Skip to content
Snippets Groups Projects
Commit ca639163 authored by Cheng Lian's avatar Cheng Lian Committed by Reynold Xin
Browse files

[SPARK-17213][SQL] Disable Parquet filter push-down for string and binary...

[SPARK-17213][SQL] Disable Parquet filter push-down for string and binary columns due to PARQUET-686

This PR targets to both master and branch-2.1.

## What changes were proposed in this pull request?

Due to PARQUET-686, Parquet doesn't do string comparison correctly while doing filter push-down for string columns. This PR disables filter push-down for both string and binary columns to work around this issue. Binary columns are also affected because some Parquet data models (like Hive) may store string columns as a plain Parquet `binary` instead of a `binary (UTF8)`.

## How was this patch tested?

New test case added in `ParquetFilterSuite`.

Author: Cheng Lian <lian@databricks.com>

Closes #16106 from liancheng/spark-17213-bad-string-ppd.
parent c82f16c1
No related branches found
No related tags found
No related merge requests found
......@@ -40,6 +40,9 @@ private[parquet] object ParquetFilters {
(n: String, v: Any) => FilterApi.eq(floatColumn(n), v.asInstanceOf[java.lang.Float])
case DoubleType =>
(n: String, v: Any) => FilterApi.eq(doubleColumn(n), v.asInstanceOf[java.lang.Double])
// See SPARK-17213: https://issues.apache.org/jira/browse/SPARK-17213
/*
// Binary.fromString and Binary.fromByteArray don't accept null values
case StringType =>
(n: String, v: Any) => FilterApi.eq(
......@@ -49,6 +52,7 @@ private[parquet] object ParquetFilters {
(n: String, v: Any) => FilterApi.eq(
binaryColumn(n),
Option(v).map(b => Binary.fromReusedByteArray(v.asInstanceOf[Array[Byte]])).orNull)
*/
}
private val makeNotEq: PartialFunction[DataType, (String, Any) => FilterPredicate] = {
......@@ -62,6 +66,9 @@ private[parquet] object ParquetFilters {
(n: String, v: Any) => FilterApi.notEq(floatColumn(n), v.asInstanceOf[java.lang.Float])
case DoubleType =>
(n: String, v: Any) => FilterApi.notEq(doubleColumn(n), v.asInstanceOf[java.lang.Double])
// See SPARK-17213: https://issues.apache.org/jira/browse/SPARK-17213
/*
case StringType =>
(n: String, v: Any) => FilterApi.notEq(
binaryColumn(n),
......@@ -70,6 +77,7 @@ private[parquet] object ParquetFilters {
(n: String, v: Any) => FilterApi.notEq(
binaryColumn(n),
Option(v).map(b => Binary.fromReusedByteArray(v.asInstanceOf[Array[Byte]])).orNull)
*/
}
private val makeLt: PartialFunction[DataType, (String, Any) => FilterPredicate] = {
......@@ -81,6 +89,9 @@ private[parquet] object ParquetFilters {
(n: String, v: Any) => FilterApi.lt(floatColumn(n), v.asInstanceOf[java.lang.Float])
case DoubleType =>
(n: String, v: Any) => FilterApi.lt(doubleColumn(n), v.asInstanceOf[java.lang.Double])
// See SPARK-17213: https://issues.apache.org/jira/browse/SPARK-17213
/*
case StringType =>
(n: String, v: Any) =>
FilterApi.lt(binaryColumn(n),
......@@ -88,6 +99,7 @@ private[parquet] object ParquetFilters {
case BinaryType =>
(n: String, v: Any) =>
FilterApi.lt(binaryColumn(n), Binary.fromReusedByteArray(v.asInstanceOf[Array[Byte]]))
*/
}
private val makeLtEq: PartialFunction[DataType, (String, Any) => FilterPredicate] = {
......@@ -99,6 +111,9 @@ private[parquet] object ParquetFilters {
(n: String, v: Any) => FilterApi.ltEq(floatColumn(n), v.asInstanceOf[java.lang.Float])
case DoubleType =>
(n: String, v: Any) => FilterApi.ltEq(doubleColumn(n), v.asInstanceOf[java.lang.Double])
// See SPARK-17213: https://issues.apache.org/jira/browse/SPARK-17213
