- Sep 22, 2015
-
-
Rekha Joshi authored
Update License on conf files and corresponding excludes file update Author: Rekha Joshi <rekhajoshm@gmail.com> Author: Joshi <rekhajoshm@gmail.com> Closes #8842 from rekhajoshm/SPARK-10718.
-
Akash Mishra authored
…on for spark.mesos.constraints parameter. Author: Akash Mishra <akash.mishra20@gmail.com> Closes #8816 from SleepyThread/constraint-fix.
-
Reynold Xin authored
DataFrame.explain should use foreach to print the explain content. Author: Reynold Xin <rxin@databricks.com> Closes #8862 from rxin/map-foreach.
-
Yin Huai authored
https://issues.apache.org/jira/browse/SPARK-8567 Looks like "SPARK-8368: includes jars passed in through --jars" is pretty flaky now. Based on some history runs, the time spent on a successful run may be from 1.5 minutes to almost 3 minutes. Let's try to increase the timeout and see if we can fix this test. https://amplab.cs.berkeley.edu/jenkins/job/Spark-1.5-SBT/AMPLAB_JENKINS_BUILD_PROFILE=hadoop2.0,label=spark-test/385/testReport/junit/org.apache.spark.sql.hive/HiveSparkSubmitSuite/SPARK_8368__includes_jars_passed_in_through___jars/history/?start=25 Author: Yin Huai <yhuai@databricks.com> Closes #8850 from yhuai/SPARK-8567-anotherTry.
-
Andrew Or authored
-
Madhusudanan Kandasamy authored
Added isStopped() method in SparkContext Author: Madhusudanan Kandasamy <madhusudanan@in.ibm.com> Closes #8749 from kmadhugit/SPARK-10458.
-
Liang-Chi Hsieh authored
JIRA: https://issues.apache.org/jira/browse/SPARK-10446 Currently the method `join(right: DataFrame, usingColumns: Seq[String])` only supports inner join. It is more convenient to have it support other join types. Author: Liang-Chi Hsieh <viirya@appier.com> Closes #8600 from viirya/usingcolumns_df.
-
Ewan Leith authored
Reading from Microsoft SQL Server over jdbc fails when the table contains datetimeoffset types. This patch registers a SQLServer JDBC Dialect that maps datetimeoffset to a String, as Microsoft suggest. Author: Ewan Leith <ewan.leith@realitymine.com> Closes #8575 from realitymine-coordinator/sqlserver.
-
Jian Feng authored
https://issues.apache.org/jira/browse/SPARK-10577 Author: Jian Feng <jzhang.chs@gmail.com> Closes #8801 from Jianfeng-chs/master.
-
Sean Owen authored
[SPARK-10716] [BUILD] spark-1.5.0-bin-hadoop2.6.tgz file doesn't uncompress on OS X due to hidden file Remove ._SUCCESS.crc hidden file that may cause problems in distribution tar archive, and is not used Author: Sean Owen <sowen@cloudera.com> Closes #8846 from srowen/SPARK-10716.
-
Holden Karau authored
from the issue: In Scala, I can supply a custom partitioner to reduceByKey (and other aggregation/repartitioning methods like aggregateByKey and combinedByKey), but as far as I can tell from the Pyspark API, there's no way to do the same in Python. Here's an example of my code in Scala: weblogs.map(s => (getFileType(s), 1)).reduceByKey(new FileTypePartitioner(),_+_) But I can't figure out how to do the same in Python. The closest I can get is to call repartition before reduceByKey like so: weblogs.map(lambda s: (getFileType(s), 1)).partitionBy(3,hash_filetype).reduceByKey(lambda v1,v2: v1+v2).collect() But that defeats the purpose, because I'm shuffling twice instead of once, so my performance is worse instead of better. Author: Holden Karau <holden@pigscanfly.ca> Closes #8569 from holdenk/SPARK-9821-pyspark-reduceByKey-should-take-a-custom-partitioner.
-
- Sep 21, 2015
-
-
Hossein authored
In ```RUtils.sparkRPackagePath()``` we 1. Call ``` sys.props("spark.submit.deployMode")``` which returns null if ```spark.submit.deployMode``` is not suet 2. Call ``` sparkConf.get("spark.submit.deployMode")``` which throws ```NoSuchElementException``` if ```spark.submit.deployMode``` is not set. This patch simply passes a default value ("cluster") for ```spark.submit.deployMode```. cc rxin Author: Hossein <hossein@databricks.com> Closes #8832 from falaki/SPARK-10711.
