Skip to content
Snippets Groups Projects
user avatar
Josh Rosen authored
This patch modifies Spark's SBT build so that it no longer uses `retrieveManaged` / `lib_managed` to store its dependencies. The motivations for this change are nicely described on the JIRA ticket ([SPARK-7841](https://issues.apache.org/jira/browse/SPARK-7841)); my personal interest in doing this stems from the fact that `lib_managed` has caused me some pain while debugging dependency issues in another PR of mine.

Removing our use of `lib_managed` would be trivial except for one snag: the Datanucleus JARs, required by Spark SQL's Hive integration, cannot be included in assembly JARs due to problems with merging OSGI `plugin.xml` files. As a result, several places in the packaging and deployment pipeline assume that these Datanucleus JARs are copied to `lib_managed/jars`. In the interest of maintaining compatibility, I have chosen to retain the `lib_managed/jars` directory _only_ for these Datanucleus JARs and have added custom code to `SparkBuild.scala` to automatically copy those JARs to that folder as part of the `assembly` task.

`dev/mima` also depended on `lib_managed` in a hacky way in order to set classpaths when generating MiMa excludes; I've updated this to obtain the classpaths directly from SBT instead.

/cc dragos marmbrus pwendell srowen

Author: Josh Rosen <joshrosen@databricks.com>

Closes #9575 from JoshRosen/SPARK-7841.
689386b1
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.) More detailed documentation is available from the project site, at "Building Spark".

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.

Configuration

Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.