Newer
Older
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# DO NOT MODIFY THIS FILE! It was generated by _shared_params_code_gen.py.
from pyspark.ml.param import Param, Params
class HasMaxIter(Params):
"""
Mixin for param maxIter: max number of iterations (>= 0).
"""
# a placeholder to make it appear in the generated doc
maxIter = Param(Params._dummy(), "maxIter", "max number of iterations (>= 0)")
def __init__(self):
super(HasMaxIter, self).__init__()
#: param for max number of iterations (>= 0)
self.maxIter = Param(self, "maxIter", "max number of iterations (>= 0)")
if None is not None:
self._setDefault(maxIter=None)
def setMaxIter(self, value):
"""
Sets the value of :py:attr:`maxIter`.
"""
self.paramMap[self.maxIter] = value
return self
def getMaxIter(self):
"""
Gets the value of maxIter or its default value.
"""
return self.getOrDefault(self.maxIter)
class HasRegParam(Params):
"""
Mixin for param regParam: regularization parameter (>= 0).
"""
# a placeholder to make it appear in the generated doc
regParam = Param(Params._dummy(), "regParam", "regularization parameter (>= 0)")
def __init__(self):
super(HasRegParam, self).__init__()
#: param for regularization parameter (>= 0)
self.regParam = Param(self, "regParam", "regularization parameter (>= 0)")
if None is not None:
self._setDefault(regParam=None)
def setRegParam(self, value):
"""
Sets the value of :py:attr:`regParam`.
"""
self.paramMap[self.regParam] = value
return self
def getRegParam(self):
"""
Gets the value of regParam or its default value.
"""
return self.getOrDefault(self.regParam)
class HasFeaturesCol(Params):
"""
Mixin for param featuresCol: features column name.
"""
# a placeholder to make it appear in the generated doc
featuresCol = Param(Params._dummy(), "featuresCol", "features column name")
def __init__(self):
super(HasFeaturesCol, self).__init__()
#: param for features column name
self.featuresCol = Param(self, "featuresCol", "features column name")
if 'features' is not None:
self._setDefault(featuresCol='features')
def setFeaturesCol(self, value):
"""
Sets the value of :py:attr:`featuresCol`.
"""
self.paramMap[self.featuresCol] = value
return self
def getFeaturesCol(self):
"""
Gets the value of featuresCol or its default value.
"""
return self.getOrDefault(self.featuresCol)
class HasLabelCol(Params):
"""
Mixin for param labelCol: label column name.
"""
# a placeholder to make it appear in the generated doc
labelCol = Param(Params._dummy(), "labelCol", "label column name")
def __init__(self):
super(HasLabelCol, self).__init__()
#: param for label column name
self.labelCol = Param(self, "labelCol", "label column name")
if 'label' is not None:
self._setDefault(labelCol='label')
def setLabelCol(self, value):
"""
Sets the value of :py:attr:`labelCol`.
"""
self.paramMap[self.labelCol] = value
return self
def getLabelCol(self):
"""
Gets the value of labelCol or its default value.
"""
return self.getOrDefault(self.labelCol)
class HasPredictionCol(Params):
"""
Mixin for param predictionCol: prediction column name.
"""
# a placeholder to make it appear in the generated doc
predictionCol = Param(Params._dummy(), "predictionCol", "prediction column name")
def __init__(self):
super(HasPredictionCol, self).__init__()
#: param for prediction column name
self.predictionCol = Param(self, "predictionCol", "prediction column name")
if 'prediction' is not None:
self._setDefault(predictionCol='prediction')
def setPredictionCol(self, value):
"""
Sets the value of :py:attr:`predictionCol`.
"""
self.paramMap[self.predictionCol] = value
return self
def getPredictionCol(self):
"""
Gets the value of predictionCol or its default value.
"""
return self.getOrDefault(self.predictionCol)
class HasRawPredictionCol(Params):
"""
Mixin for param rawPredictionCol: raw prediction (a.k.a. confidence) column name.
"""
# a placeholder to make it appear in the generated doc
rawPredictionCol = Param(Params._dummy(), "rawPredictionCol", "raw prediction (a.k.a. confidence) column name")
def __init__(self):
super(HasRawPredictionCol, self).__init__()
#: param for raw prediction (a.k.a. confidence) column name
self.rawPredictionCol = Param(self, "rawPredictionCol", "raw prediction (a.k.a. confidence) column name")
if 'rawPrediction' is not None:
self._setDefault(rawPredictionCol='rawPrediction')
def setRawPredictionCol(self, value):
"""
Sets the value of :py:attr:`rawPredictionCol`.
"""
self.paramMap[self.rawPredictionCol] = value
return self
def getRawPredictionCol(self):
"""
Gets the value of rawPredictionCol or its default value.
"""
return self.getOrDefault(self.rawPredictionCol)
class HasInputCol(Params):
"""
Mixin for param inputCol: input column name.
"""
# a placeholder to make it appear in the generated doc
inputCol = Param(Params._dummy(), "inputCol", "input column name")
def __init__(self):
super(HasInputCol, self).__init__()
#: param for input column name
self.inputCol = Param(self, "inputCol", "input column name")
if None is not None:
self._setDefault(inputCol=None)
def setInputCol(self, value):
"""
Sets the value of :py:attr:`inputCol`.
