Skip to content
Snippets Groups Projects
Commit 8c0e1b50 authored by Yanbo Liang's avatar Yanbo Liang Committed by Xiangrui Meng
Browse files

[SPARK-11494][ML][R] Expose R-like summary statistics in SparkR::glm for linear regression

Expose R-like summary statistics in SparkR::glm for linear regression, the output of ```summary``` like
```Java
$DevianceResiduals
 Min        Max
 -0.9509607 0.7291832

$Coefficients
                   Estimate   Std. Error t value   Pr(>|t|)
(Intercept)        1.6765     0.2353597  7.123139  4.456124e-11
Sepal_Length       0.3498801  0.04630128 7.556598  4.187317e-12
Species_versicolor -0.9833885 0.07207471 -13.64402 0
Species_virginica  -1.00751   0.09330565 -10.79796 0
```

Author: Yanbo Liang <ybliang8@gmail.com>

Closes #9561 from yanboliang/spark-11494.
parent b541b316
No related branches found
No related tags found
No related merge requests found
......@@ -91,12 +91,26 @@ setMethod("predict", signature(object = "PipelineModel"),
#'}
setMethod("summary", signature(x = "PipelineModel"),
function(x, ...) {
modelName <- callJStatic("org.apache.spark.ml.api.r.SparkRWrappers",
"getModelName", x@model)
features <- callJStatic("org.apache.spark.ml.api.r.SparkRWrappers",
"getModelFeatures", x@model)
coefficients <- callJStatic("org.apache.spark.ml.api.r.SparkRWrappers",
"getModelCoefficients", x@model)
coefficients <- as.matrix(unlist(coefficients))
colnames(coefficients) <- c("Estimate")
rownames(coefficients) <- unlist(features)
return(list(coefficients = coefficients))
if (modelName == "LinearRegressionModel") {
devianceResiduals <- callJStatic("org.apache.spark.ml.api.r.SparkRWrappers",
"getModelDevianceResiduals", x@model)
devianceResiduals <- matrix(devianceResiduals, nrow = 1)
colnames(devianceResiduals) <- c("Min", "Max")
rownames(devianceResiduals) <- rep("", times = 1)
coefficients <- matrix(coefficients, ncol = 4)
colnames(coefficients) <- c("Estimate", "Std. Error", "t value", "Pr(>|t|)")
rownames(coefficients) <- unlist(features)
return(list(DevianceResiduals = devianceResiduals, Coefficients = coefficients))
} else {
coefficients <- as.matrix(unlist(coefficients))
colnames(coefficients) <- c("Estimate")
rownames(coefficients) <- unlist(features)
return(list(coefficients = coefficients))
}
})
......@@ -71,12 +71,23 @@ test_that("feature interaction vs native glm", {
test_that("summary coefficients match with native glm", {
training <- createDataFrame(sqlContext, iris)
stats <- summary(glm(Sepal_Width ~ Sepal_Length + Species, data = training, solver = "l-bfgs"))
coefs <- as.vector(stats$coefficients)
stats <- summary(glm(Sepal_Width ~ Sepal_Length + Species, data = training, solver = "normal"))
coefs <- unlist(stats$Coefficients)
devianceResiduals <- unlist(stats$DevianceResiduals)
rCoefs <- as.vector(coef(glm(Sepal.Width ~ Sepal.Length + Species, data = iris)))
expect_true(all(abs(rCoefs - coefs) < 1e-6))
rStdError <- c(0.23536, 0.04630, 0.07207, 0.09331)
rTValue <- c(7.123, 7.557, -13.644, -10.798)
rPValue <- c(0.0, 0.0, 0.0, 0.0)
rDevianceResiduals <- c(-0.95096, 0.72918)
expect_true(all(abs(rCoefs - coefs[1:4]) < 1e-6))
expect_true(all(abs(rStdError - coefs[5:8]) < 1e-5))
expect_true(all(abs(rTValue - coefs[9:12]) < 1e-3))
expect_true(all(abs(rPValue - coefs[13:16]) < 1e-6))
expect_true(all(abs(rDevianceResiduals - devianceResiduals) < 1e-5))
expect_true(all(
