Skip to content
Snippets Groups Projects
Commit 2ad031be authored by Yanbo Liang's avatar Yanbo Liang Committed by Shivaram Venkataraman
Browse files

[SPARKR][DOC] SparkR ML user guides update for 2.0

## What changes were proposed in this pull request?
* Update SparkR ML section to make them consistent with SparkR API docs.
* Since #13972 adds labelling support for the ```include_example``` Jekyll plugin, so that we can split the single ```ml.R``` example file into multiple line blocks with different labels, and include them in different algorithms/models in the generated HTML page.

## How was this patch tested?
Only docs update, manually check the generated docs.

Author: Yanbo Liang <ybliang8@gmail.com>

Closes #14011 from yanboliang/r-user-guide-update.
parent 840853ed
No related branches found
No related tags found
No related merge requests found
......@@ -55,8 +55,9 @@ setClass("KMeansModel", representation(jobj = "jobj"))
#' Generalized Linear Models
#'
#' Fits generalized linear model against a Spark DataFrame. Users can print, make predictions on the
#' produced model and save the model to the input path.
#' Fits generalized linear model against a Spark DataFrame.
#' Users can call \code{summary} to print a summary of the fitted model, \code{predict} to make
#' predictions on new data, and \code{write.ml}/\code{read.ml} to save/load fitted models.
#'
#' @param data SparkDataFrame for training.
#' @param formula A symbolic description of the model to be fitted. Currently only a few formula
......@@ -270,7 +271,8 @@ setMethod("summary", signature(object = "NaiveBayesModel"),
#' K-Means Clustering Model
#'
#' Fits a k-means clustering model against a Spark DataFrame, similarly to R's kmeans().
#' Users can print, make predictions on the produced model and save the model to the input path.
#' Users can call \code{summary} to print a summary of the fitted model, \code{predict} to make
#' predictions on new data, and \code{write.ml}/\code{read.ml} to save/load fitted models.
#'
#' @param data SparkDataFrame for training
#' @param formula A symbolic description of the model to be fitted. Currently only a few formula
......
......@@ -355,32 +355,39 @@ head(teenagers)
# Machine Learning
SparkR supports the following Machine Learning algorithms.
SparkR supports the following machine learning algorithms currently: `Generalized Linear Model`, `Accelerated Failure Time (AFT) Survival Regression Model`, `Naive Bayes Model` and `KMeans Model`.
Under the hood, SparkR uses MLlib to train the model.
Users can call `summary` to print a summary of the fitted model, [predict](api/R/predict.html) to make predictions on new data, and [write.ml](api/R/write.ml.html)/[read.ml](api/R/read.ml.html) to save/load fitted models.
SparkR supports a subset of the available R formula operators for model fitting, including ‘~’, ‘.’, ‘:’, ‘+’, and ‘-‘.
* Generalized Linear Regression Model [spark.glm()](api/R/spark.glm.html)
* Naive Bayes [spark.naiveBayes()](api/R/spark.naiveBayes.html)
* KMeans [spark.kmeans()](api/R/spark.kmeans.html)
* AFT Survival Regression [spark.survreg()](api/R/spark.survreg.html)
## Algorithms
[Generalized Linear Regression](api/R/spark.glm.html) can be used to train a model from a specified family. Currently the Gaussian, Binomial, Poisson and Gamma families are supported. We support a subset of the available R formula operators for model fitting, including '~', '.', ':', '+', and '-'.
### Generalized Linear Model
The [summary()](api/R/summary.html) function gives the summary of a model produced by different algorithms listed above.
It produces the similar result compared with R summary function.
[spark.glm()](api/R/spark.glm.html) or [glm()](api/R/glm.html) fits generalized linear model against a Spark DataFrame.
Currently "gaussian", "binomial", "poisson" and "gamma" families are supported.
{% include_example glm r/ml.R %}
## Model persistence
### Accelerated Failure Time (AFT) Survival Regression Model
[spark.survreg()](api/R/spark.survreg.html) fits an accelerated failure time (AFT) survival regression model on a SparkDataFrame.
Note that the formula of [spark.survreg()](api/R/spark.survreg.html) does not support operator '.' currently.
{% include_example survreg r/ml.R %}
### Naive Bayes Model
* [write.ml](api/R/write.ml.html) allows users to save a fitted model in a given input path
* [read.ml](api/R/read.ml.html) allows users to read/load the model which was saved using write.ml in a given path
[spark.naiveBayes()](api/R/spark.naiveBayes.html) fits a Bernoulli naive Bayes model against a SparkDataFrame. Only categorical data is supported.
{% include_example naiveBayes r/ml.R %}
Model persistence is supported for all Machine Learning algorithms for all families.
### KMeans Model
The examples below show how to build several models:
* GLM using the Gaussian and Binomial model families
* AFT survival regression model
* Naive Bayes model
* K-Means model
[spark.kmeans()](api/R/spark.kmeans.html) fits a k-means clustering model against a Spark DataFrame, similarly to R's kmeans().
{% include_example kmeans r/ml.R %}
## Model persistence
{% include_example r/ml.R %}
The following example shows how to save/load a MLlib model by SparkR.
{% include_example read_write r/ml.R %}
# R Function Name Conflicts
......
......@@ -24,9 +24,8 @@ library(SparkR)
# Initialize SparkSession
sparkR.session(appName = "SparkR-ML-example")
# $example on$
############################ spark.glm and glm ##############################################
# $example on:glm$
irisDF <- suppressWarnings(createDataFrame(iris))
# Fit a generalized linear model of family "gaussian" with spark.glm
gaussianDF <- irisDF
......@@ -55,8 +54,9 @@ summary(binomialGLM)
# Prediction
binomialPredictions <- predict(binomialGLM, binomialTestDF)
showDF(binomialPredictions)
# $example off:glm$
############################ spark.survreg ##############################################
# $example on:survreg$
# Use the ovarian dataset available in R survival package
library(survival)
......@@ -72,9 +72,9 @@ summary(aftModel)
# Prediction
aftPredictions <- predict(aftModel, aftTestDF)
showDF(aftPredictions)
# $example off:survreg$
############################ spark.naiveBayes ##############################################
# $example on:naiveBayes$
# Fit a Bernoulli naive Bayes model with spark.naiveBayes
titanic <- as.data.frame(Titanic)
titanicDF <- createDataFrame(titanic[titanic$Freq > 0, -5])
......@@ -88,9 +88,9 @@ summary(nbModel)
# Prediction
nbPredictions <- predict(nbModel, nbTestDF)
showDF(nbPredictions)
# $example off:naiveBayes$
############################ spark.kmeans ##############################################
# $example on:kmeans$
# Fit a k-means model with spark.kmeans
irisDF <- suppressWarnings(createDataFrame(iris))
kmeansDF <- irisDF
......@@ -107,9 +107,9 @@ showDF(fitted(kmeansModel))
# Prediction
kmeansPredictions <- predict(kmeansModel, kmeansTestDF)
showDF(kmeansPredictions)
# $example off:kmeans$
############################ model read/write ##############################################
# $example on:read_write$
irisDF <- suppressWarnings(createDataFrame(iris))
# Fit a generalized linear model of family "gaussian" with spark.glm
gaussianDF <- irisDF
......@@ -120,7 +120,7 @@ gaussianGLM <- spark.glm(gaussianDF, Sepal_Length ~ Sepal_Width + Species, famil
modelPath <- tempfile(pattern = "ml", fileext = ".tmp")
write.ml(gaussianGLM, modelPath)
gaussianGLM2 <- read.ml(modelPath)
# $example off$
# Check model summary
summary(gaussianGLM2)
......@@ -129,7 +129,7 @@ gaussianPredictions <- predict(gaussianGLM2, gaussianTestDF)
showDF(gaussianPredictions)
unlink(modelPath)
# $example off:read_write$
############################ fit models with spark.lapply #####################################
# Perform distributed training of multiple models with spark.lapply
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment