Skip to content
Snippets Groups Projects
Commit 7f38b9d5 authored by Felix Cheung's avatar Felix Cheung Committed by Shivaram Venkataraman
Browse files

[SPARK-16144][SPARKR] update R API doc for mllib

## What changes were proposed in this pull request?

From SPARK-16140/PR #13921 - the issue is we left write.ml doc empty:
![image](https://cloud.githubusercontent.com/assets/8969467/16481934/856dd0ea-3e62-11e6-9474-e4d57d1ca001.png)

Here's what I meant as the fix:
![image](https://cloud.githubusercontent.com/assets/8969467/16481943/911f02ec-3e62-11e6-9d68-17363a9f5628.png)

![image](https://cloud.githubusercontent.com/assets/8969467/16481950/9bc057aa-3e62-11e6-8127-54870701c4b1.png)

I didn't realize there was already a JIRA on this. mengxr yanboliang

## How was this patch tested?

check doc generated.

Author: Felix Cheung <felixcheung_m@hotmail.com>

Closes #13993 from felixcheung/rmllibdoc.
parent 2ad031be
No related branches found
No related tags found
No related merge requests found
......@@ -1255,7 +1255,6 @@ setGeneric("spark.glm", function(data, formula, ...) { standardGeneric("spark.gl
#' @export
setGeneric("glm")
#' predict
#' @rdname predict
#' @export
setGeneric("predict", function(object, ...) { standardGeneric("predict") })
......@@ -1280,7 +1279,6 @@ setGeneric("spark.naiveBayes", function(data, formula, ...) { standardGeneric("s
#' @export
setGeneric("spark.survreg", function(data, formula, ...) { standardGeneric("spark.survreg") })
#' write.ml
#' @rdname write.ml
#' @export
setGeneric("write.ml", function(object, path, ...) { standardGeneric("write.ml") })
......@@ -53,6 +53,29 @@ setClass("AFTSurvivalRegressionModel", representation(jobj = "jobj"))
#' @note KMeansModel since 2.0.0
setClass("KMeansModel", representation(jobj = "jobj"))
#' Saves the MLlib model to the input path
#'
#' Saves the MLlib model to the input path. For more information, see the specific
#' MLlib model below.
#' @rdname write.ml
#' @name write.ml
#' @export
#' @seealso \link{spark.glm}, \link{glm}
#' @seealso \link{spark.kmeans}, \link{spark.naiveBayes}, \link{spark.survreg}
#' @seealso \link{read.ml}
NULL
#' Makes predictions from a MLlib model
#'
#' Makes predictions from a MLlib model. For more information, see the specific
#' MLlib model below.
#' @rdname predict
#' @name predict
#' @export
#' @seealso \link{spark.glm}, \link{glm}
#' @seealso \link{spark.kmeans}, \link{spark.naiveBayes}, \link{spark.survreg}
NULL
#' Generalized Linear Models
#'
#' Fits generalized linear model against a Spark DataFrame.
......@@ -146,7 +169,7 @@ setMethod("glm", signature(formula = "formula", family = "ANY", data = "SparkDat
})
# Returns the summary of a model produced by glm() or spark.glm(), similarly to R's summary().
#'
#' @param object A fitted generalized linear model
#' @return \code{summary} returns a summary object of the fitted model, a list of components
#' including at least the coefficients, null/residual deviance, null/residual degrees
......@@ -186,7 +209,7 @@ setMethod("summary", signature(object = "GeneralizedLinearRegressionModel"),
})
# Prints the summary of GeneralizedLinearRegressionModel
#'
#' @rdname spark.glm
#' @param x Summary object of fitted generalized linear model returned by \code{summary} function
#' @export
......@@ -345,7 +368,7 @@ setMethod("fitted", signature(object = "KMeansModel"),
})
# Get the summary of a k-means model
#'
#' @param object A fitted k-means model
#' @return \code{summary} returns the model's coefficients, size and cluster
#' @rdname spark.kmeans
......@@ -372,7 +395,7 @@ setMethod("summary", signature(object = "KMeansModel"),
})
# Predicted values based on a k-means model
#'
#' @return \code{predict} returns the predicted values based on a k-means model
#' @rdname spark.kmeans
#' @export
......@@ -465,7 +488,7 @@ setMethod("write.ml", signature(object = "AFTSurvivalRegressionModel", path = "c
})
# Saves the generalized linear model to the input path.
#'
#' @param path The directory where the model is saved
#' @param overwrite Overwrites or not if the output path already exists. Default is FALSE
#' which means throw exception if the output path exists.
......@@ -483,7 +506,7 @@ setMethod("write.ml", signature(object = "GeneralizedLinearRegressionModel", pat
})
# Save fitted MLlib model to the input path
#'
#' @param path The directory where the model is saved
#' @param overwrite Overwrites or not if the output path already exists. Default is FALSE
#' which means throw exception if the output path exists.
......@@ -508,6 +531,7 @@ setMethod("write.ml", signature(object = "KMeansModel", path = "character"),
#' @rdname read.ml
#' @name read.ml
#' @export
#' @seealso \link{write.ml}
#' @examples
#' \dontrun{
#' path <- "path/to/model"
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment