Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#![allow(unused_imports)]
//! Provides definitions related to internal atomic dynamics and how they couple
//! with incoming and outgoing photons.
use std::{
collections::HashMap,
f64::consts::{
PI,
TAU,
},
hash::Hash,
fmt::Debug,
};
use num_complex::Complex64 as C64;
use rand::{
prelude as rnd,
Rng,
distributions::Distribution,
};
use statrs::distribution::Exp;
use thiserror::Error;
use wigner_symbols::Wigner3jm;
use crate::{
newton::{
ThreeVector,
PhaseSpace,
},
phys::{
h,
hbar,
},
trap::Trap,
};
#[derive(Error, Debug)]
pub enum AtomError {
#[error("reached dark state")]
DarkState,
#[error("trap missing for state {0}")]
TrapUndefined(String),
}
pub type AtomResult<T> = Result<T, AtomError>;
/// Population in the excited state of a two-level system after all transient
/// oscillations have been damped away.
/// ```math
/// \rho_\text{ee}(s, \Delta, \Gamma)
/// = \frac{1}{2} \frac{s}{1 + 2 + (2 \Delta / \Gamma)^2}
/// ```
pub fn pop_excited(saturation: f64, detuning: f64, linewidth: f64) -> f64 {
return
saturation / 2.0
/ (1.0 + saturation + (2.0 * detuning / linewidth).powi(2))
;
}
/// Full time-dependent population in the excited state of a two-level system.
/// Detuning and linewidth should be given in angular units.
/// ```math
/// \begin{aligned}
/// \rho_{ee}(t; s, \Delta, \Gamma)
/// &= \rho_0 \left(
/// 1 - e^{-\frac{3}{4} \Gamma t} \cos(\omega t)
/// \right)
/// \\
/// \rho
/// &= \frac{1}{2} \frac{s}{1 + s + (2 \Delta / \Gamma)^2}
/// \\
/// \omega
/// &= \sqrt{\Omega^2 - \left(\frac{\Gamma}{4}\right)^2 + \Delta^2}
/// \\
/// \Omega
/// &= \sqrt{\frac{\Gamma}{2} s}
/// \end{aligned}
/// ```
pub fn rho_ee(t: f64, saturation: f64, detuning: f64, linewidth: f64) -> f64 {
let W: f64 = (linewidth / 2.0 * saturation).sqrt();
let w: f64
= (W.powi(2) - (linewidth / 4.0).powi(2) + detuning.powi(2)).sqrt();
return
pop_excited(saturation, detuning, linewidth)
* (1.0 - (-0.75 * linewidth * t).exp() * (w * t).cos())
;
}
/// First derivative of the full time-dependent population in the excited state
/// of a two-level system. Detuning and linewidth should be given in angular
/// units.
/// ```math
/// \begin{aligned}
/// \dot{\rho}_{ee}(t; s, \Delta, \Gamma)
/// &= \rho_0 \left(
/// \frac{3}{4} \Gamma e^{-\frac{3}{4} \Gamma t} \cos(\omega t)
/// + \omega e^{-\frac{3}{4} \Gamma t} \sin(\omega t)
/// \right)
/// \\
/// \rho
/// &= \frac{1}{2} \frac{s}{1 + s + (2 \Delta / \Gamma)^2}
/// \\
/// \omega
/// &= \sqrt{\Omega^2 - \left(\frac{\Gamma}{4}\right)^2 + \Delta^2}
/// \\
/// \Omega
/// &= \sqrt{\frac{\Gamma}{2} s}
/// \end{aligned}
/// ```
pub fn drho_ee(t: f64, saturation: f64, detuning: f64, linewidth: f64) -> f64 {
let W: f64 = (linewidth / 2.0 * saturation).sqrt();
let w: f64
= (W.powi(2) - (linewidth / 4.0).powi(2) + detuning.powi(2)).sqrt();
return
pop_excited(saturation, detuning, linewidth)
* (
0.75 * linewidth * (-0.75 * linewidth * t).exp() * (w * t).cos()
+ w * (-0.75 * linewidth * t).exp() * (w * t).sin()
)
;
}
/// First maximum $`(t_0, \rho_0)`$ of the full time-dependent population in the
/// excited state of a two-level system. Detuning and linewidth should be given
/// in angular units.