-
Yin Huai authored
https://issues.apache.org/jira/browse/SPARK-10681 Author: Yin Huai <yhuai@databricks.com> Closes #8806 from yhuai/SPARK-10495.
-
Tathagata Das authored
[SPARK-10649] [STREAMING] Prevent inheriting job group and irrelevant job description in streaming jobs The job group, and job descriptions information is passed through thread local properties, and get inherited by child threads. In case of spark streaming, the streaming jobs inherit these properties from the thread that called streamingContext.start(). This may not make sense. 1. Job group: This is mainly used for cancelling a group of jobs together. It does not make sense to cancel streaming jobs like this, as the effect will be unpredictable. And its not a valid usecase any way, to cancel a streaming context, call streamingContext.stop() 2. Job description: This is used to pass on nice text descriptions for jobs to show up in the UI. The job description of the thread that calls streamingContext.start() is not useful for all the streaming jobs, as it does not make sense for all of the streaming jobs to have the same description, and the description may or may not be related to streaming. The solution in this PR is meant for the Spark master branch, where local properties are inherited by cloning the properties. The job group and job description in the thread that starts the streaming scheduler are explicitly removed, so that all the subsequent child threads does not inherit them. Also, the starting is done in a new child thread, so that setting the job group and description for streaming, does not change those properties in the thread that called streamingContext.start(). Author: Tathagata Das <tathagata.das1565@gmail.com> Closes #8781 from tdas/SPARK-10649.
-
noelsmith authored
Added newlines before `:param ...:` and `:return:` markup. Without these, parameter lists aren't formatted correctly in the API docs. I.e:  .. looks like this once newline is added:  Author: noelsmith <mail@noelsmith.com> Closes #8851 from noel-smith/docstring-missing-newline-fix.
-
Holden Karau authored
It would be nice to support creating a DataFrame directly from a Java List of Row. Author: Holden Karau <holden@pigscanfly.ca> Closes #8779 from holdenk/SPARK-10630-create-DataFrame-from-Java-List.
-
Marcelo Vanzin authored
Author: Marcelo Vanzin <vanzin@cloudera.com> Closes #8803 from vanzin/SPARK-10676.
-
Feynman Liang authored
Implementation of significance testing using Streaming API. Author: Feynman Liang <fliang@databricks.com> Author: Feynman Liang <feynman.liang@gmail.com> Closes #4716 from feynmanliang/ab_testing.
-
Holden Karau authored
From JIRA: Add Python API, user guide and example for ml.feature.CountVectorizerModel Author: Holden Karau <holden@pigscanfly.ca> Closes #8561 from holdenk/SPARK-9769-add-python-api-for-countvectorizermodel.
-
hushan[胡珊] authored
Track pending tasks by partition ID instead of Task objects. Before this change, failure & retry could result in a case where a stage got submitted before the map output from its dependencies get registered. This was due to an error in the condition for registering map outputs. Author: hushan[胡珊] <hushan@xiaomi.com> Author: Imran Rashid <irashid@cloudera.com> Closes #7699 from squito/SPARK-5259.
-
Meihua Wu authored
In many modeling application, data points are not necessarily sampled with equal probabilities. Linear regression should support weighting which account the over or under sampling. work in progress. Author: Meihua Wu <meihuawu@umich.edu> Closes #8631 from rotationsymmetry/SPARK-9642.
-
Jacek Laskowski authored
* Backticks are processed properly in Spark Properties table * Removed unnecessary spaces * See http://people.apache.org/~pwendell/spark-nightly/spark-master-docs/latest/running-on-yarn.html Author: Jacek Laskowski <jacek.laskowski@deepsense.io> Closes #8795 from jaceklaskowski/docs-yarn-formatting.
