Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
Self_generating_data_classifier
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
sharanb2
Self_generating_data_classifier
Commits
b60c0607
Commit
b60c0607
authored
6 years ago
by
sharanb2
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
6125ead5
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Self_generating_data_classifier.rmd
+132
-0
132 additions, 0 deletions
Self_generating_data_classifier.rmd
with
132 additions
and
0 deletions
Self_generating_data_classifier.rmd
0 → 100644
+
132
−
0
View file @
b60c0607
---
title: "CODINGASSIGNMENT1"
Author: "Sharan Balasubramanian"
output:
word_document: default
pdf_document: default
html_notebook: default
---
INCLUDING THE REQUIRED LIBRARIES
```{r}
library(ggplot2)
library(class)
```
SETTING SEED TO LAST FOUR DIGITS OF UIN
```{r}
set.seed(9081)
```
DEFINING THE REQUIRED PARAMATERS
```{r}
csize = 10; #number of centers
p=2;
s=1; #standard deviation is set to 1
m1 = matrix(rnorm(csize*p),csize,p)*s + cbind(rep(1,csize),rep(0,csize))
m0 = matrix(rnorm(csize*p),csize,p)*s + cbind(rep(0,csize),rep(1,csize))
leas.k=c()
train.error.lm=c()
test.error.lm=c()
test.error.knn=c()
test.error.qr=c()
test.error.Bayes=c()
train.error.knn=c()
train.error.qr=c()
train.error.Bayes=c()
```
RUNNING THE ITERATION 20 TIMES
PERFORMING LINEAR REGRESSION, QUADRATIC REGRESSION, KNN AND BAYES ERROR
```{r}
for (i in 1:20){
#Generating Training data
n=100;
id1 = sample(1:csize,n,replace=TRUE);
id0 = sample(1:csize,n,replace=TRUE);
s=sqrt(1/5);#Standard deviation for generating x
traindata = matrix(rnorm(2*n*p),2*n,p)*s + rbind(m1[id1,],m0[id0,])
traindata<-as.data.frame(traindata)
#dim(traindata)
#str(traindata)
Ytrain = factor(c(rep(1,n),rep(0,n)))
#length(Ytrain)
#Generating Test data
N=5000;
id1 = sample(1:csize,N,replace=TRUE);
id0 = sample(1:csize,N,replace=TRUE);
testdata = matrix(rnorm(2*N*p),2*N,p)*s + rbind(m1[id1,],m0[id0,])
Ytest = factor(c(rep(1,N),rep(0,N)))
#length(Ytest)
testdata<-as.data.frame(testdata)
#Visualization
#plot(traindata[, 1], traindata[, 2], type = "n", xlab = "", ylab = "")
#points(traindata[1:n, 1], traindata[1:n, 2], col = "blue");
#points(traindata[(n+1):(2*n), 1], traindata[(n+1):(2*n), 2], col="red");
#points(m1[1:csize, 1], m1[1:csize, 2], pch="+", cex=1.5, col="blue");
#points(m0[1:csize, 1], m0[1:csize, 2], pch="+", cex=1.5, col="red");
#legend("bottomleft", pch = c(1,1), col = c("red", "blue"),
#legend = c("class 1", "class 0"))
#LINEAR REGRESSION:
lmfit<-lm(as.numeric(Ytrain)-1~.,data=traindata)
train.error.lm[i] = mean(lmfit$residuals^2)
predicted<-ifelse(predict.lm(lmfit,testdata)>0.5,1,0)
test.error.lm[i] <- mean((as.numeric(Ytest)-1-predicted)^2)
#str(lmfit)
#QUADRADIC REGRESSION:
qfit = lm(as.numeric(Ytrain)-1~ V1 + V2 + V1*V2 + I(V1^2) + I(V2^2), data=traindata)
train.error.qr[i] = mean(qfit$residuals^2)
predicted <- ifelse(predict.lm(qfit, testdata)> 0.5,1,0)
test.error.qr[i] = mean((as.numeric(Ytest)-1 - predicted)^2)
#KNN
nfold<-10
infold<-sample(rep(1:nfold,length.out=length(Ytrain)))
allk = c(1:20,151, 101, 69, 45, 31, 21)
errorMatrix = matrix(NA,length(allk),nfold)
for( l in 1:nfold){
for (k in 1:length(allk)){
Ytrain.pred = knn(traindata[infold!=l,],traindata[infold==l,],Ytrain[infold != l],k=allk[k])
errorMatrix[k,l]=sum(Ytrain[infold==l]!=Ytrain.pred)/(2*nfold)
}
}
leas.k[i]<-allk[which.min(apply(errorMatrix,1,mean))]
Ytrain.pred = knn(traindata, traindata, Ytrain, k = leas.k[i])
train.error.knn[i] = sum(Ytrain != Ytrain.pred)/(2*n)
Ytest.pred = knn(traindata, testdata, Ytrain,k = leas.k[i])
test.error.knn[i] = sum(Ytest != Ytest.pred)/(2*N)
##Bayes
mixnorm=function(x){
## return the density ratio for a point x, where each
## density is a mixture of normal with 10 components
sum(exp(-apply((t(m1)-x)^2, 2, sum)*5/2))/sum(exp(-apply((t(m0)-x)^2, 2, sum)*5/2))
}
Ytest.pred.Bayes = apply(testdata, 1, mixnorm)
Ytest.pred.Bayes = as.numeric(Ytest.pred.Bayes > 1)
Ytrain.pred.Bayes = apply(traindata, 1, mixnorm)
Ytrain.pred.Bayes = as.numeric(Ytrain.pred.Bayes > 1)
#table(Ytest, Ytest.pred.Bayes)
test.error.Bayes[i] = sum(Ytest != Ytest.pred.Bayes) / (2*N)
train.error.Bayes[i] = sum(Ytrain != Ytrain.pred.Bayes) / (2*n)
}
```
CREATING NEW DATASET USING THE ERRORS
```{r}
Error = data.frame(train.error.lm,as.numeric(test.error.lm),train.error.qr,test.error.qr,train.error.knn,test.error.knn,train.error.Bayes,test.error.Bayes)
```
VISUALISING USING BOX PLOT
```{r}
boxplot(Error,use.cols=TRUE ,col=c("BLUE","RED"))
legend("topright",col=c("blue","red"),legend=c("Train","Test"),lty=1:2)
```
SUMMARY OF THE ERRORS:
```{r}
print("MEANS")
colMeans(Error)
print("STANDARD DEVIATION")
apply(Error,2,sd)
```
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment