-
actuaryzhang authored
[SPARK-20258][DOC][SPARKR] Fix SparkR logistic regression example in programming guide (did not converge) ## What changes were proposed in this pull request? SparkR logistic regression example did not converge in programming guide (for IRWLS). All estimates are essentially zero: ``` training2 <- read.df("data/mllib/sample_binary_classification_data.txt", source = "libsvm") df_list2 <- randomSplit(training2, c(7,3), 2) binomialDF <- df_list2[[1]] binomialTestDF <- df_list2[[2]] binomialGLM <- spark.glm(binomialDF, label ~ features, family = "binomial") 17/04/07 11:42:03 WARN WeightedLeastSquares: Cholesky solver failed due to singular covariance matrix. Retrying with Quasi-Newton solver. > summary(binomialGLM) Coefficients: Estimate (Intercept) 9.0255e+00 features_0 0.0000e+00 features_1 0.0000e+00 features_2 0.0000e+00 features_3 0.0000e+00 features_4 0.0000e+00 features_5 0.0000e+00 features_6 0.0000e+00 features_7 0.0000e+00 ``` Author: actuaryzhang <actuaryzhang10@gmail.com> Closes #17571 from actuaryzhang/programGuide2.
actuaryzhang authored[SPARK-20258][DOC][SPARKR] Fix SparkR logistic regression example in programming guide (did not converge) ## What changes were proposed in this pull request? SparkR logistic regression example did not converge in programming guide (for IRWLS). All estimates are essentially zero: ``` training2 <- read.df("data/mllib/sample_binary_classification_data.txt", source = "libsvm") df_list2 <- randomSplit(training2, c(7,3), 2) binomialDF <- df_list2[[1]] binomialTestDF <- df_list2[[2]] binomialGLM <- spark.glm(binomialDF, label ~ features, family = "binomial") 17/04/07 11:42:03 WARN WeightedLeastSquares: Cholesky solver failed due to singular covariance matrix. Retrying with Quasi-Newton solver. > summary(binomialGLM) Coefficients: Estimate (Intercept) 9.0255e+00 features_0 0.0000e+00 features_1 0.0000e+00 features_2 0.0000e+00 features_3 0.0000e+00 features_4 0.0000e+00 features_5 0.0000e+00 features_6 0.0000e+00 features_7 0.0000e+00 ``` Author: actuaryzhang <actuaryzhang10@gmail.com> Closes #17571 from actuaryzhang/programGuide2.
glm.R 2.60 KiB
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# To run this example use
# ./bin/spark-submit examples/src/main/r/ml/glm.R
# Load SparkR library into your R session
library(SparkR)
# Initialize SparkSession
sparkR.session(appName = "SparkR-ML-glm-example")
# $example on$
training <- read.df("data/mllib/sample_multiclass_classification_data.txt", source = "libsvm")
# Fit a generalized linear model of family "gaussian" with spark.glm
df_list <- randomSplit(training, c(7, 3), 2)
gaussianDF <- df_list[[1]]
gaussianTestDF <- df_list[[2]]
gaussianGLM <- spark.glm(gaussianDF, label ~ features, family = "gaussian")
# Model summary
summary(gaussianGLM)
# Prediction
gaussianPredictions <- predict(gaussianGLM, gaussianTestDF)
head(gaussianPredictions)
# Fit a generalized linear model with glm (R-compliant)
gaussianGLM2 <- glm(label ~ features, gaussianDF, family = "gaussian")
summary(gaussianGLM2)
# Fit a generalized linear model of family "binomial" with spark.glm
training2 <- read.df("data/mllib/sample_multiclass_classification_data.txt", source = "libsvm")
training2 <- transform(training2, label = cast(training2$label > 1, "integer"))
df_list2 <- randomSplit(training2, c(7, 3), 2)
binomialDF <- df_list2[[1]]
binomialTestDF <- df_list2[[2]]
binomialGLM <- spark.glm(binomialDF, label ~ features, family = "binomial")
# Model summary
summary(binomialGLM)
# Prediction
binomialPredictions <- predict(binomialGLM, binomialTestDF)
head(binomialPredictions)
# Fit a generalized linear model of family "tweedie" with spark.glm
training3 <- read.df("data/mllib/sample_multiclass_classification_data.txt", source = "libsvm")
tweedieDF <- transform(training3, label = training3$label * exp(randn(10)))
tweedieGLM <- spark.glm(tweedieDF, label ~ features, family = "tweedie",
var.power = 1.2, link.power = 0)
# Model summary
summary(tweedieGLM)
# $example off$
sparkR.session.stop()