/// ```math
/// \begin{aligned}
/// t_0
/// &= \frac{2}{\omega} \arctan\left(
/// \frac{4 \omega}{3 \Gamma}
/// + \sqrt{1 + \left(\frac{4 \omega}{3 \Gamma}\right)^2}
/// \right)
/// \\
/// \rho_0(s, \Delta, \Gamma)
/// &= \rho_{ee}(t_0; s, \Delta, \Gamma)
/// \\
/// \rho_{ee}(t; s, \Delta, \Gamma)
/// &= \rho_0 \left(
/// 1 - e^{-\frac{3}{4} \Gamma t} \cos(\omega t)
/// \right)
/// \\
/// \rho
/// &= \frac{1}{2} \frac{s}{1 + s + (2 \Delta / \Gamma)^2}
/// \\
/// \omega
/// &= \sqrt{\Omega^2 - \left(\frac{\Gamma}{4}\right)^2 + \Delta^2}
/// \\
/// \Omega
/// &= \sqrt{\frac{\Gamma}{2} s}
/// \end{aligned}
/// ```
pub fn rho_ee_max(saturation: f64, detuning: f64, linewidth: f64) -> (f64, f64)
{
let W: f64 = (linewidth / 2.0 * saturation).sqrt();
let w: f64
= (W.powi(2) - (linewidth / 4.0).powi(2) + detuning.powi(2)).sqrt();
let t0: f64
= 2.0 / w
* (
4.0 * w / 3.0 / linewidth
+ (1.0 + (4.0 * w / 3.0 / linewidth).powi(2)).sqrt()
).atan();
let rho0: f64
= pop_excited(saturation, detuning, linewidth)
* (1.0 - (-0.75 * linewidth * t0).exp() * (w * t0).cos());
return (t0, rho0);
}
/// Inverts the [$`\rho_{ee}`$][rho_ee] function via Newton-Raphson for inverse
/// transform sampling for a given probability value $`r`$. Returns
/// `f64::INFINITY` if $`r`$ is greater than the maximum of the function
/// [$`\rho_0`$][rho_ee_max], and panics if $`r \not\in [0, 1]`$ or if the
/// method fails to converge. Detuning and linewidth should be given in angular
/// units.
pub fn rho_ee_inv(saturation: f64, detuning: f64, linewidth: f64, r: f64)
-> f64
{
if !(0.0..=1.0).contains(&r) {
panic!("rho_ee_inv: encountered invalid probability value");
}
let (t0, rho0): (f64, f64) = rho_ee_max(saturation, detuning, linewidth);
if r > rho0 {
return f64::INFINITY;
}
let mut t: f64 = t0 / 2.0;
let mut dt: f64;
for _ in 0..1000 {
dt
= (rho_ee(t, saturation, detuning, linewidth) - r)
/ drho_ee(t, saturation, detuning, linewidth);
t -= dt;
if dt.abs() < 1e-6 {
return t;
}
t = t.max(0.0).min(t0);
}
panic!("rho_ee_inv: failed to converge");
}
/// Computes the mean excitation time using the (properly normalized)
/// [$`\rho_{ee}`$][rho_ee] function as a cumulative distribution function
/// defined from $`t = 0`$ to [$`t_0`$][rho_ee_max]. Detuning and linewidth
/// should be given in angular units.
pub fn rho_ee_mean_time(saturation: f64, detuning: f64, linewidth: f64) -> f64 {
let W: f64 = (linewidth / 2.0 * saturation).sqrt();
let w: f64
= (W.powi(2) - (linewidth / 4.0).powi(2) + detuning.powi(2)).sqrt();
let (t0, _): (f64, f64) = rho_ee_max(saturation, detuning, linewidth);
// recurring constants
let K1: f64 = (0.75 * linewidth * t0).exp() - (w * t0).cos();
let K2: f64 = 16.0 * w.powi(2) + 9.0 * linewidth.powi(2);
return
(
12.0 * linewidth * K1
- K2 * t0 * (w * t0).cos()
+ 16.0 * w * (w * t0).sin()
) / ( K1 * K2 );
}
/// Absolute value of the Clebsch-Gordan coefficient coupling two spin states
/// $`|F^0, m_F^0\rangle`$ and $`|F^1, m_F^1\rangle`$ with a photon.
///
/// Calculated from the appropriate Wigner 3-$`j`$ symbol,
/// ```math
/// \left|
/// \sqrt{2 F^0 + 1}
/// \begin{pmatrix}
/// F^1 & 1 & F^0
/// \\
/// m_F^1 & m_F^0 - m_F^1 & -m_F^0
/// \end{pmatrix}
/// \right|
/// ```
pub fn cg(spin0: (f64, f64), spin1: (f64, f64)) -> f64
{
let (F0, mF0): (f64, f64) = spin0;
let (F1, mF1): (f64, f64) = spin1;
let wig = f64::from(
Wigner3jm { // elements are represented as the number of halves
tj1: (2.0 * F1) as i32,
tm1: (2.0 * mF1) as i32,
tj2: 2_i32,
tm2: (2.0 * (mF0 - mF1)) as i32,
tj3: (2.0 * F0) as i32,
tm3: (-2.0 * mF0) as i32,
}.value()
);
return (2.0 * F0 + 1.0).sqrt() * wig.abs();
}
/// A distribution over spherical angles $`\theta, \phi`$ describing the
/// likelihood of a given photon being radiated in that direction.
///
/// $`\phi`$ is the azimuthal angle.
pub trait RadiationPattern: Copy + Clone {
/// Sample angles $`\theta, \phi`$ where $`\phi`$ is the azimuthal angle.
fn sample_angles_rng<R>(&self, rng: &mut R) -> (f64, f64)
where R: Rng + ?Sized;
/// Sample angles $`\theta, \phi`$ where $`\phi`$ is the azimuthal angle.
fn sample_angles(&self) -> (f64, f64) {
let mut rng = rnd::thread_rng();
return self.sample_angles_rng(&mut rng);
}
/// Sample the momentum vector of the photon, given a wavenumber (angular
/// units). Default implementation assumes SI units; override for different
/// unit systems.
fn sample_momentum_rng<R>(&self, k: f64, rng: &mut R) -> ThreeVector
where R: Rng + ?Sized
{
let (th, ph): (f64, f64) = self.sample_angles_rng(rng);
return ThreeVector::from_angles(hbar * k, th, ph);
}
/// Sample the momentum vector of the photon, given a wavenumber (angular
/// units). Default implementation same units as `self.sample_momentum_rng`.
fn sample_momentum(&self, k: f64) -> ThreeVector {
let mut rng = rnd::thread_rng();
return self.sample_momentum_rng(k, &mut rng);
}
/// Sample the corresponding momentum kick applied to the atom, given a
/// photon wavenumber (angular units). Default implementation assumes same
/// units as `self.sample_momentum_rng`.
fn sample_momentum_kick_rng<R>(&self, k: f64, rng: &mut R) -> ThreeVector
where R: Rng + ?Sized
{
return -self.sample_momentum_rng(k, rng);
}
/// Sample the corresponding momentum kick applied to the atom, given a
/// photon wavenumber (angular units). Default implementation assumes same
/// units as `self.sample_momentum_rng`.
fn sample_momentum_kick(&self, k: f64) -> ThreeVector {
return -self.sample_momentum(k);
}
}
/// Radiation pattern following a uniform distribution over the sphere.
