Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
AWG control
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
whuie2
AWG control
Commits
2495e5d3
Commit
2495e5d3
authored
2 years ago
by
xiyehu2
Browse files
Options
Downloads
Patches
Plain Diff
Minimum weight matching path finding.
parent
06feb429
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Python/waveform.py
+43
-228
43 additions, 228 deletions
Python/waveform.py
with
43 additions
and
228 deletions
Python/waveform.py
+
43
−
228
View file @
2495e5d3
...
...
@@ -58,7 +58,7 @@ def create_static_array(wfm: Waveform, full=False) -> np.ndarray:
return
sig
.
astype
(
np
.
int16
)
def
create_path_table
(
wfm
:
Waveform
)
->
any
:
def
create_path_table
_old
(
wfm
:
Waveform
)
->
any
:
"""
create a dim-3 look up table where the table[i,j] contains a sine wave to move tweezer i to tweezer j
:param wfm: waveform object already initialized with basic parameters.
...
...
@@ -175,171 +175,7 @@ def stack_right(i_start, i_end, offset, stack_size=0):
return
moves
,
max_dist
def
get_paths_dist
(
nt
,
target_idx
,
max_dist
):
moves
=
[]
for
i
in
range
(
nt
):
for
j
in
target_idx
:
if
i
<
j
and
True
:
# only allow uni-direction moves
continue
if
abs
(
i
-
j
)
<=
max_dist
:
moves
.
append
(
i
,
j
)
return
moves
def
create_path_table_reduced
(
wfm
:
Waveform
,
target_idx
,
dist_offset
=
np
.
inf
,
save_path
=
None
,
partition
=
False
)
->
Tuple
[
Dict
[
Tuple
[
int
,
int
],
np
.
ndarray
],
np
.
ndarray
]:
"""
create a dim-3 look up table where the table[i,j] contains a sine wave to move tweezer i to tweezer j
:param save_path: file saving path
:param target_idx: indices of target pattern
:param dist_offset: maximum move distance in indices
:param wfm: waveform object already initialized with basic parameters.
:return: dictionary containing rearrange paths
"""
# interpolate optimal amplitudes
# data = np.load("data/optimal_amps.npz")
w
=
wfm
.
omega
a
=
wfm
.
amplitude
omega_interp
=
interp1d
(
w
,
a
,
kind
=
'
cubic
'
)
nt
=
len
(
wfm
.
omega
)
# total number of tweezers
moves
=
[]
target
=
np
.
zeros
(
nt
)
target
[
target_idx
]
=
1
dw_max
=
0
# longest move, this sets the size of path_table
if
not
partition
:
# obtain all move combinations, target based, non-partitioned:
for
i
in
range
(
nt
):
moves
.
append
([])
for
j
in
target_idx
:
if
i
<
j
and
True
:
# only allow uni-direction moves
continue
if
abs
(
i
-
j
)
<=
dist_offset
:
moves
[
i
].
append
(
j
)
dw
=
abs
(
wfm
.
omega
[
j
]
-
wfm
.
omega
[
i
])
if
dw_max
<
dw
:
dw_max
=
dw
if
partition
:
offset
=
dist_offset
divide_idx
=
int
(
np
.
floor
(
np
.
median
(
target_idx
)))
left_size
=
np
.
sum
(
target
[:
divide_idx
],
dtype
=
int
)
right_size
=
np
.
sum
(
target
[
divide_idx
:],
dtype
=
int
)
moves_l
,
dw_max_l
=
stack_right
(
0
,
divide_idx
,
offset
,
left_size
)
# stack left side to right
moves_r
,
dw_max_r
=
stack_left
(
divide_idx
,
nt
,
offset
,
right_size
)
# print("stack size, half size, middle:", len(t_idx), left_size, right_size)
moves_l
.
extend
(
moves_r
)
moves
=
moves_l
dw_max
=
dw_max_l
if
dw_max_l
>
dw_max_r
else
dw_max_r
dw_max
=
abs
(
wfm
.
omega
[
dw_max
]
-
wfm
.
omega
[
0
])
print
(
"
max dw:
"
,
dw_max
/
2
/
np
.
pi
)
# setup basic variables
twopi
=
2
*
np
.
pi
vmax
=
KILO
(
20
)
*
MEGA
(
1
)
# convert units, 20 kHz/us -> 20e3 * 1e6 Hz/s
t_max
=
2
*
dw_max
/
vmax
# Longest move sets the maximum moving time
a_max
=
vmax
*
2
/
t_max
# maximum acceleration, negative sign because of magic
# get number of samples required for longest move,this sets the size of lookup table
sample_len
=
int
(
np
.