/*
case StringType =>
(n: String, v: Any) =>
FilterApi.ltEq(binaryColumn(n),
......@@ -106,6 +121,7 @@ private[parquet] object ParquetFilters {
case BinaryType =>
(n: String, v: Any) =>
FilterApi.ltEq(binaryColumn(n), Binary.fromReusedByteArray(v.asInstanceOf[Array[Byte]]))
*/
}
private val makeGt: PartialFunction[DataType, (String, Any) => FilterPredicate] = {
......@@ -117,6 +133,9 @@ private[parquet] object ParquetFilters {
(n: String, v: Any) => FilterApi.gt(floatColumn(n), v.asInstanceOf[java.lang.Float])
case DoubleType =>
(n: String, v: Any) => FilterApi.gt(doubleColumn(n), v.asInstanceOf[java.lang.Double])
// See SPARK-17213: https://issues.apache.org/jira/browse/SPARK-17213
/*
case StringType =>
(n: String, v: Any) =>
FilterApi.gt(binaryColumn(n),
......@@ -124,6 +143,7 @@ private[parquet] object ParquetFilters {
case BinaryType =>
(n: String, v: Any) =>
FilterApi.gt(binaryColumn(n), Binary.fromReusedByteArray(v.asInstanceOf[Array[Byte]]))
*/
}
private val makeGtEq: PartialFunction[DataType, (String, Any) => FilterPredicate] = {
......@@ -135,6 +155,9 @@ private[parquet] object ParquetFilters {
(n: String, v: Any) => FilterApi.gtEq(floatColumn(n), v.asInstanceOf[java.lang.Float])
case DoubleType =>
(n: String, v: Any) => FilterApi.gtEq(doubleColumn(n), v.asInstanceOf[java.lang.Double])
// See SPARK-17213: https://issues.apache.org/jira/browse/SPARK-17213
/*
case StringType =>
(n: String, v: Any) =>
FilterApi.gtEq(binaryColumn(n),
......@@ -142,6 +165,7 @@ private[parquet] object ParquetFilters {
case BinaryType =>
(n: String, v: Any) =>
FilterApi.gtEq(binaryColumn(n), Binary.fromReusedByteArray(v.asInstanceOf[Array[Byte]]))
*/
}
/**
......
......@@ -47,7 +47,6 @@ import org.apache.spark.util.{AccumulatorContext, LongAccumulator}
* data type is nullable.
*/
class ParquetFilterSuite extends QueryTest with ParquetTest with SharedSQLContext {
private def checkFilterPredicate(
df: DataFrame,
predicate: Predicate,
......@@ -230,7 +229,8 @@ class ParquetFilterSuite extends QueryTest with ParquetTest with SharedSQLContex
}
}
test("filter pushdown - string") {
// See SPARK-17213: https://issues.apache.org/jira/browse/SPARK-17213
ignore("filter pushdown - string") {
withParquetDataFrame((1 to 4).map(i => Tuple1(i.toString))) { implicit df =>
checkFilterPredicate('_1.isNull, classOf[Eq[_]], Seq.empty[Row])
checkFilterPredicate(
......@@ -258,7 +258,8 @@ class ParquetFilterSuite extends QueryTest with ParquetTest with SharedSQLContex
}
}
test("filter pushdown - binary") {
// See SPARK-17213: https://issues.apache.org/jira/browse/SPARK-17213
ignore("filter pushdown - binary") {
implicit class IntToBinary(int: Int) {
def b: Array[Byte] = int.toString.getBytes(StandardCharsets.UTF_8)
}
......@@ -558,4 +559,23 @@ class ParquetFilterSuite extends QueryTest with ParquetTest with SharedSQLContex
}
}
}
test("SPARK-17213: Broken Parquet filter push-down for string columns") {
withTempPath { dir =>
import testImplicits._
val path = dir.getCanonicalPath
// scalastyle:off nonascii
Seq("a", "é").toDF("name").write.parquet(path)
// scalastyle:on nonascii
assert(spark.read.parquet(path).where("name > 'a'").count() == 1)
assert(spark.read.parquet(path).where("name >= 'a'").count() == 2)
// scalastyle:off nonascii
assert(spark.read.parquet(path).where("name < 'é'").count() == 1)
assert(spark.read.parquet(path).where("name <= 'é'").count() == 2)
// scalastyle:on nonascii
}
}
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment