exs])
plt.scatter(pos_fv_arr[:, 0], pos_fv_arr[:, 1], c="g", marker="o")
if neg_exs:
neg_fv_arr = np.asfarray([learner._s2f_func(exs) for exs in neg_exs])
plt.scatter(neg_fv_arr[:, 0], neg_fv_arr[:, 1], c="r", marker="x")
plt.show()
continue # XXX Temporary skip learning and only plot feature vectors
learner.add_positive_examples(*pos_exs)
learner.add_negative_examples(*neg_exs)
try:
found, ret = synth_dtree(learner, teacher,
num_max_iterations=NUM_MAX_ITER)
print(f"Found? {found}")
if found:
k, expr = ret
result.append({"part": part,
"status": "found",
"result": {"k": k, "formula": expr}})
else:
result.append({"part": part,
"status": "not found",
"result": ret})
except Exception as e:
result.append({"part": part,
"status": "exception",
"result": traceback.format_exc()})
print(e)
finally:
del teacher
del learner
with open(f"out/dtree_synth.{NUM_Y_PARTS}x{NUM_YAW_PARTS}.out.json", "w") as f:
json.dump(result, f)