ceil
(
t_max
*
wfm
.
sample_rate
))
# sample_len += (512 - sample_len % 512) # make overall length a multiple of 512 so AWG doesn't freak out
sample_len
+=
wfm
.
sample_len_min
-
sample_len
%
wfm
.
sample_len_min
sample_len
=
int
(
sample_len
)
# now we calculate all possible trajectories, go to Group Notes/Projects/Rearrangement for detail
path_table
=
{}
# lookup table to store all moves
static_sig
=
np
.
zeros
(
sample_len
)
# for fast real-time waveform generation purposes
t
=
np
.
arange
(
sample_len
)
/
wfm
.
sample_rate
# time series
# iterate!
for
i
in
range
(
nt
):
omega_i
=
wfm
.
omega
[
i
]
for
j
in
moves
[
i
]:
# j is the target position, i is starting position
omega_j
=
wfm
.
omega
[
j
]
if
i
==
j
:
path
=
(
wfm
.
amplitude
[
i
]
*
np
.
sin
(
omega_i
*
t
+
wfm
.
phi
[
i
])
)
static_sig
+=
path
# path = omega_i * t + wfm.phi[i]
path_table
[(
i
,
i
)]
=
path
continue
# skip diagonal entries
path
=
np
.
zeros
(
sample_len
)
# I advise reading through the notes page first before going further
dw
=
omega_j
-
omega_i
# delta omega in the equation
adw
=
abs
(
dw
)
t_tot
=
np
.
sqrt
(
abs
(
4
*
dw
/
a_max
))
# calculate minimum time to complete move
phi_j
=
wfm
.
phi
[
j
]
%
twopi
# wrap around two pi
phi_i
=
wfm
.
phi
[
i
]
%
twopi
dphi
=
(
phi_j
-
phi_i
)
%
twopi
# delta phi in the equation
if
dphi
<
0
:
dphi
=
abs
(
dphi
)
+
twopi
-
phi_i
# warp around for negative phase shift
t_tot
+=
12
*
np
.
pi
/
adw
-
(
(
t_tot
-
6
*
dphi
/
adw
)
%
(
12
*
np
.
pi
/
adw
))
# extend move time to arrive at the correct phase
a
=
4
*
(
omega_i
-
omega_j
)
/
(
t_tot
**
2
)
# adjust acceleration accordingly to ensure we still get to omega_j
end
=
int
(
np
.
round
(
t_tot
*
wfm
.
sample_rate
))
# convert to an index in samples
# print(f'({i},{j}), {end}')
half
=
int
(
end
/
2
)
+
1
# index of sample half-way through the move where equation changes
# t_tot = t[end]
t1
=
t
[:
half
]
# first half of the move, slicing to make life easier
t2
=
t
[
half
:
end
]
-
t_tot
/
2
# time series for second half of the move
# a = 4 * adw / (t_tot ** 2) # adjust acceleration accordingly to ensure we still get to omega_j
# interpolate amplitudes during the move
amps
=
np
.
zeros
(
sample_len
)
inst_w
=
np
.
zeros
(
end
)
inst_w
[
0
]
=
omega_i
inst_w
[
-
1
]
=
omega_j
inst_w
[
1
:
half
]
=
omega_i
-
0.5
*
a
*
t1
[
1
:]
**
2
inst_w
[
half
:
end
-
1
]
=
omega_i
-
\
a
/
2
*
(
t_tot
/
2
)
**
2
-
\
a
*
t_tot
/
2
*
t2
[:
-
1
]
+
\
a
/
2
*
t2
[:
-
1
]
**
2
sw
=
omega_i
bw
=
omega_j
if
omega_i
>
omega_j
:
sw
=
omega_j
bw
=
omega_i
inst_w
[
inst_w
<
sw
]
=
sw
inst_w
[
inst_w
>
bw
]
=
bw
amps
[:
end
]
=
omega_interp
(
inst_w
)
amps
[
end
:]
=
wfm
.
amplitude
[
j
]
# frequency/phase diagnostic
# print(i,j)
# print(inst_w[-2] - omega_j)
# print(a*t_tot**3/24 % np.pi - dphi)
# print(end)
# print()
# calculate sine wave
path
[:
half
]
=
wfm
.