as.character(stats$features) ==
rownames(stats$Coefficients) ==
c("(Intercept)", "Sepal_Length", "Species_versicolor", "Species_virginica")))
})
......@@ -85,14 +96,20 @@ test_that("summary coefficients match with native glm of family 'binomial'", {
training <- filter(df, df$Species != "setosa")
stats <- summary(glm(Species ~ Sepal_Length + Sepal_Width, data = training,
family = "binomial"))
coefs <- as.vector(stats$coefficients)
coefs <- as.vector(stats$Coefficients)
rTraining <- iris[iris$Species %in% c("versicolor","virginica"),]
rCoefs <- as.vector(coef(glm(Species ~ Sepal.Length + Sepal.Width, data = rTraining,
family = binomial(link = "logit"))))
rStdError <- c(3.0974, 0.5169, 0.8628)
rTValue <- c(-4.212, 3.680, 0.469)
rPValue <- c(0.000, 0.000, 0.639)
expect_true(all(abs(rCoefs - coefs) < 1e-4))
expect_true(all(abs(rCoefs - coefs[1:3]) < 1e-4))
expect_true(all(abs(rStdError - coefs[4:6]) < 1e-4))
expect_true(all(abs(rTValue - coefs[7:9]) < 1e-3))
expect_true(all(abs(rPValue - coefs[10:12]) < 1e-3))
expect_true(all(
as.character(stats$features) ==
rownames(stats$Coefficients) ==
c("(Intercept)", "Sepal_Length", "Sepal_Width")))
})
......@@ -52,11 +52,36 @@ private[r] object SparkRWrappers {
}
def getModelCoefficients(model: PipelineModel): Array[Double] = {
model.stages.last match {
case m: LinearRegressionModel => {
val coefficientStandardErrorsR = Array(m.summary.coefficientStandardErrors.last) ++
m.summary.coefficientStandardErrors.dropRight(1)
val tValuesR = Array(m.summary.tValues.last) ++ m.summary.tValues.dropRight(1)
val pValuesR = Array(m.summary.pValues.last) ++ m.summary.pValues.dropRight(1)
if (m.getFitIntercept) {
Array(m.intercept) ++ m.coefficients.toArray ++ coefficientStandardErrorsR ++
tValuesR ++ pValuesR
} else {
m.coefficients.toArray ++ coefficientStandardErrorsR ++ tValuesR ++ pValuesR
}
}
case m: LogisticRegressionModel => {
if (m.getFitIntercept) {
Array(m.intercept) ++ m.coefficients.toArray
} else {
m.coefficients.toArray
}
}
}
}
def getModelDevianceResiduals(model: PipelineModel): Array[Double] = {
model.stages.last match {
case m: LinearRegressionModel =>
Array(m.intercept) ++ m.coefficients.toArray
m.summary.devianceResiduals
case m: LogisticRegressionModel =>
Array(m.intercept) ++ m.coefficients.toArray
throw new UnsupportedOperationException(
"No deviance residuals available for LogisticRegressionModel")
}
}
......@@ -65,11 +90,28 @@ private[r] object SparkRWrappers {
case m: LinearRegressionModel =>
val attrs = AttributeGroup.fromStructField(
m.summary.predictions.schema(m.summary.featuresCol))
Array("(Intercept)") ++ attrs.attributes.get.map(_.name.get)
if (m.getFitIntercept) {
Array("(Intercept)") ++ attrs.attributes.get.map(_.name.get)
} else {
attrs.attributes.get.map(_.name.get)
}
case m: LogisticRegressionModel =>
val attrs = AttributeGroup.fromStructField(
m.summary.predictions.schema(m.summary.featuresCol))
Array("(Intercept)") ++ attrs.attributes.get.map(_.name.get)
if (m.getFitIntercept) {
Array("(Intercept)") ++ attrs.attributes.get.map(_.name.get)
} else {
attrs.attributes.get.map(_.name.get)
}
}
}
def getModelName(model: PipelineModel): String = {
model.stages.last match {
case m: LinearRegressionModel =>
"LinearRegressionModel"
case m: LogisticRegressionModel =>
"LogisticRegressionModel"
}
}
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment