Newer
Older
import pickle
from typing import List, Tuple
import numpy as np
import z3
from dtree_learner import DTreeLearner as Learner
from dtree_teacher_gem_stanley import DTreeGEMStanleyGurobiTeacher as Teacher
def load_examples(file_name: str, spec) -> Tuple[List[Tuple[float, ...]], List[Tuple[float, ...]]]:
print("Loading examples")
with open(file_name, "rb") as pickle_file_io:
pkl_data = pickle.load(pickle_file_io)
truth_samples_seq = pkl_data["truth_samples"]
# Convert from sampled states and percepts to positive and negative examples for learning
pos_exs, neg_exs, num_excl_exs = [], [], 0
for _, ss in truth_samples_seq:
for s in ss:
ret = spec(s)
if np.any(np.isnan(s)) or ret is None:
num_excl_exs += 1
elif ret:
pos_exs.append(s)
else:
neg_exs.append(s)
print("# Exculded examples:", num_excl_exs)
return pos_exs, neg_exs
teacher = Teacher(norm_ord=1)
# 0.0 <= x <= 32.0 and -1.0 <= y <= -0.9 and 0.2 <= theta <= 0.22
teacher.set_old_state_bound(lb=[0.0, -1.0, 0.2], ub=[32.0, -0.9, 0.22])
# teacher.set_old_state_bound(lb=[0.0, -0.9, 2*np.pi/60], ub=[32.0, -0.6, 3*np.pi/60])
# teacher.set_old_state_bound(lb=[0.0, 0.3, 1*np.pi/60], ub=[32.0, 0.9, 5*np.pi/60])
positive_examples, negative_examples = load_examples(
# "data/800_truths-uniform_partition_4x20-1.2m-pi_12-one_straight_road-2021-10-27-08-49-17.bag.pickle",
"data/collect_images_2021-11-22-17-59-46.cs598.filtered.pickle",
teacher.is_positive_example)
print("# positive examples: %d" % len(positive_examples))
print("# negative examples: %d" % len(negative_examples))
ex_dim = len(positive_examples[0])
print("Dimension of each example: %d" % ex_dim)
assert all(len(ex) == ex_dim and not any(np.isnan(ex))
for ex in positive_examples)
assert teacher.state_dim + teacher.perc_dim == ex_dim
synth_dtree(positive_examples, negative_examples, teacher, num_max_iterations=2000)
def synth_dtree(positive_examples, negative_examples, teacher, num_max_iterations: int = 10):
learner = Learner(state_dim=teacher.state_dim,
perc_dim=teacher.perc_dim, timeout=20000)
a_mat_0 = np.array([[0., -1., 0.],
[0., 0., -1.]])
b_vec_0 = np.zeros(2)
# Let z = [z_0, z_1] = [d, psi]; x = [x_0, x_1, x_2] = [x, y, theta]
# a_mat_0 @ [x, y, theta] + b_vec_0 = [-y, -theta]
# z - (a_mat_0 @ x + b_vec_0) = [d, psi] - [-y, -theta] = [d+y, psi+theta] defined as [fvar0_A0, fvar1_A0]
learner.set_grammar([(a_mat_0, b_vec_0)])
learner.add_positive_examples(*positive_examples)
learner.add_negative_examples(*negative_examples)
past_candidate_list = []
for k in range(num_max_iterations):
print(f"Iteration {k}:", sep='')
print("learning ....")
print(f"candidate: {candidate}")
past_candidate_list.append(candidate)
# QUERYING TEACHER IF THERE ARE NEGATIVE EXAMPLES
result = teacher.check(candidate)
if result == z3.sat:
negative_examples = teacher.model()
# assert len(negative_examples) > 0
print(f"negative examples: {negative_examples}")
# assert validate_cexs(teacher.state_dim, teacher.perc_dim, candidate, negative_examples)
learner.add_negative_examples(*negative_examples)
continue
elif result == z3.unsat:
print(f"Simplified candidate: {z3.simplify(candidate)}")
else:
print("Reason Unknown", teacher.reason_unknown())
return past_candidate_list
print("Reached max iteration %d." % num_max_iterations)
def validate_cexs(state_dim: int, perc_dim: int,
cexs: List[Tuple[float]]) -> bool:
spurious_cexs = [cex for cex in cexs
if Teacher.is_spurious_example(state_dim, perc_dim, candidate, cex)]
if not spurious_cexs:
return True
else:
print("Spurious CEXs:", *spurious_cexs, sep='\n')
return False
if __name__ == "__main__":
test_synth_dtree()