#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
pub struct RadUniform { }
impl RadUniform {
pub fn new() -> Self { Self { } }
}
impl RadiationPattern for RadUniform {
fn sample_angles_rng<R>(&self, rng: &mut R) -> (f64, f64)
where R: Rng + ?Sized
{
return (
(1.0 - 2.0 * rng.gen::<f64>()).acos(),
rng.gen::<f64>() * TAU,
);
}
}
/// Radiation pattern following that from an electric dipole, with quantization
/// axis fixed along $`z`$.
///
/// This pattern is parameterized by the relative proportion of light being
/// radiated in a $`\pi`$ (linear)-polarized mode compared to that in a
/// $`\sigma`$ (circular) mode, following $`\sin^2 \theta`$ and $`1 + \cos^2
/// \theta`$ distributions, respectively.
#[derive(Copy, Clone, Debug)]
pub struct RadDipole {
pi: f64,
sigma: f64,
}
impl RadDipole {
/// Give the relative proportion of radiation scattered into
/// $`\pi`$-polarized (oscillating dipole) and $`\sigma`$-polarized
/// (rotating dipole) modes. The oscillation axis is fixed to $`z`$.
/// Proportions will be automatically normalized.
pub fn new(pi: f64, sigma: f64) -> Self {
let pi_norm: f64 = pi / (pi + sigma);
let sigma_norm: f64 = sigma / (pi + sigma);
return Self { pi: pi_norm, sigma: sigma_norm };
}
/// Special case for which the distribution is uniform.
pub fn uniform() -> Self {
return Self::new(1.0_f64 / 3.0, 2.0_f64 / 3.0);
}
fn pdf_theta(&self, theta: f64) -> f64 {
return
self.pi * 3.0 / 8.0 / PI * theta.sin().powi(2)
+ self.sigma * 3.0 / 16.0 / PI * (1.0 + theta.cos().powi(2))
;
}
fn cdf_theta(&self, theta: f64) -> f64 {
return
0.5
- (2.0 * self.pi + self.sigma) * 3.0 / 8.0 * theta.cos()
+ (2.0 * self.pi - self.sigma) / 8.0 * theta.cos().powi(3)
;
}
/// *Panics if `r` is not between 0 and 1 or if the method fails to
/// converge.
fn cdf_inv_theta(&self, r: f64) -> f64 {
// let mut th: f64 = (r * PI).max(1e-6).max((1.0 - 1e-6) * PI);
let mut th: f64 = PI / 2.0;
let mut dth: f64;
for _ in 0..1000 {
dth
= (self.cdf_theta(th) - r)
/ (self.pdf_theta(th) * TAU * th.sin());
th -= dth;
if dth.abs() < 1e-6 {
return th;
}
th = th.max(1e-6).min((1.0 - 1e-6) * PI);
}
panic!("RadDipole::cdf_inv_theta: failed to converge");
}
}
impl RadiationPattern for RadDipole {
fn sample_angles_rng<R>(&self, rng: &mut R) -> (f64, f64)
where R: Rng + ?Sized
{
return (
self.cdf_inv_theta(rng.gen::<f64>()),
rng.gen::<f64>() * TAU,
);
}
}
/// Laser beam parameterization. Assumed to be centered on the origin.
#[derive(Copy, Clone, Debug)]
pub struct Laser {
pub saturation: f64,
/// 1/e^2 radius; distance
pub radius: f64,
/// Relative to the free-space limit; time^-1 (non-angular)
pub detuning: f64,
/// Units of mass.distance.time^-1
pub momentum: ThreeVector,
// /// Units of distance^-1 (angular)
// pub wavevector: ThreeVector,
}
impl Laser {
/// Find the perpendicular distance between a given position and the laser's
/// momentum (assumed to be centered on the origin).
