Skip to content
Snippets Groups Projects
user avatar
Joseph Batchik authored
Users currently have to provide the full class name for external data sources, like:

`sqlContext.read.format("com.databricks.spark.avro").load(path)`

This allows external data source packages to register themselves using a Service Loader so that they can add custom alias like:

`sqlContext.read.format("avro").load(path)`

This makes it so that using external data source packages uses the same format as the internal data sources like parquet, json, etc.

Author: Joseph Batchik <joseph.batchik@cloudera.com>
Author: Joseph Batchik <josephbatchik@gmail.com>

Closes #7802 from JDrit/service_loader and squashes the following commits:

49a01ec [Joseph Batchik] fixed a couple of format / error bugs
e5e93b2 [Joseph Batchik] modified rat file to only excluded added services
72b349a [Joseph Batchik] fixed error with orc data source actually
9f93ea7 [Joseph Batchik] fixed error with orc data source
87b7f1c [Joseph Batchik] fixed typo
101cd22 [Joseph Batchik] removing unneeded changes
8f3cf43 [Joseph Batchik] merged in changes
b63d337 [Joseph Batchik] merged in master
95ae030 [Joseph Batchik] changed the new trait to be used as a mixin for data source to register themselves
74db85e [Joseph Batchik] reformatted class loader
ac2270d [Joseph Batchik] removing some added test
a6926db [Joseph Batchik] added test cases for data source loader
208a2a8 [Joseph Batchik] changes to do error catching if there are multiple data sources
946186e [Joseph Batchik] started working on service loader
a3aec918
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, and Python, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.) More detailed documentation is available from the project site, at "Building Spark".

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions. See also "Third Party Hadoop Distributions" for guidance on building a Spark application that works with a particular distribution.

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.