phi
[
i
]
+
omega_i
*
t1
-
a
/
6
*
t1
**
3
# t<=T/2
# ph = wfm.phi[i] + omega_i * t_tot / 2 + a / 6 * (t_tot / 2) ** 3
path
[
half
:
end
]
=
path
[
half
-
1
]
+
\
(
omega_i
-
a
/
2
*
(
t_tot
/
2
)
**
2
)
*
t2
-
\
a
/
2
*
t_tot
/
2
*
t2
**
2
+
\
a
/
6
*
t2
**
3
# t>=T/2
path
[
end
:]
=
path
[
end
-
1
]
+
omega_j
*
(
t
[
end
:]
-
t
[
end
-
1
])
path
=
(
amps
*
np
.
sin
(
path
))
path_table
[(
i
,
j
)]
=
path
for
key
in
path_table
:
if
key
[
0
]
!=
key
[
1
]:
path_table
[
key
]
-=
path_table
[(
key
[
1
],
key
[
1
])]
# for fast real-time generation
path_table
[
key
]
=
path_table
[
key
].
astype
(
np
.
int16
)
static_sig
=
static_sig
.
astype
(
np
.
int16
)
# save stuff if prompted
if
save_path
is
not
None
:
np
.
savez
(
save_path
,
table
=
path_table
,
static_sig
=
static_sig
,
wfm
=
wfm
,
target
=
target_idx
)
return
path_table
,
static_sig
def
create_path_table_reduced_gpu
(
def
create_path_table_gpu
(
wfm
:
Waveform
,
t_idx
,
pre_paths
,
save_path
=
None
,
)
->
Tuple
[
Dict
[
Tuple
[
int
,
int
],
np
.
ndarray
],
np
.
ndarray
]:
"""
...
...
@@ -366,7 +202,7 @@ def create_path_table_reduced_gpu(
# setup basic variables
twopi
=
2
*
np
.
pi
vmax
=
KILO
(
4
0
)
*
MEGA
(
1
)
# convert units, 20 kHz/us -> 20e3 * 1e6 Hz/s
vmax
=
KILO
(
6
0
)
*
MEGA
(
1
)
# convert units, 20 kHz/us -> 20e3 * 1e6 Hz/s
t_max
=
2
*
dw_max
/
vmax
# Longest move sets the maximum moving time
a_max
=
vmax
*
2
/
t_max
# maximum acceleration, negative sign because of magic
# get number of samples required for longest move,this sets the size of lookup table
...
...
@@ -472,44 +308,38 @@ def create_path_table_reduced_gpu(
def
get_rearrange_paths
(
f
illed
_idx
:
np
.
ndarray
,
targe
t_idx
:
np
.
ndarray
,
)
->
List
[
Tuple
[
Any
,
Any
]]
:
f_idx
:
np
.
ndarray
,
t_idx
:
np
.
ndarray
,
)
->
np
.
ndarray
:
"""
Calculate rearranging paths.
:param f
illed
_idx: indices of tweezer positions filled with atoms.
:param
targe
t_idx: indices of tweezer positions in target pattern.
:returns:
list
containing
tuples of
moving paths
Finds the minimum weight perfect matching between f_idx and t_idx
:param f_idx: indices of tweezer positions filled with atoms.
:param t_idx: indices of tweezer positions in target pattern.
:returns:
2d numpy array
containing moving path
trajectorie
s
"""
t_size
=
target_idx
.
size
f_size
=
filled_idx
.
size
reserve
=
f_size
-
t_size
paths
=
[]
i
=
0
j
=
0
while
i
<
f_size
:
if
j
==
t_size
:
break
if
filled_idx
[
i
]
==
target_idx
[
j
]:
# paths.append((filled_idx[i], filled_idx[i]))
j
+=
1
i
+=
1
elif
(
reserve
>
0
and
filled_idx
[
i
]
<
target_idx
[
j
]
and
abs
(
filled_idx
[
i
+
1
]
-
target_idx
[
j
])
<
abs
(
filled_idx
[
i
]
-
target_idx
[
j
])):
i
+=
1
reserve
-=
1
if
len
(
f_idx
)
<
len
(
t_idx
):
return
np
.
array
([])
l_ptr
=
np
.
searchsorted
(
f_idx
,
t_idx
[
0
])
r_ptr
=
np
.
searchsorted
(
f_idx
,
t_idx
[
-
1
],
side
=
'
right
'
)
-
1
n_unpaired
=
len
(
t_idx
)
-
len
(
f_idx
[
l_ptr
:
r_ptr
+
1
])
while
n_unpaired
>
0
:
if
l_ptr
==
0
:
r_ptr
+=
n_unpaired
break
if
r_ptr
==
len
(
f_idx
)
-
1
:
l_ptr
-=
n_unpaired
break
l_dist
=
abs
(
t_idx
[
0
]
-
f_idx
[
l_ptr
-
1
])
r_dist
=
abs
(
f_idx
[
r_ptr
+
1
]
-
t_idx
[
-
1
])
if
l_dist
<
r_dist
:
l_ptr
-=
1
else
:
paths
.