-
zsxwing authored
I noticed only one block manager registered with master in an unsuccessful build (https://amplab.cs.berkeley.edu/jenkins/job/Spark-Master-SBT/AMPLAB_JENKINS_BUILD_PROFILE=hadoop2.2,label=spark-test/3534/) ``` 15/09/16 13:02:30.981 pool-1-thread-1-ScalaTest-running-BroadcastSuite INFO SparkContext: Running Spark version 1.6.0-SNAPSHOT ... 15/09/16 13:02:38.133 sparkDriver-akka.actor.default-dispatcher-19 INFO BlockManagerMasterEndpoint: Registering block manager localhost:48196 with 530.3 MB RAM, BlockManagerId(0, localhost, 48196) ``` In addition, the first block manager needed 7+ seconds to start. But the test expected 2 block managers so it failed. However, there was no exception in this log file. So I checked a successful build (https://amplab.cs.berkeley.edu/jenkins/job/Spark-Master-SBT/3536/AMPLAB_JENKINS_BUILD_PROFILE=hadoop2.2,label=spark-test/) and it needed 4-5 seconds to set up the local cluster: ``` 15/09/16 18:11:27.738 sparkWorker1-akka.actor.default-dispatcher-5 INFO Worker: Running Spark version 1.6.0-SNAPSHOT ... 15/09/16 18:11:30.838 sparkDriver-akka.actor.default-dispatcher-20 INFO BlockManagerMasterEndpoint: Registering block manager localhost:54202 with 530.3 MB RAM, BlockManagerId(1, localhost, 54202) 15/09/16 18:11:32.112 sparkDriver-akka.actor.default-dispatcher-20 INFO BlockManagerMasterEndpoint: Registering block manager localhost:32955 with 530.3 MB RAM, BlockManagerId(0, localhost, 32955) ``` In this build, the first block manager needed only 3+ seconds to start. Comparing these two builds, I guess it's possible that the local cluster in `BroadcastSuite` cannot be ready in 10 seconds if the Jenkins worker is busy. So I just increased the timeout to 60 seconds to see if this can fix the issue. Author: zsxwing <zsxwing@gmail.com> Closes #8813 from zsxwing/fix-BroadcastSuite.
-
Holden Karau authored
SPARK-3136 added a large number of functions for creating Java RandomRDDs, but for people that want to use custom RandomDataGenerators we should make a Java friendly method. Author: Holden Karau <holden@pigscanfly.ca> Closes #8782 from holdenk/SPARK-10626-create-java-friendly-method-for-randomRDD.
-
vinodkc authored
There are some missing API docs in pyspark.mllib.linalg.Vector (including DenseVector and SparseVector). We should add them based on their Scala counterparts. Author: vinodkc <vinod.kc.in@gmail.com> Closes #8834 from vinodkc/fix_SPARK-10631.
-
- Sep 20, 2015
-
-
lewuathe authored
There are duplicate set of initialization flag in `WeightedLeastSquares#add`. `initialized` is already set in `init(Int)`. Author: lewuathe <lewuathe@me.com> Closes #8837 from Lewuathe/duplicate-initialization-flag.
-
Sean Owen authored
Note methods that fail for cols > 65535; note that SVD does not require n >= m CC mengxr Author: Sean Owen <sowen@cloudera.com> Closes #8839 from srowen/SPARK-5905.
-
- Sep 19, 2015
-
-
Josh Rosen authored
It does not make much sense to set `spark.shuffle.spill` or `spark.sql.planner.externalSort` to false: I believe that these configurations were initially added as "escape hatches" to guard against bugs in the external operators, but these operators are now mature and well-tested. In addition, these configurations are not handled in a consistent way anymore: SQL's Tungsten codepath ignores these configurations and will continue to use spilling operators. Similarly, Spark Core's `tungsten-sort` shuffle manager does not respect `spark.shuffle.spill=false`. This pull request removes these configurations, adds warnings at the appropriate places, and deletes a large amount of code which was only used in code paths that did not support spilling. Author: Josh Rosen <joshrosen@databricks.com> Closes #8831 from JoshRosen/remove-ability-to-disable-spilling.
-
zsxwing authored
Since `scala.util.parsing.combinator.Parsers` is thread-safe since Scala 2.10 (See [SI-4929](https://issues.scala-lang.org/browse/SI-4929)), we can change SqlParser to object to avoid memory leak. I didn't change other subclasses of `scala.util.parsing.combinator.Parsers` because there is only one instance in one SQLContext, which should not be an issue. Author: zsxwing <zsxwing@gmail.com> Closes #8357 from zsxwing/sql-memory-leak.
-
Alexis Seigneurin authored
Submitting this change on the master branch as requested in https://github.com/apache/spark/pull/8819#issuecomment-141505941 Author: Alexis Seigneurin <alexis.seigneurin@gmail.com> Closes #8838 from aseigneurin/patch-2.
-
Kousuke Saruta authored
In Spark 1.5.0, Spark SQL is compatible with Hive 0.12.0 through 1.2.1 but the documentation is wrong. /CC yhuai Author: Kousuke Saruta <sarutak@oss.nttdata.co.jp> Closes #8776 from sarutak/SPARK-10584-2.
-
Andrew Or authored
When `TungstenAggregation` hits memory pressure, it switches from hash-based to sort-based aggregation in-place. However, in the process we try to allocate the pointer array for writing to the new `UnsafeExternalSorter` *before* actually freeing the memory from the hash map. This lead to the following exception: ``` java.io.IOException: Could not acquire 65536 bytes of memory at org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.initializeForWriting(UnsafeExternalSorter.java:169) at org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.spill(UnsafeExternalSorter.java:220) at org.apache.spark.sql.execution.UnsafeKVExternalSorter.<init>(UnsafeKVExternalSorter.java:126) at org.apache.spark.sql.execution.UnsafeFixedWidthAggregationMap.destructAndCreateExternalSorter(UnsafeFixedWidthAggregationMap.java:257) at org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.switchToSortBasedAggregation(TungstenAggregationIterator.scala:435) ``` Author: Andrew Or <andrew@databricks.com> Closes #8827 from andrewor14/allocate-pointer-array.
-
- Sep 18, 2015
-
-
Cheng Lian authored
When pushing down a leaf predicate, ORC `SearchArgument` builder requires an extra "parent" predicate (any one among `AND`/`OR`/`NOT`) to wrap the leaf predicate. E.g., to push down `a < 1`, we must build `AND(a < 1)` instead. Fortunately, when actually constructing the `SearchArgument`, the builder will eliminate all those unnecessary wrappers. This PR is based on #8783 authored by zhzhan. I also took the chance to simply `OrcFilters` a little bit to improve readability. Author: Cheng Lian <lian@databricks.com> Closes #8799 from liancheng/spark-10623/fix-orc-ppd.
-
Eric Liang authored
This makes equality test failures much more readable. mengxr Author: Eric Liang <ekl@databricks.com> Author: Eric Liang <ekhliang@gmail.com> Closes #8826 from ericl/attrgroupstr.
-
Mingyu Kim authored
This patch attempts to fix the Hadoop Configuration thread safety issue for NewHadoopRDD in the same way SPARK-2546 fixed the issue for HadoopRDD. Author: Mingyu Kim <mkim@palantir.com> Closes #8763 from mingyukim/mkim/SPARK-10611.
-
Reynold Xin authored
Author: Reynold Xin <rxin@databricks.com> Closes #8812 from rxin/SPARK-9808-1.
-
Holden Karau authored
From JIRA: Schema merging should only handle struct fields. But currently we also reconcile decimal precision and scale information. Author: Holden Karau <holden@pigscanfly.ca> Closes #8634 from holdenk/SPARK-10449-dont-merge-different-precision.
-
Yijie Shen authored
Intersect and Except are both set operators and they use the all the columns to compare equality between rows. When pushing their Project parent down, the relations they based on would change, therefore not an equivalent transformation. JIRA: https://issues.apache.org/jira/browse/SPARK-10539 I added some comments based on the fix of https://github.com/apache/spark/pull/8742. Author: Yijie Shen <henry.yijieshen@gmail.com> Author: Yin Huai <yhuai@databricks.com> Closes #8823 from yhuai/fix_set_optimization.
-
Cheng Lian authored
This PR breaks the original test case into multiple ones (one test case for each data type). In this way, test failure output can be much more readable. Within each test case, we build a table with two columns, one of them is for the data type to test, the other is an "index" column, which is used to sort the DataFrame and workaround [SPARK-10591] [1] [1]: https://issues.apache.org/jira/browse/SPARK-10591 Author: Cheng Lian <lian@databricks.com> Closes #8768 from liancheng/spark-10540/test-all-data-types.
-
Yanbo Liang authored
As ```assertEquals``` is deprecated, so we need to change ```assertEquals``` to ```assertEqual``` for existing python unit tests. Author: Yanbo Liang <ybliang8@gmail.com> Closes #8814 from yanboliang/spark-10615.
-