pub fn perp_dist(&self, r: ThreeVector) -> f64 {
return (
(
- (self.momentum.1.powi(2) + self.momentum.2.powi(2)) * r.0
+ self.momentum.0 * self.momentum.1 * r.1
+ self.momentum.0 * self.momentum.2 * r.2
).powi(2)
+ (
self.momentum.0 * self.momentum.1 * r.0
- (self.momentum.0.powi(2) + self.momentum.2.powi(2)) * r.1
+ self.momentum.1 * self.momentum.2 * r.2
).powi(2)
+ (
self.momentum.0 * self.momentum.2 * r.0
+ self.momentum.1 * self.momentum.2 * r.1
- (self.momentum.0.powi(2) + self.momentum.1.powi(2)) * r.2
).powi(2)
).sqrt() / self.momentum.norm().powi(2);
}
}
/// Describes a state with total and projectional spin quantum numbers.
pub trait State: Copy + Clone + Debug + PartialEq + Eq + Hash {
/// Total spin quantum number.
fn spin_total(&self) -> f64;
/// Projectional spin quantum number.
fn spin_proj(&self) -> f64;
/// Return both quantum numbers in a tuple, with the total spin number
/// listed first
fn spin(&self) -> (f64, f64) { (self.spin_total(), self.spin_proj()) }
/// Calculate the (absolute value of the) photon-coupling Clebsch-Gordan
/// coefficient between two states.
fn cg<S>(&self, other: &S) -> f64
where S: State
{
return cg(self.spin(), other.spin());
}
/// Calculate the square of the photon-coupling Clebsch-Gordan coefficient
/// between two states.
fn cg_sq<S>(&self, other: &S) -> f64
where S: State
{
return cg(self.spin(), other.spin()).powi(2);
}
}
/// Simple token identifying the kind of a transition.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum TransitionKind {
Exciting = 0,
Decaying = 1,
}
/// Photon absorption data.
#[derive(Copy, Clone, Debug)]
pub struct Absorption {
/// May be infinite, indicating that the photon missed the atom.
pub excite_time: f64,
pub excite_time_mean: f64,
pub momentum_kick: ThreeVector,
}
/// Photon radiation data.
#[derive(Copy, Clone, Debug)]
pub struct Radiation
{
pub decay_time: f64,
pub decay_time_mean: f64,
pub momentum_kick: ThreeVector,
}
/// Thin wrapper enum to describe a particular (i.e. sampled) photon interaction
/// with an atom.
#[derive(Copy, Clone, Debug)]
pub enum PhotonInteraction
{
Absorption(Absorption),
Radiation(Radiation),
}
impl PhotonInteraction {
/// Returns the excitation time if `self` is an absorption.
pub fn excite_time(&self) -> Option<f64> {
return match self {
Self::Absorption(a) => Some(a.excite_time),
Self::Radiation(_) => None,
};
}
/// Returns the mean excitation time if `self` is an absorption.
pub fn excite_time_mean(&self) -> Option<f64> {
return match self {
Self::Absorption(a) => Some(a.excite_time_mean),
Self::Radiation(_) => None,
};
}
/// Returns the decay time if `self` is a radiation.
pub fn decay_time(&self) -> Option<f64> {
return match self {
Self::Absorption(_) => None,
Self::Radiation(r) => Some(r.decay_time),
};
}
/// Returns the mean decay time if `self` is a radiation.
pub fn decay_time_mean(&self) -> Option<f64> {
return match self {
Self::Absorption(_) => None,
Self::Radiation(r) => Some(r.decay_time_mean),
};
}
/// Returns the transition time, regardless of interaction type.
pub fn transition_time(&self) -> f64 {
return match self {
Self::Absorption(a) => a.excite_time,
Self::Radiation(r) => r.decay_time,
};
}
/// Returns the mean transition time, regardless of interaction type.
pub fn transition_time_mean(&self) -> f64 {
return match self {
Self::Absorption(a) => a.excite_time_mean,
Self::Radiation(r) => r.decay_time_mean,
};
}
/// Get the momentum kick to apply to the atom.
pub fn momentum_kick(&self) -> ThreeVector {
return match self {
Self::Absorption(a) => a.momentum_kick,
Self::Radiation(r) => r.momentum_kick,
};
}
}
/// Holds parameters for a specific transition that can occur between two atomic
/// states.
