# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # To run this example use # ./bin/spark-submit examples/src/main/r/ml/glm.R # Load SparkR library into your R session library(SparkR) # Initialize SparkSession sparkR.session(appName = "SparkR-ML-glm-example") # $example on$ training <- read.df("data/mllib/sample_multiclass_classification_data.txt", source = "libsvm") # Fit a generalized linear model of family "gaussian" with spark.glm df_list <- randomSplit(training, c(7, 3), 2) gaussianDF <- df_list[[1]] gaussianTestDF <- df_list[[2]] gaussianGLM <- spark.glm(gaussianDF, label ~ features, family = "gaussian") # Model summary summary(gaussianGLM) # Prediction gaussianPredictions <- predict(gaussianGLM, gaussianTestDF) head(gaussianPredictions) # Fit a generalized linear model with glm (R-compliant) gaussianGLM2 <- glm(label ~ features, gaussianDF, family = "gaussian") summary(gaussianGLM2) # Fit a generalized linear model of family "binomial" with spark.glm training2 <- read.df("data/mllib/sample_multiclass_classification_data.txt", source = "libsvm") training2 <- transform(training2, label = cast(training2$label > 1, "integer")) df_list2 <- randomSplit(training2, c(7, 3), 2) binomialDF <- df_list2[[1]] binomialTestDF <- df_list2[[2]] binomialGLM <- spark.glm(binomialDF, label ~ features, family = "binomial") # Model summary summary(binomialGLM) # Prediction binomialPredictions <- predict(binomialGLM, binomialTestDF) head(binomialPredictions) # Fit a generalized linear model of family "tweedie" with spark.glm training3 <- read.df("data/mllib/sample_multiclass_classification_data.txt", source = "libsvm") tweedieDF <- transform(training3, label = training3$label * exp(randn(10))) tweedieGLM <- spark.glm(tweedieDF, label ~ features, family = "tweedie", var.power = 1.2, link.power = 0) # Model summary summary(tweedieGLM) # $example off$ sparkR.session.stop()