Skip to content
Snippets Groups Projects
shared.py 12.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • #
    # Licensed to the Apache Software Foundation (ASF) under one or more
    # contributor license agreements.  See the NOTICE file distributed with
    # this work for additional information regarding copyright ownership.
    # The ASF licenses this file to You under the Apache License, Version 2.0
    # (the "License"); you may not use this file except in compliance with
    # the License.  You may obtain a copy of the License at
    #
    #    http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    #
    
    
    # DO NOT MODIFY THIS FILE! It was generated by _shared_params_code_gen.py.
    
    
    from pyspark.ml.param import Param, Params
    
    
    class HasMaxIter(Params):
        """
    
        Mixin for param maxIter: max number of iterations (>= 0).
    
        """
    
        # a placeholder to make it appear in the generated doc
    
        maxIter = Param(Params._dummy(), "maxIter", "max number of iterations (>= 0)")
    
    
        def __init__(self):
            super(HasMaxIter, self).__init__()
    
            #: param for max number of iterations (>= 0)
            self.maxIter = Param(self, "maxIter", "max number of iterations (>= 0)")
    
            if None is not None:
                self._setDefault(maxIter=None)
    
    
        def setMaxIter(self, value):
            """
            Sets the value of :py:attr:`maxIter`.
            """
            self.paramMap[self.maxIter] = value
            return self
    
        def getMaxIter(self):
            """
            Gets the value of maxIter or its default value.
            """
    
            return self.getOrDefault(self.maxIter)
    
        Mixin for param regParam: regularization parameter (>= 0).
    
        """
    
        # a placeholder to make it appear in the generated doc
    
        regParam = Param(Params._dummy(), "regParam", "regularization parameter (>= 0)")
    
    
        def __init__(self):
            super(HasRegParam, self).__init__()
    
            #: param for regularization parameter (>= 0)
            self.regParam = Param(self, "regParam", "regularization parameter (>= 0)")
    
            if None is not None:
                self._setDefault(regParam=None)
    
    
        def setRegParam(self, value):
            """
            Sets the value of :py:attr:`regParam`.
            """
            self.paramMap[self.regParam] = value
            return self
    
        def getRegParam(self):
            """
            Gets the value of regParam or its default value.
            """
    
            return self.getOrDefault(self.regParam)
    
        Mixin for param featuresCol: features column name.
    
        """
    
        # a placeholder to make it appear in the generated doc
    
        featuresCol = Param(Params._dummy(), "featuresCol", "features column name")
    
    
        def __init__(self):
            super(HasFeaturesCol, self).__init__()
            #: param for features column name
    
            self.featuresCol = Param(self, "featuresCol", "features column name")
            if 'features' is not None:
                self._setDefault(featuresCol='features')
    
    
        def setFeaturesCol(self, value):
            """
            Sets the value of :py:attr:`featuresCol`.
            """
            self.paramMap[self.featuresCol] = value
            return self
    
        def getFeaturesCol(self):
            """
            Gets the value of featuresCol or its default value.
            """
    
            return self.getOrDefault(self.featuresCol)
    
        Mixin for param labelCol: label column name.
    
        """
    
        # a placeholder to make it appear in the generated doc
    
        labelCol = Param(Params._dummy(), "labelCol", "label column name")
    
    
        def __init__(self):
            super(HasLabelCol, self).__init__()
            #: param for label column name
    
            self.labelCol = Param(self, "labelCol", "label column name")
            if 'label' is not None:
                self._setDefault(labelCol='label')
    
    
        def setLabelCol(self, value):
            """
            Sets the value of :py:attr:`labelCol`.
            """
            self.paramMap[self.labelCol] = value
            return self
    
        def getLabelCol(self):
            """
            Gets the value of labelCol or its default value.
            """
    
            return self.getOrDefault(self.labelCol)
    
        Mixin for param predictionCol: prediction column name.
    