#[derive(Copy, Clone, Debug)]
pub enum Transition<S, R>
where
S: State,
R: RadiationPattern,
{
Exciting {
ground: S,
excited: S,
/// Units of distance
wavelength: f64,
/// Units of frequency (non-angular)
linewidth: f64,
laser: Laser,
},
Decaying {
ground: S,
excited: S,
/// Units of distance
wavelength: f64,
/// Units of frequency (non-angular)
linewidth: f64,
radiation: R,
}
}
impl<S, R> Transition<S, R>
where
S: State,
R: RadiationPattern,
{
/// Create a new exciting transition.
pub fn new_exciting(
ground: S,
excited: S,
wavelength: f64,
linewidth: f64,
laser: Laser,
) -> Self
{
return Self::Exciting {
ground,
excited,
wavelength,
linewidth,
laser
};
}
/// Create a new decaying transition.
pub fn new_decaying(
ground: S,
excited: S,
wavelength: f64,
linewidth: f64,
radiation: R,
) -> Self
{
return Self::Decaying {
ground,
excited,
wavelength,
linewidth,
radiation
};
}
/// Get the kind of the transition.
pub fn kind(&self) -> TransitionKind {
return match self {
Self::Exciting { .. } => TransitionKind::Exciting,
Self::Decaying { .. } => TransitionKind::Decaying,
};
}
pub fn is_exciting(&self) -> bool {
return matches!(self, Self::Exciting { .. });
}
pub fn is_decaying(&self) -> bool {
return matches!(self, Self::Decaying { .. });
}
pub fn ground_state(&self) -> S {
return match self {
Self::Exciting { ground, .. } => *ground,
Self::Decaying { ground, .. } => *ground,
};
}
pub fn get_ground_state(&self) -> &S {
return match self {
Self::Exciting { ground, .. } => ground,
Self::Decaying { ground, .. } => ground,
};
}
pub fn excited_state(&self) -> S {
return match self {
Self::Exciting { ground: _, excited, .. } => *excited,
Self::Decaying { ground: _, excited, .. } => *excited,
};
}
pub fn get_excited_state(&self) -> &S {
return match self {
Self::Exciting { ground: _, excited, .. } => excited,
Self::Decaying { ground: _, excited, .. } => excited,
};
}
pub fn start_state(&self) -> S {
return match self {
Self::Exciting { ground, excited: _, .. } => *ground,
Self::Decaying { ground: _, excited, .. } => *excited,
};
}
pub fn get_start_state(&self) -> &S {
return match self {
Self::Exciting { ground, excited: _, .. } => ground,
Self::Decaying { ground: _, excited, .. } => excited,
};
}
pub fn end_state(&self) -> S {
return match self {
Self::Exciting { ground: _, excited, .. } => *excited,
Self::Decaying { ground, excited: _, .. } => *ground,
};
}
pub fn get_end_state(&self) -> &S {
return match self {
Self::Exciting { ground: _, excited, .. } => excited,
Self::Decaying { ground, excited: _, .. } => ground,
};
}
pub fn starts_with(&self, state: &S) -> bool {
return match self {
Self::Exciting { ground, .. }
=> ground == state,
Self::Decaying { ground: _, excited, .. }
=> excited == state,
};
}
pub fn exciting_starts_with(&self, state: &S) -> Option<bool> {
return match self {
Self::Exciting { ground, .. }
=> Some(ground == state),
_ => None,
};
}
pub fn decaying_starts_with(&self, state: &S) -> Option<bool> {
return match self {
Self::Decaying { ground: _, excited, .. }
=> Some(excited == state),
_ => None,
};
}
pub fn same_starts_with(&self, other: &Self) -> bool {
return match (self, other) {
(
Self::Exciting { ground: g0, .. },
Self::Exciting { ground: g1, .. },
)
=> g0 == g1,
(
Self::Decaying { ground: _, excited: e0, .. },
Self::Decaying { ground: _, excited: e1, .. },
)
=> e0 == e1,
_ => false,
};
}
pub fn ends_with(&self, state: &S) -> bool {
return match self {
Self::Exciting { ground: _, excited, .. }
=> excited == state,
Self::Decaying { ground, .. }
=> ground == state,
};
}
pub fn exciting_ends_with(&self, state: &S) -> Option<bool> {
return match self {
Self::Exciting { ground: _, excited, .. }
=> Some(excited == state),
_ => None,
};
}
pub fn decaying_ends_with(&self, state: &S) -> Option<bool> {
return match self {
Self::Decaying { ground, .. }
=> Some(ground == state),
_ => None,
};
}
pub fn same_ends_with(&self, other: &Self) -> bool {
return match (self, other) {
(
Self::Exciting { ground: _, excited: e0, .. },
Self::Exciting { ground: _, excited: e1, .. },
)
=> e0 == e1,
(
Self::Decaying { ground: g0, .. },
Self::Decaying { ground: g1, .. },
)
=> g0 == g1,
_ => false,
};
}
pub fn wavelength(&self) -> f64 {
return match self {
Self::Exciting { ground: _, excited: _, wavelength, .. }
=> *wavelength,
Self::Decaying { ground: _, excited: _, wavelength, .. }
=> *wavelength,
};
}
pub fn linewidth(&self) -> f64 {
return match self {
Self::Exciting {
ground: _,
excited: _,
wavelength: _,
linewidth,
..
} => *linewidth,
Self::Decaying {
ground: _,
excited: _,
wavelength: _,
linewidth,
..
} => *linewidth,
};
}
pub fn laser(&self) -> Option<Laser> {
return match self {
Self::Exciting {
ground: _,
excited: _,
wavelength: _,
linewidth: _,
laser,
} => Some(*laser),
Self::Decaying { .. } => None,
};
}
pub fn radiation(&self) -> Option<R> {
return match self {
Self::Exciting { .. } => None,
Self::Decaying {
ground: _,
excited: _,
wavelength: _,
linewidth: _,
radiation,
} => Some(*radiation),
};
}
}
/// Holds all information from which transition probabilities can be calculated
/// and drives internal atomic state dynamics.
#[derive(Clone, Debug)]
pub struct StateGraph<S, T, R>
where
S: State,
T: Trap,
R: RadiationPattern,
{
transitions: Vec<Transition<S, R>>,
traps: HashMap<S, T>,
}
impl<S, T, R> StateGraph<S, T, R>
where
S: State,
T: Trap,
R: RadiationPattern,
{
/// Create a new `StateGraph`. All duplicate transitions are counted
/// separately. All states involed in transitions passed here must have an
/// associated trap.
pub fn new<I, J>(transitions: I, traps: J) -> AtomResult<Self>
where
I: IntoIterator<Item = Transition<S, R>>,
J: IntoIterator<Item = (S, T)>,
{
let state_traps: HashMap<S, T> = traps.into_iter().collect();
let transition_list: Vec<Transition<S, R>>
= transitions.into_iter()
.map(|t| {
if !state_traps.contains_key(t.get_ground_state()) {
Err(AtomError::TrapUndefined(
format!("{:?}", t.get_ground_state())
))
} else if !state_traps.contains_key(t.get_excited_state()) {
Err(AtomError::TrapUndefined(
format!("{:?}", t.get_excited_state())
))
} else {
Ok(t)
}
})
.collect::<AtomResult<Vec<Transition<S, R>>>>()?;
return Ok(Self { transitions: transition_list, traps: state_traps });
}
/// Get the trapping potential for a state.
