diff --git a/examples/src/main/scala/spark/examples/SparkKMeans.scala b/examples/src/main/scala/spark/examples/SparkKMeans.scala
index 048001dc4f225693ba85a33cb001fbf42c8f7899..b0d34078014482824b7a37fe08649a310bf3b5eb 100644
--- a/examples/src/main/scala/spark/examples/SparkKMeans.scala
+++ b/examples/src/main/scala/spark/examples/SparkKMeans.scala
@@ -1,67 +1,73 @@
 package spark.examples
 
 import java.util.Random
+import Vector._
 import spark.SparkContext
 import spark.SparkContext._
-import spark.examples.Vector._
+import scala.collection.mutable.HashMap
+import scala.collection.mutable.HashSet
 
 object SparkKMeans {
-  def parseVector(line: String): Vector = {
-    return new Vector(line.split(' ').map(_.toDouble))
-  }
+	val R = 1000   	// Scaling factor
+	val rand = new Random(42)
+  	
+	def parseVector(line: String): Vector = {
+	    return new Vector(line.split(' ').map(_.toDouble))
+	}
+	
+	def closestPoint(p: Vector, centers: HashMap[Int, Vector]): Int = {
+		var index = 0
+		var bestIndex = 0
+		var closest = Double.PositiveInfinity
+	
+		for (i <- 1 to centers.size) {
+			val vCurr = centers.get(i).get
+			val tempDist = p.squaredDist(vCurr)
+			if (tempDist < closest) {
+				closest = tempDist
+				bestIndex = i
+			}
+		}
+	
+		return bestIndex
+	}
 
-  def closestCenter(p: Vector, centers: Array[Vector]): Int = {
-    var bestIndex = 0
-    var bestDist = p.squaredDist(centers(0))
-    for (i <- 1 until centers.length) {
-      val dist = p.squaredDist(centers(i))
-      if (dist < bestDist) {
-        bestDist = dist
-        bestIndex = i
-      }
-    }
-    return bestIndex
-  }
+	def main(args: Array[String]) {
+		if (args.length < 4) {
+	      System.err.println("Usage: SparkLocalKMeans <master> <file> <k> <convergeDist>")
+	      System.exit(1)
+	    }
+	    val sc = new SparkContext(args(0), "SparkLocalKMeans")
+	    val lines = sc.textFile(args(1))
+	    val data = lines.map(parseVector _).cache()
+	   	val K = args(2).toInt
+	    val convergeDist = args(3).toDouble
+	
+		var points = data.takeSample(false, K, 42)
+		var kPoints = new HashMap[Int, Vector]
+		var tempDist = 1.0
+		
+		for (i <- 1 to points.size) {
+			kPoints.put(i, points(i-1))
+		}
 
-  def main(args: Array[String]) {
-    if (args.length < 3) {
-      System.err.println("Usage: SparkKMeans <master> <file> <dimensions> <k> <iters>")
-      System.exit(1)
-    }
-    val sc = new SparkContext(args(0), "SparkKMeans")
-    val lines = sc.textFile(args(1))
-    val points = lines.map(parseVector _).cache()
-    val dimensions = args(2).toInt
-    val k = args(3).toInt
-    val iterations = args(4).toInt
+		while(tempDist > convergeDist) {
+			var closest = data.map (p => (closestPoint(p, kPoints), (p, 1)))
+			
+			var pointStats = closest.reduceByKey {case ((x1, y1), (x2, y2)) => (x1 + x2, y1+y2)}
+			
+			var newPoints = pointStats.map {mapping => (mapping._1, mapping._2._1/mapping._2._2)}.collect()
+			
+			tempDist = 0.0
+			for (mapping <- newPoints) {
+				tempDist += kPoints.get(mapping._1).get.squaredDist(mapping._2)
+			}
+			
+			for (newP <- newPoints) {
+				kPoints.put(newP._1, newP._2)
+			}
+		}
 
-    // Initialize cluster centers randomly
-    val rand = new Random(42)
-    var centers = new Array[Vector](k)
-    for (i <- 0 until k)
-      centers(i) = Vector(dimensions, _ => 2 * rand.nextDouble - 1)
-    println("Initial centers: " + centers.mkString(", "))
-
-    for (i <- 1 to iterations) {
-      println("On iteration " + i)
-
-      // Map each point to the index of its closest center and a (point, 1) pair
-      // that we will use to compute an average later
-      val mappedPoints = points.map { p => (closestCenter(p, centers), (p, 1)) }
-
-      // Compute the new centers by summing the (point, 1) pairs and taking an average
-      val newCenters = mappedPoints.reduceByKey {
-        case ((sum1, count1), (sum2, count2)) => (sum1 + sum2, count1 + count2)
-      }.map { 
-        case (id, (sum, count)) => (id, sum / count)
-      }.collect
-
-      // Update the centers array with the new centers we collected
-      for ((id, value) <- newCenters) {
-        centers(id) = value
-      }
-    }
-
-    println("Final centers: " + centers.mkString(", "))
-  }
+		println("Final centers: " + kPoints)
+	}
 }