Skip to content
Snippets Groups Projects
dtree_synth.py 4.14 KiB
Newer Older
import pickle
from typing import List, Tuple

import numpy as np
import z3
from dtree_learner import DTreeLearner as Learner
from dtree_teacher_gem_stanley import DTreeGEMStanleyGurobiTeacher as Teacher


def load_positive_examples(file_name: str) -> List[Tuple[float, ...]]:
    with open(file_name, "rb") as pickle_file_io:
        pkl_data = pickle.load(pickle_file_io)

    truth_samples_seq = pkl_data["truth_samples"]

    i_th = 0  # select only the i-th partition
    truth_samples_seq = truth_samples_seq[i_th:i_th+1]
    print("Representative point in partition:", truth_samples_seq[0][0])

    truth_samples_seq = [(t, [s for s in raw_samples if not any(np.isnan(s))])
                         for t, raw_samples in truth_samples_seq]
    # Convert from sampled states and percepts to positive examples for learning
    return [
        s for _, samples in truth_samples_seq for s in samples
    ]


def test_synth_dtree():
aastorg2's avatar
aastorg2 committed

    positive_examples = load_positive_examples(
        "data/collect_images_2021-11-22-17-59-46.cs598.filtered.pickle")

    # positive_examples = positive_examples[:20:]  # Select only first few examples
    ex_dim = len(positive_examples[0])
    print("#examples: %d" % len(positive_examples))
    print("Dimension of each example: %d" % ex_dim)
    assert all(len(ex) == ex_dim and not any(np.isnan(ex))
               for ex in positive_examples)

    teacher = Teacher()
    assert teacher.state_dim + teacher.perc_dim == ex_dim
    #  0.0 <= x <= 30.0 and -1.0 <= y <= 0.9 and 0.2 <= theta <= 0.22
    teacher.set_old_state_bound(lb=[0.0, -1.0, 0.2], ub=[30.0, -0.9, 0.22])

chsieh16's avatar
chsieh16 committed
    synth_dtree(positive_examples, teacher, num_max_iterations=2000)


def synth_dtree(positive_examples, teacher, num_max_iterations: int = 10):
    learner = Learner(state_dim=teacher.state_dim,
                      perc_dim=teacher.perc_dim, timeout=20000)

    a_mat_0 = np.array([[0., -1., 0.],
                        [0., 0., -1.]])
    b_vec_0 = np.zeros(2)
chsieh16's avatar
chsieh16 committed
    # Let z = [z_0, z_1] = [d, psi]; x = [x_0, x_1, x_2] = [x, y, theta]
    # a_mat_0 @ [x, y, theta] + b_vec_0 = [-y, -theta]
    # z - (a_mat_0 @ x + b_vec_0) = [d, psi] - [-y, -theta] = [d+y, psi+theta] defined as [fvar0_A0, fvar1_A0]

    learner.set_grammar([(a_mat_0, b_vec_0)])
    learner.add_positive_examples(*positive_examples)

    past_candidate_list = []
    for k in range(num_max_iterations):
chsieh16's avatar
chsieh16 committed
        print("="*80)
        print(f"Iteration {k}:", sep='')
        print("learning ....")
aastorg2's avatar
aastorg2 committed

        candidate = learner.learn()
        print("done learning")
        print(f"candidate: {candidate}")
        past_candidate_list.append(candidate)
        # QUERYING TEACHER IF THERE ARE NEGATIVE EXAMPLES
        result = teacher.check(candidate)
chsieh16's avatar
chsieh16 committed
        print(f"Satisfiability: {result}")
        if result == z3.sat:
            negative_examples = teacher.model()
            assert len(negative_examples) > 0
            print(f"negative examples: {negative_examples}")

            assert validate_cexs(teacher.state_dim, teacher.perc_dim, candidate, negative_examples)

            learner.add_negative_examples(*negative_examples)
            continue
        elif result == z3.unsat:
            print("we are done!")
            return past_candidate_list
        else:
            print("Reason Unknown", teacher.reason_unknown())
            return past_candidate_list

    print("Reached max iteration %d." % num_max_iterations)

def validate_cexs(state_dim: int, perc_dim: int,
                  candidate: sympy.logic.boolalg.Boolean,
                  cexs: List[Tuple[float]]) -> bool:
    spurious_cexs = []
    for cex in cexs:
        state_subs_map = [(f"x_{i}", cex[i]) for i in range(state_dim)]
        perc_subs_map = [(f"z_{i}", cex[i+state_dim]) for i in range(perc_dim)]
        sub_map = state_subs_map + perc_subs_map
        val = candidate.subs(sub_map)
        assert isinstance(val, sympy.logic.boolalg.BooleanAtom)
        if val == sympy.false:
            spurious_cexs.append(cex)
    if not spurious_cexs:
        return True
    else:
        print("Spurious CEXs:", *spurious_cexs, sep='\n')
        return False
if __name__ == "__main__":
    test_synth_dtree()