        """
    
        # a placeholder to make it appear in the generated doc
    
        predictionCol = Param(Params._dummy(), "predictionCol", "prediction column name")
    
    
        def __init__(self):
            super(HasPredictionCol, self).__init__()
            #: param for prediction column name
    
            self.predictionCol = Param(self, "predictionCol", "prediction column name")
            if 'prediction' is not None:
                self._setDefault(predictionCol='prediction')
    
    
        def setPredictionCol(self, value):
            """
            Sets the value of :py:attr:`predictionCol`.
            """
            self.paramMap[self.predictionCol] = value
            return self
    
        def getPredictionCol(self):
            """
            Gets the value of predictionCol or its default value.
            """
    
            return self.getOrDefault(self.predictionCol)
    
    class HasRawPredictionCol(Params):
        """
    
        Mixin for param rawPredictionCol: raw prediction (a.k.a. confidence) column name.
    
        """
    
        # a placeholder to make it appear in the generated doc
    
        rawPredictionCol = Param(Params._dummy(), "rawPredictionCol", "raw prediction (a.k.a. confidence) column name")
    
    
        def __init__(self):
            super(HasRawPredictionCol, self).__init__()
    
            #: param for raw prediction (a.k.a. confidence) column name
            self.rawPredictionCol = Param(self, "rawPredictionCol", "raw prediction (a.k.a. confidence) column name")
    
            if 'rawPrediction' is not None:
                self._setDefault(rawPredictionCol='rawPrediction')
    
        def setRawPredictionCol(self, value):
            """
            Sets the value of :py:attr:`rawPredictionCol`.
            """
            self.paramMap[self.rawPredictionCol] = value
            return self
    
        def getRawPredictionCol(self):
            """
            Gets the value of rawPredictionCol or its default value.
            """
            return self.getOrDefault(self.rawPredictionCol)
    
    
    
        Mixin for param inputCol: input column name.
    
        """
    
        # a placeholder to make it appear in the generated doc
    
        inputCol = Param(Params._dummy(), "inputCol", "input column name")
    
    
        def __init__(self):
            super(HasInputCol, self).__init__()
            #: param for input column name
    
            self.inputCol = Param(self, "inputCol", "input column name")
            if None is not None:
                self._setDefault(inputCol=None)
    
    
        def setInputCol(self, value):
            """
            Sets the value of :py:attr:`inputCol`.
            """
            self.paramMap[self.inputCol] = value
            return self
    
        def getInputCol(self):
            """
            Gets the value of inputCol or its default value.
            """
    
            return self.getOrDefault(self.inputCol)
    
    class HasInputCols(Params):
        """
        Mixin for param inputCols: input column names.
        """
    
        # a placeholder to make it appear in the generated doc
        inputCols = Param(Params._dummy(), "inputCols", "input column names")
    
        def __init__(self):
            super(HasInputCols, self).__init__()
            #: param for input column names
            self.inputCols = Param(self, "inputCols", "input column names")
            if None is not None:
                self._setDefault(inputCols=None)
    
        def setInputCols(self, value):
            """
            Sets the value of :py:attr:`inputCols`.
            """
            self.paramMap[self.inputCols] = value
            return self
    
        def getInputCols(self):
            """
            Gets the value of inputCols or its default value.
            """
            return self.getOrDefault(self.inputCols)
    
    
    
    class HasOutputCol(Params):
        """
    
        Mixin for param outputCol: output column name.
    
        """
    
        # a placeholder to make it appear in the generated doc
    
        outputCol = Param(Params._dummy(), "outputCol", "output column name")
    
    
        def __init__(self):
            super(HasOutputCol, self).__init__()
            #: param for output column name
    
            self.outputCol = Param(self, "outputCol", "output column name")
            if None is not None:
                self._setDefault(outputCol=None)
    
    
        def setOutputCol(self, value):
            """
            Sets the value of :py:attr:`outputCol`.
            """
            self.paramMap[self.outputCol] = value
            return self
    
        def getOutputCol(self):
            """
            Gets the value of outputCol or its default value.
            """
    
            return self.getOrDefault(self.outputCol)
    
        Mixin for param numFeatures: number of features.
    