"""
self.paramMap[self.inputCol] = value
return self
def getInputCol(self):
"""
Gets the value of inputCol or its default value.
"""
return self.getOrDefault(self.inputCol)
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
class HasInputCols(Params):
"""
Mixin for param inputCols: input column names.
"""
# a placeholder to make it appear in the generated doc
inputCols = Param(Params._dummy(), "inputCols", "input column names")
def __init__(self):
super(HasInputCols, self).__init__()
#: param for input column names
self.inputCols = Param(self, "inputCols", "input column names")
if None is not None:
self._setDefault(inputCols=None)
def setInputCols(self, value):
"""
Sets the value of :py:attr:`inputCols`.
"""
self.paramMap[self.inputCols] = value
return self
def getInputCols(self):
"""
Gets the value of inputCols or its default value.
"""
return self.getOrDefault(self.inputCols)
class HasOutputCol(Params):
"""
Mixin for param outputCol: output column name.
"""
# a placeholder to make it appear in the generated doc
outputCol = Param(Params._dummy(), "outputCol", "output column name")
def __init__(self):
super(HasOutputCol, self).__init__()
#: param for output column name
self.outputCol = Param(self, "outputCol", "output column name")
if None is not None:
self._setDefault(outputCol=None)
def setOutputCol(self, value):
"""
Sets the value of :py:attr:`outputCol`.
"""
self.paramMap[self.outputCol] = value
return self
def getOutputCol(self):
"""
Gets the value of outputCol or its default value.
"""
return self.getOrDefault(self.outputCol)
class HasNumFeatures(Params):
"""
Mixin for param numFeatures: number of features.
"""
# a placeholder to make it appear in the generated doc
numFeatures = Param(Params._dummy(), "numFeatures", "number of features")
def __init__(self):
super(HasNumFeatures, self).__init__()
#: param for number of features
self.numFeatures = Param(self, "numFeatures", "number of features")
if None is not None:
self._setDefault(numFeatures=None)
def setNumFeatures(self, value):
"""
Sets the value of :py:attr:`numFeatures`.
"""
self.paramMap[self.numFeatures] = value
return self
def getNumFeatures(self):
"""
Gets the value of numFeatures or its default value.
"""
return self.getOrDefault(self.numFeatures)
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
class HasCheckpointInterval(Params):
"""
Mixin for param checkpointInterval: checkpoint interval (>= 1).
"""
# a placeholder to make it appear in the generated doc
checkpointInterval = Param(Params._dummy(), "checkpointInterval", "checkpoint interval (>= 1)")
def __init__(self):
super(HasCheckpointInterval, self).__init__()
#: param for checkpoint interval (>= 1)
self.checkpointInterval = Param(self, "checkpointInterval", "checkpoint interval (>= 1)")
if None is not None:
self._setDefault(checkpointInterval=None)
def setCheckpointInterval(self, value):
"""
Sets the value of :py:attr:`checkpointInterval`.
"""
self.paramMap[self.checkpointInterval] = value
return self
def getCheckpointInterval(self):
"""
Gets the value of checkpointInterval or its default value.
"""
return self.getOrDefault(self.checkpointInterval)
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
class HasSeed(Params):
"""
Mixin for param seed: random seed.
"""
# a placeholder to make it appear in the generated doc
seed = Param(Params._dummy(), "seed", "random seed")
def __init__(self):
super(HasSeed, self).__init__()
#: param for random seed
self.seed = Param(self, "seed", "random seed")
if None is not None:
self._setDefault(seed=None)
def setSeed(self, value):
"""
Sets the value of :py:attr:`seed`.
"""
self.paramMap[self.seed] = value
return self
def getSeed(self):
"""
Gets the value of seed or its default value.
"""
return self.getOrDefault(self.seed)
class HasTol(Params):
"""
Mixin for param tol: the convergence tolerance for iterative algorithms.
"""
# a placeholder to make it appear in the generated doc
tol = Param(Params._dummy(), "tol", "the convergence tolerance for iterative algorithms")
def __init__(self):
super(HasTol, self).__init__()
#: param for the convergence tolerance for iterative algorithms
self.tol = Param(self, "tol", "the convergence tolerance for iterative algorithms")
if None is not None:
self._setDefault(tol=None)
def setTol(self, value):
"""
Sets the value of :py:attr:`tol`.
"""
self.paramMap[self.tol] = value
return self
def getTol(self):
"""
Gets the value of tol or its default value.
"""
return self.getOrDefault(self.tol)
class HasStepSize(Params):
"""
Mixin for param stepSize: Step size to be used for each iteration of optimization..
"""
# a placeholder to make it appear in the generated doc
stepSize = Param(Params._dummy(), "stepSize", "Step size to be used for each iteration of optimization.")
def __init__(self):
super(HasStepSize, self).__init__()
#: param for Step size to be used for each iteration of optimization.
self.stepSize = Param(self, "stepSize", "Step size to be used for each iteration of optimization.")
if None is not None:
self._setDefault(stepSize=None)
def setStepSize(self, value):
"""
Sets the value of :py:attr:`stepSize`.
"""
self.paramMap[self.stepSize] = value
return self
def getStepSize(self):
"""
Gets the value of stepSize or its default value.
"""
return self.getOrDefault(self.stepSize)