diff --git a/R/pkg/R/mllib.R b/R/pkg/R/mllib.R index b0d73dd93a79dfc2b73aa4682f66bde7e1c939aa..7ff859741b4a034bb21b181cd2f3b79a7a38095c 100644 --- a/R/pkg/R/mllib.R +++ b/R/pkg/R/mllib.R @@ -91,12 +91,26 @@ setMethod("predict", signature(object = "PipelineModel"), #'} setMethod("summary", signature(x = "PipelineModel"), function(x, ...) { + modelName <- callJStatic("org.apache.spark.ml.api.r.SparkRWrappers", + "getModelName", x@model) features <- callJStatic("org.apache.spark.ml.api.r.SparkRWrappers", "getModelFeatures", x@model) coefficients <- callJStatic("org.apache.spark.ml.api.r.SparkRWrappers", "getModelCoefficients", x@model) - coefficients <- as.matrix(unlist(coefficients)) - colnames(coefficients) <- c("Estimate") - rownames(coefficients) <- unlist(features) - return(list(coefficients = coefficients)) + if (modelName == "LinearRegressionModel") { + devianceResiduals <- callJStatic("org.apache.spark.ml.api.r.SparkRWrappers", + "getModelDevianceResiduals", x@model) + devianceResiduals <- matrix(devianceResiduals, nrow = 1) + colnames(devianceResiduals) <- c("Min", "Max") + rownames(devianceResiduals) <- rep("", times = 1) + coefficients <- matrix(coefficients, ncol = 4) + colnames(coefficients) <- c("Estimate", "Std. Error", "t value", "Pr(>|t|)") + rownames(coefficients) <- unlist(features) + return(list(DevianceResiduals = devianceResiduals, Coefficients = coefficients)) + } else { + coefficients <- as.matrix(unlist(coefficients)) + colnames(coefficients) <- c("Estimate") + rownames(coefficients) <- unlist(features) + return(list(coefficients = coefficients)) + } }) diff --git a/R/pkg/inst/tests/test_mllib.R b/R/pkg/inst/tests/test_mllib.R index 4761e285a2479c71d5cf2f832ca541aafaf57418..2606407bdcb44682cc3099101bf1e437d5412479 100644 --- a/R/pkg/inst/tests/test_mllib.R +++ b/R/pkg/inst/tests/test_mllib.R @@ -71,12 +71,23 @@ test_that("feature interaction vs native glm", { test_that("summary coefficients match with native glm", { training <- createDataFrame(sqlContext, iris) - stats <- summary(glm(Sepal_Width ~ Sepal_Length + Species, data = training, solver = "l-bfgs")) - coefs <- as.vector(stats$coefficients) + stats <- summary(glm(Sepal_Width ~ Sepal_Length + Species, data = training, solver = "normal")) + coefs <- unlist(stats$Coefficients) + devianceResiduals <- unlist(stats$DevianceResiduals) + rCoefs <- as.vector(coef(glm(Sepal.Width ~ Sepal.Length + Species, data = iris))) - expect_true(all(abs(rCoefs - coefs) < 1e-6)) + rStdError <- c(0.23536, 0.04630, 0.07207, 0.09331) + rTValue <- c(7.123, 7.557, -13.644, -10.798) + rPValue <- c(0.0, 0.0, 0.0, 0.0) + rDevianceResiduals <- c(-0.95096, 0.72918) + + expect_true(all(abs(rCoefs - coefs[1:4]) < 1e-6)) + expect_true(all(abs(rStdError - coefs[5:8]) < 1e-5)) + expect_true(all(abs(rTValue - coefs[9:12]) < 1e-3)) + expect_true(all(abs(rPValue - coefs[13:16]) < 1e-6)) + expect_true(all(abs(rDevianceResiduals - devianceResiduals) < 1e-5)) expect_true(all( - as.character(stats$features) == + rownames(stats$Coefficients) == c("(Intercept)", "Sepal_Length", "Species_versicolor", "Species_virginica"))) }) @@ -85,14 +96,20 @@ test_that("summary coefficients match with native glm of family 'binomial'", { training <- filter(df, df$Species != "setosa") stats <- summary(glm(Species ~ Sepal_Length + Sepal_Width, data = training, family = "binomial")) - coefs <- as.vector(stats$coefficients) + coefs <- as.vector(stats$Coefficients) rTraining <- iris[iris$Species %in% c("versicolor","virginica"),] rCoefs <- as.vector(coef(glm(Species ~ Sepal.Length + Sepal.Width, data = rTraining, family = binomial(link = "logit")))) + rStdError <- c(3.0974, 0.5169, 0.8628) + rTValue <- c(-4.212, 3.680, 0.469) + rPValue <- c(0.000, 0.000, 0.639) - expect_true(all(abs(rCoefs - coefs) < 1e-4)) + expect_true(all(abs(rCoefs - coefs[1:3]) < 1e-4)) + expect_true(all(abs(rStdError - coefs[4:6]) < 1e-4)) + expect_true(all(abs(rTValue - coefs[7:9]) < 1e-3)) + expect_true(all(abs(rPValue - coefs[10:12]) < 1e-3)) expect_true(all( - as.character(stats$features) == + rownames(stats$Coefficients) == c("(Intercept)", "Sepal_Length", "Sepal_Width"))) }) diff --git a/mllib/src/main/scala/org/apache/spark/ml/r/SparkRWrappers.scala b/mllib/src/main/scala/org/apache/spark/ml/r/SparkRWrappers.scala index 5be2f869362118196d0fcf694c7589847a736bc4..4d82b90bfdf20f5511f8bd889e8a871d799a1793 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/r/SparkRWrappers.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/r/SparkRWrappers.scala @@ -52,11 +52,36 @@ private[r] object SparkRWrappers { } def getModelCoefficients(model: PipelineModel): Array[Double] = { + model.stages.last match { + case m: LinearRegressionModel => { + val coefficientStandardErrorsR = Array(m.summary.coefficientStandardErrors.last) ++ + m.summary.coefficientStandardErrors.dropRight(1) + val tValuesR = Array(m.summary.tValues.last) ++ m.summary.tValues.dropRight(1) + val pValuesR = Array(m.summary.pValues.last) ++ m.summary.pValues.dropRight(1) + if (m.getFitIntercept) { + Array(m.intercept) ++ m.coefficients.toArray ++ coefficientStandardErrorsR ++ + tValuesR ++ pValuesR + } else { + m.coefficients.toArray ++ coefficientStandardErrorsR ++ tValuesR ++ pValuesR + } + } + case m: LogisticRegressionModel => { + if (m.getFitIntercept) { + Array(m.intercept) ++ m.coefficients.toArray + } else { + m.coefficients.toArray + } + } + } + } + + def getModelDevianceResiduals(model: PipelineModel): Array[Double] = { model.stages.last match { case m: LinearRegressionModel => - Array(m.intercept) ++ m.coefficients.toArray + m.summary.devianceResiduals case m: LogisticRegressionModel => - Array(m.intercept) ++ m.coefficients.toArray + throw new UnsupportedOperationException( + "No deviance residuals available for LogisticRegressionModel") } } @@ -65,11 +90,28 @@ private[r] object SparkRWrappers { case m: LinearRegressionModel => val attrs = AttributeGroup.fromStructField( m.summary.predictions.schema(m.summary.featuresCol)) - Array("(Intercept)") ++ attrs.attributes.get.map(_.name.get) + if (m.getFitIntercept) { + Array("(Intercept)") ++ attrs.attributes.get.map(_.name.get) + } else { + attrs.attributes.get.map(_.name.get) + } case m: LogisticRegressionModel => val attrs = AttributeGroup.fromStructField( m.summary.predictions.schema(m.summary.featuresCol)) - Array("(Intercept)") ++ attrs.attributes.get.map(_.name.get) + if (m.getFitIntercept) { + Array("(Intercept)") ++ attrs.attributes.get.map(_.name.get) + } else { + attrs.attributes.get.map(_.name.get) + } + } + } + + def getModelName(model: PipelineModel): String = { + model.stages.last match { + case m: LinearRegressionModel => + "LinearRegressionModel" + case m: LogisticRegressionModel => + "LogisticRegressionModel" } } }