        """
    
        # a placeholder to make it appear in the generated doc
    
        numFeatures = Param(Params._dummy(), "numFeatures", "number of features")
    
    
        def __init__(self):
            super(HasNumFeatures, self).__init__()
            #: param for number of features
    
            self.numFeatures = Param(self, "numFeatures", "number of features")
            if None is not None:
                self._setDefault(numFeatures=None)
    
    
        def setNumFeatures(self, value):
            """
            Sets the value of :py:attr:`numFeatures`.
            """
            self.paramMap[self.numFeatures] = value
            return self
    
        def getNumFeatures(self):
            """
            Gets the value of numFeatures or its default value.
            """
    
            return self.getOrDefault(self.numFeatures)
    
    class HasCheckpointInterval(Params):
        """
        Mixin for param checkpointInterval: checkpoint interval (>= 1).
        """
    
        # a placeholder to make it appear in the generated doc
        checkpointInterval = Param(Params._dummy(), "checkpointInterval", "checkpoint interval (>= 1)")
    
        def __init__(self):
            super(HasCheckpointInterval, self).__init__()
            #: param for checkpoint interval (>= 1)
            self.checkpointInterval = Param(self, "checkpointInterval", "checkpoint interval (>= 1)")
            if None is not None:
                self._setDefault(checkpointInterval=None)
    
        def setCheckpointInterval(self, value):
            """
            Sets the value of :py:attr:`checkpointInterval`.
            """
            self.paramMap[self.checkpointInterval] = value
            return self
    
        def getCheckpointInterval(self):
            """
            Gets the value of checkpointInterval or its default value.
            """
            return self.getOrDefault(self.checkpointInterval)
    
    
    
    class HasSeed(Params):
        """
        Mixin for param seed: random seed.
        """
    
        # a placeholder to make it appear in the generated doc
        seed = Param(Params._dummy(), "seed", "random seed")
    
        def __init__(self):
            super(HasSeed, self).__init__()
            #: param for random seed
            self.seed = Param(self, "seed", "random seed")
            if None is not None:
                self._setDefault(seed=None)
    
        def setSeed(self, value):
            """
            Sets the value of :py:attr:`seed`.
            """
            self.paramMap[self.seed] = value
            return self
    
        def getSeed(self):
            """
            Gets the value of seed or its default value.
            """
            return self.getOrDefault(self.seed)
    
    
    class HasTol(Params):
        """
        Mixin for param tol: the convergence tolerance for iterative algorithms.
        """
    
        # a placeholder to make it appear in the generated doc
        tol = Param(Params._dummy(), "tol", "the convergence tolerance for iterative algorithms")
    
        def __init__(self):
            super(HasTol, self).__init__()
            #: param for the convergence tolerance for iterative algorithms
            self.tol = Param(self, "tol", "the convergence tolerance for iterative algorithms")
            if None is not None:
                self._setDefault(tol=None)
    
        def setTol(self, value):
            """
            Sets the value of :py:attr:`tol`.
            """
            self.paramMap[self.tol] = value
            return self
    
        def getTol(self):
            """
            Gets the value of tol or its default value.
            """
            return self.getOrDefault(self.tol)
    
    
    class HasStepSize(Params):
        """
        Mixin for param stepSize: Step size to be used for each iteration of optimization..
        """
    
        # a placeholder to make it appear in the generated doc
    
        stepSize = Param(Params._dummy(), "stepSize", "Step size to be used for each iteration of optimization.")
    
    
        def __init__(self):
            super(HasStepSize, self).__init__()
            #: param for Step size to be used for each iteration of optimization.
    
            self.stepSize = Param(self, "stepSize", "Step size to be used for each iteration of optimization.")
    
            if None is not None:
                self._setDefault(stepSize=None)
    
        def setStepSize(self, value):
            """
            Sets the value of :py:attr:`stepSize`.
            """
            self.paramMap[self.stepSize] = value
            return self
    
        def getStepSize(self):
            """
            Gets the value of stepSize or its default value.
            """
            return self.getOrDefault(self.stepSize)