pub fn get_trap(&self, state: &S) -> Option<&T> { self.traps.get(state) }
/// Sample a photon interaction for a given transition.
fn sample_photon_int<G>(
&self,
transition: &Transition<S, R>,
q: &PhaseSpace,
rng: &mut G,
) -> PhotonInteraction
where G: Rng + ?Sized
{
return match transition {
Transition::Exciting {
ground,
excited,
wavelength: _,
linewidth,
laser,
} => {
let det: f64
= laser.detuning
+ self.get_trap(excited).unwrap().light_shift(q.pos)
- self.get_trap(ground).unwrap().light_shift(q.pos);
let s_eff: f64
= laser.saturation
* (
-2.0 * (laser.perp_dist(q.pos) / laser.radius).powi(2)
).exp()
* ground.cg_sq(excited);
let excite_time: f64
= rho_ee_inv(s_eff, det, *linewidth, rng.gen::<f64>());
let excite_time_mean: f64
= rho_ee_mean_time(s_eff, det, *linewidth);
let momentum_kick: ThreeVector = laser.momentum;
PhotonInteraction::Absorption(
Absorption { excite_time, excite_time_mean, momentum_kick }
)
},
Transition::Decaying {
ground: _,
excited: _,
wavelength,
linewidth,
radiation,
} => {
let decay_time: f64
= -2.0 / linewidth * (1.0 - rng.gen::<f64>()).ln();
let decay_time_mean: f64
= 2.0 / linewidth;
let momentum_kick: ThreeVector
= radiation.sample_momentum_kick_rng(TAU / wavelength, rng);
PhotonInteraction::Radiation(
Radiation { decay_time, decay_time_mean, momentum_kick }
)
},
};
}
/// Sample a transition and corresponding photon interaction. Fails if the
/// current state is completely dark and can't decay.
pub fn next_state_checked_rng<G>(
&self,
current_state: &S,
q: PhaseSpace,
rng: &mut G,
) -> AtomResult<(S, PhotonInteraction)>
where G: Rng + ?Sized
{
return self.transitions.iter()
.filter_map(|t| {
t.starts_with(current_state)
.then_some(
(t, self.sample_photon_int(t, &q, rng))
)
})
.min_by(|(_tl, pl), (_tr, pr)| {
pl.transition_time().partial_cmp(&pr.transition_time())
.unwrap_or(std::cmp::Ordering::Less)
})
.ok_or(AtomError::DarkState)
.map(|(t, p)| (t.end_state(), p));
}
/// Sample a transition and corresponding photon interaction. Fails if the
/// current state is completely dark and can't decay.
pub fn next_state_checked(&self, current_state: &S, q: PhaseSpace)
-> AtomResult<(S, PhotonInteraction)>
{
let mut rng = rnd::thread_rng();
return self.next_state_checked_rng(current_state, q, &mut rng);
}
/// Sample a photon interaction for a given transition, disregarding
/// position and momentum.
fn sample_photon_int_static<G>(
&self,
transition: &Transition<S, R>,
rng: &mut G,
) -> PhotonInteraction
where G: Rng + ?Sized
{
return match transition {
Transition::Exciting {
ground,
excited,
wavelength: _,
linewidth,
laser,
} => {
let det: f64
= laser.detuning
- self.get_trap(excited).unwrap().depth()
+ self.get_trap(ground).unwrap().depth();
let s_eff: f64
= laser.saturation
* ground.cg_sq(excited);
let excite_time: f64
= rho_ee_inv(s_eff, det, *linewidth, rng.gen::<f64>());
let excite_time_mean: f64
= rho_ee_mean_time(s_eff, det, *linewidth);
let momentum_kick: ThreeVector = laser.momentum;
PhotonInteraction::Absorption(
Absorption { excite_time, excite_time_mean, momentum_kick }
)