append
((
filled_idx
[
i
],
target_idx
[
j
]))
i
+=
1
j
+=
1
# off = []
# if reserve < 0:
# for i in range(abs(reserve)):
# off.append(target_idx[-1 - i])
return
paths
r_ptr
+=
1
n_unpaired
-=
1
return
np
.
vstack
((
f_idx
[
l_ptr
:
r_ptr
+
1
],
t_idx
)).
T
def
create_moving_array
(
path_table
:
np
.
ndarray
,
paths
:
np
.
ndarray
)
->
np
.
ndarray
:
def
create_moving_array
_old
(
path_table
:
np
.
ndarray
,
paths
:
np
.
ndarray
)
->
np
.
ndarray
:
"""
create a rearranging signal that moves tweezers as specified by paths
:param path_table: lookup table returned from create_path_table().
...
...
@@ -518,66 +348,51 @@ def create_moving_array(path_table: np.ndarray, paths: np.ndarray) -> np.ndarray
return
np
.
sum
(
path_table
[
paths
[:,
0
],
paths
[:,
1
]],
axis
=
0
)
def
create_moving_array
_reduced
(
def
create_moving_array
(
path_table
:
Dict
,
sig
:
np
.
ndarray
,
filled_idx
:
np
.
ndarray
,
target_idx
:
np
.
ndarray
,
# paths: np.ndarray,
# off: np.ndarray
):
"""
create a rearranging signal that moves tweezers as specified by paths.
:param sig: initially a static-array-generating waveform.
:param sig: initially a static-array-generating waveform, this function
modifies sig directly
:param path_table: lookup table returned from create_path_table_reduced().
:param filled_idx: see get_rearrange_paths for detail.
:param target_idx: see get_rearrange_paths for detail.
:param paths: 2d array with moving trajectories, [:,0] stores start pos, [:,1] stores end pos.
:param off: 1d array with tweezer indices that need to be set to 0.
"""
paths
,
off
=
get_rearrange_paths
(
filled_idx
,
target_idx
)
if
len
(
off
)
!
=
0
:
paths
=
get_rearrange_paths
(
filled_idx
,
target_idx
)
if
len
(
paths
)
=
=
0
:
return
for
i
,
j
in
paths
:
if
i
==
j
:
continue
# Technically this is useless as get_rearrange_paths took care --
# -- of this, but just in case
continue
# skip stationary paths
if
(
i
,
j
)
in
path_table
:
sig
+=
path_table
[(
i
,
j
)]
# else:
# sig -= path_table[(j, j)] # (j,j) does not appear in off, must manually do this
# for i in off:
# sig -= path_table[(i, i)]
pass
return
def
create_moving_array_
reduced_
GPUOTF
(
def
create_moving_array_GPUOTF
(
path_table
:
Dict
,
sig
:
np
.
ndarray
,
filled_idx
:
np
.
ndarray
,
target_idx
:
np
.
ndarray
,
# paths: np.ndarray,
# off: np.ndarray
):
"""
same function as above, with running gpu arrays on the fly
"""
paths
,
off
=
get_rearrange_paths
(
filled_idx
,
target_idx
)
if
len
(
off
)
!
=
0
:
paths
=
get_rearrange_paths
(
filled_idx
,
target_idx
)
if
len
(
paths
)
=
=
0
:
return
n_moves
=
len
(
paths
)
all_paths
=
cp
.
zeros
((
n_moves
,
sig
.
size
))
for
k
in
range
(
n_moves
):
(
i
,
j
)
=
paths
[
k
]
if
i
==
j
:
continue
# Technically this is useless as get_rearrange_paths took care --
# -- of this, but just in case
continue
if
(
i
,
j
)
in
path_table
:
all_paths
[
k
]
=
cp
.
array
(
path_table
[(
i
,
j
)],
dtype
=
cp
.
int16
)
# for k in range(len(off)):
# i = off[k]
# all_paths[paths.shape[0] + k] = -cp.array(path_table[(i, i)], dtype=cp.int16)
sig
+=
cp
.
sum
(
all_paths
,
axis
=
0
,
dtype
=
cp
.
int16
)
sig
+=
cp
.
array
(
path_table
[(
i
,
j
)],
dtype
=
cp
.
int16
)
return
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment