Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
spark
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
cs525-sp18-g07
spark
Commits
e1c814be
Commit
e1c814be
authored
13 years ago
by
Edison Tung
Browse files
Options
Downloads
Patches
Plain Diff
Renamed SparkLocalKMeans to SparkKMeans
parent
a3bc012a
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
examples/src/main/scala/spark/examples/SparkKMeans.scala
+62
-56
62 additions, 56 deletions
examples/src/main/scala/spark/examples/SparkKMeans.scala
with
62 additions
and
56 deletions
examples/src/main/scala/spark/examples/SparkKMeans.scala
+
62
−
56
View file @
e1c814be
package
spark.examples
import
java.util.Random
import
Vector._
import
spark.SparkContext
import
spark.SparkContext._
import
spark.examples.Vector._
import
scala.collection.mutable.HashMap
import
scala.collection.mutable.HashSet
object
SparkKMeans
{
def
parseVector
(
line
:
String
)
:
Vector
=
{
return
new
Vector
(
line
.
split
(
' '
).
map
(
_
.
toDouble
))
}
val
R
=
1000
// Scaling factor
val
rand
=
new
Random
(
42
)
def
parseVector
(
line
:
String
)
:
Vector
=
{
return
new
Vector
(
line
.
split
(
' '
).
map
(
_
.
toDouble
))
}
def
closestPoint
(
p
:
Vector
,
centers
:
HashMap
[
Int
,
Vector
])
:
Int
=
{
var
index
=
0
var
bestIndex
=
0
var
closest
=
Double
.
PositiveInfinity
for
(
i
<-
1
to
centers
.
size
)
{
val
vCurr
=
centers
.
get
(
i
).
get
val
tempDist
=
p
.
squaredDist
(
vCurr
)
if
(
tempDist
<
closest
)
{
closest
=
tempDist
bestIndex
=
i
}
}
return
bestIndex
}
def
closestCenter
(
p
:
Vector
,
centers
:
Array
[
Vector
])
:
Int
=
{
var
bestIndex
=
0
var
bestDist
=
p
.
squaredDist
(
centers
(
0
))
for
(
i
<-
1
until
centers
.
length
)
{
val
dist
=
p
.
squaredDist
(
centers
(
i
))
if
(
dist
<
bestDist
)
{
bestDist
=
dist
bestIndex
=
i
}
}
return
bestIndex
}
def
main
(
args
:
Array
[
String
])
{
if
(
args
.
length
<
4
)
{
System
.
err
.
println
(
"Usage: SparkLocalKMeans <master> <file> <k> <convergeDist>"
)
System
.
exit
(
1
)
}
val
sc
=
new
SparkContext
(
args
(
0
),
"SparkLocalKMeans"
)
val
lines
=
sc
.
textFile
(
args
(
1
))
val
data
=
lines
.
map
(
parseVector
_
).
cache
()
val
K
=
args
(
2
).
toInt
val
convergeDist
=
args
(
3
).
toDouble
var
points
=
data
.
takeSample
(
false
,
K
,
42
)
var
kPoints
=
new
HashMap
[
Int
,
Vector
]
var
tempDist
=
1.0
for
(
i
<-
1
to
points
.
size
)
{
kPoints
.
put
(
i
,
points
(
i
-
1
))
}
def
main
(
args
:
Array
[
String
])
{
if
(
args
.
length
<
3
)
{
System
.
err
.
println
(
"Usage: SparkKMeans <master> <file> <dimensions> <k> <iters>"
)
System
.
exit
(
1
)
}
val
sc
=
new
SparkContext
(
args
(
0
),
"SparkKMeans"
)
val
lines
=
sc
.
textFile
(
args
(
1
))
val
points
=
lines
.
map
(
parseVector
_
).
cache
()
val
dimensions
=
args
(
2
).
toInt
val
k
=
args
(
3
).
toInt
val
iterations
=
args
(
4
).
toInt
while
(
tempDist
>
convergeDist
)
{
var
closest
=
data
.
map
(
p
=>
(
closestPoint
(
p
,
kPoints
),
(
p
,
1
)))
var
pointStats
=
closest
.
reduceByKey
{
case
((
x1
,
y1
),
(
x2
,
y2
))
=>
(
x1
+
x2
,
y1
+
y2
)}
var
newPoints
=
pointStats
.
map
{
mapping
=>
(
mapping
.
_1
,
mapping
.
_2
.
_1
/
mapping
.
_2
.
_2
)}.
collect
()
tempDist
=
0.0
for
(
mapping
<-
newPoints
)
{
tempDist
+=
kPoints
.
get
(
mapping
.
_1
).
get
.
squaredDist
(
mapping
.
_2
)
}
for
(
newP
<-
newPoints
)
{
kPoints
.
put
(
newP
.
_1
,
newP
.
_2
)
}
}
// Initialize cluster centers randomly
val
rand
=
new
Random
(
42
)
var
centers
=
new
Array
[
Vector
](
k
)
for
(
i
<-
0
until
k
)
centers
(
i
)
=
Vector
(
dimensions
,
_
=>
2
*
rand
.
nextDouble
-
1
)
println
(
"Initial centers: "
+
centers
.
mkString
(
", "
))
for
(
i
<-
1
to
iterations
)
{
println
(
"On iteration "
+
i
)
// Map each point to the index of its closest center and a (point, 1) pair
// that we will use to compute an average later
val
mappedPoints
=
points
.
map
{
p
=>
(
closestCenter
(
p
,
centers
),
(
p
,
1
))
}
// Compute the new centers by summing the (point, 1) pairs and taking an average
val
newCenters
=
mappedPoints
.
reduceByKey
{
case
((
sum1
,
count1
),
(
sum2
,
count2
))
=>
(
sum1
+
sum2
,
count1
+
count2
)
}.
map
{
case
(
id
,
(
sum
,
count
))
=>
(
id
,
sum
/
count
)
}.
collect
// Update the centers array with the new centers we collected
for
((
id
,
value
)
<-
newCenters
)
{
centers
(
id
)
=
value
}
}
println
(
"Final centers: "
+
centers
.
mkString
(
", "
))
}
println
(
"Final centers: "
+
kPoints
)
}
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment