Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
E
ece490 lab1
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
rcam2
ece490 lab1
Commits
c1c859a3
Commit
c1c859a3
authored
4 years ago
by
rcam2
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
8e98296b
Branches
master
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
lab1.ipynb
+254
-0
254 additions, 0 deletions
lab1.ipynb
with
254 additions
and
0 deletions
lab1.ipynb
0 → 100644
+
254
−
0
View file @
c1c859a3
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"from scipy import optimize\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Some necessary libraries are imported."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"def f(x):\n",
" first_elm = np.dot(np.dot(x, Q), x)\n",
" second_elm = np.dot(b, x)\n",
" f_x = first_elm + second_elm + c\n",
" return f_x"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Objective function has been defined in order to use the scipy.optimize later."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"global Q\n",
"global b\n",
"global c\n",
"\n",
"Q = np.loadtxt(\"Q.txt\")\n",
"b = np.loadtxt(\"b.txt\")\n",
"c = np.loadtxt(\"c.txt\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The matrices defining the objective function have been inputted as global variables."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"5\n"
]
}
],
"source": [
"print(b.size)\n",
"n = b.size\n",
"err_tol = 1e-5\n",
"alpha = 1\n",
"# recommended sigma [10^-5, 10^-1]\n",
"sigma = 1e-1\n",
"# recommended beta [1/10, 1/2]\n",
"beta = 0.4\n",
"x = np.random.uniform(-1e4, 1e4, n)\n",
"gradient = np.add(np.dot(2, np.dot(Q, x)), b)\n",
"\n",
"alpha_arr = np.array([])\n",
"f_x_arr = np.array([])\n",
"x_arr = np.array([])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Initial guess is created and initial gradient is calculated."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.06400000000000002\n",
"[-0.05708123 0.68024703 -0.0796436 -0.93631147 -0.16706706]\n",
"0.6922831525384057\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAW+klEQVR4nO3dfbRddX3n8ffHRJBn0MSnBAlafMjMKhYjwrRUOlYF6jKt01VBFLQyFFudanUNtLZ2OdWZ5eiodWFN0WJ8pk9UKUWxU6vWaXUIjiII0QgCIQRuRlHAKRD9zh9733DOYd97T8K9uXcf3q+1zsrZD2fv796593P3+Z7fOSdVhSSp/x622AVIkuaHgS5JE8JAl6QJYaBL0oQw0CVpQhjokjQhDPSHiCQbk7xlvtddSEkqyU8tdh17Q5JPJzlzkWu4K8kTF7MGPTgG+oRJ8vkk30+y72LXovFV1clV9SGAJC9P8qWF3F/7c3LWSA0HVtX1C7lfLSwDfYIkWQOcABTwwkUtRjNKsmyBt798IbevpctAnyxnAF8GNgIzPn1PcmKSrUl+L8mOJN9NcvrIaocl+bskdyb5SpInDTz+j5PcnOSHSa5McsIM+zkuyfbBAEvyK0muau8fm+RfktyR5NYk5yfZZ4ZtDV1Rjl7FJnlqkr9P8r0km5P82sCyU5J8sz2WW5K8YYZ9PCzJ7ye5McntST6c5JB22WeSvHpk/a8nedEY+9+Y5H1JLktyN/ALMx1fkqcBG4Dj2xbIHe3yfZO8I8lNSW5LsiHJfu2y6f/Pc5NsBz6Y5LAklyaZap+xXZpkdbv+W2n+8J/f7uP8dv6uFleSQ9rjn2rPx+8nedjguW/r+X6SG5KcPPJ/c317vm/o+NnSQqkqbxNyA7YAvwk8A7gPeMzAso3AW9r7JwI7gXcC+wLPBu4GnjKw7veAY4HlwMeAiwa29VLgUe2y1wPbgUfMUNN3gOcOTP8lcF57/xnAce121gDXAq8dWLeAn2rvfx44a2DZy4EvtfcPAG4GXtFu6xhgB/Bv2uW3Aie09w8Djpmh1l9vz+ETgQOBi4GPtMvOAP7XwLprgTva8zfX/jcCPwB+luYi6gHnavD4Bo9tYPm7gUuARwIHAX8L/LeR/8+3tfXs1/7//Adg/3b9vwQ+2bW/Gc73h4FPtY9dA3wLeOVAffcB/xFYBrwK2AakPRc/5P6fpcdNnwdveyEDFrsAb/P0Hwk/1/6SrWinrwNeN7B8Iw8M9AMGlv8F8AcD635gYNkpwHWz7Pv7wNEzLHsLcGF7/yCaPxxHzLDua4G/GZgeN9BfDPzTyLb+FPjD9v5NwG8AB89xDv8B+M2B6ae053T5aO3AWweOa679bwQ+PMe+dx0fI4HeBuXdwJMG5h0P3DDw/3kvM/xRbdd5OvD9rv2Nnu82pO8B1g4s+w3g8wP1bRlYtn/72MfSBPodNH9M9lvs34uH2s2Wy+Q4E/hsVe1opz/OLG0Xml/uuwembwQePzC9feD+j2iuWAFI8vok1yb5QdsSOARYMcN+Pg68qH2R9kXAV6vqxnY7T25bAduT/BD4r7NsZzZHAM9qWzd3tDWdThMw0ITLKcCNSb6Q5PgZtvN4mvMw7UaaMH9MVd0J/B1warvsVJpnLuPsH5or+D21kiY0rxzY/mfa+dOmqupfpyeS7J/kT9t2yQ+BLwKHZrz+/QpgHx54LlYNTO/6+aiqH7V3D2x/pl4MnAPc2rbtnjr2kepBMdAnQNtL/TXg2W04bgdeBxyd5OgZHnZYkgMGpp9A87R5rn2dAJzb7u+wqjqUpp2QrvWr6ps0YXAy8BKagJ/2PppnEkdV1cHA7820HZor1P0HpkfD8gtVdejA7cCqelVbwxVVtR54NPBJmmcjXbbRhPO0J9A8k7mtnf4EcFr7B2E/4B/H2f/0qZhhn11G190B/D+a1sX09g+pqgNneczraZ5hPKs9tz/fzs8M64/u7z4eeC5uGav4qsur6rk07ZbrgPeP8zg9eAb6ZPhl4Mc0fd2nt7enAf9E0/udyZuT7NOG9Ato+qxzOYgm5KaA5UneBBw8x2M+DvwnmlAZ3MdBNP3Wu9qruFd1PHba12iu9PdvX7h75cCyS4EnJ3lZkoe3t2cmeVp7fKcnOaSq7mv39+MZ9vEJ4HVJjkxyIM0zhj+vqp3t8stoQu6/tPN/Mtf+5zgvM7kNWJ32BeJ2P+8H3pXk0QBJViV5/izbOIjmj8AdSR4J/GHHPjrHnFfVj2n+6L01yUFJjgB+B/joXIUneUySF7YXC/cAdzHz+dY8M9Anw5nAB6vqpqraPn0DzgdOT/cwtu00ve9tNK2Dc6rqujH2dTnwaZoXyW4E/pW52wmfoOnzfm6gJQTwBpqr9jtpAuvPZ9nGu2j6xLcBH+L+dgdtO+R5NG2Qbe2xTb9ACPAy4Ltt6+Ecmhd1u1wIfISmPXFDe2yvGdjPPTQvlP4iA880xtj/7voccA2wPcn0+TqX5gXbL7fH8T9prsBn8m6aZxE7aEY+fWZk+R8Dv9qOUnlPx+NfQ/Os6HrgSzTHe+EYtT+M5tnBNpoX1p9N80K99oJU+QUXDzVJTgQ+WlWrF7sWSfPHK3RJmhAGuiRNCFsukjQhvEKXpAmxaB/is2LFilqzZs1i7V6SeunKK6/cUVUru5YtWqCvWbOGTZs2LdbuJamXktw40zJbLpI0IQx0SZoQBrokTQgDXZImhIEuSRNizkBPcmGar+O6eoblSfKeJFuSXJXkmPkvU5I0l3Gu0DcCJ82y/GTgqPZ2Ns1nXEuS9rI5A72qvkjzMZgzWU/z9VpVVV+m+VaUx81XgaO+ddudvPOzm9lx1z0LtQtJ6qX56KGvYvjzsLcy/FVVuyQ5O8mmJJumpqb2aGffvu0u3vO5LXzv7nv36PGSNKnmI9C7vjKs8xO/quqCqlpXVetWrux856okaQ/NR6BvBQ4fmF7NGN9NKUmaX/MR6JcAZ7SjXY4DflBVt87Ddmflp/5K0rA5P5wryfT3Qa5IspXmy2YfDlBVG2i+OPcUmu87/BHwioUqtqlnIbcuSf01Z6BX1WlzLC/gt+atIknSHuntO0Wr+3VXSXrI6l2g23GRpG69C3RJUjcDXZImRG8D3WGLkjSsd4HusEVJ6ta7QJckdettoNtykaRhPQx0ey6S1KWHgS5J6mKgS9KE6G2g+9Z/SRrWu0B32KIkdetdoEuSuhnokjQhehfo0x0Xx6FL0rDeBbokqZuBLkkTwkCXpAnRu0CP4xYlqVPvAl2S1M1Al6QJ0btAd9iiJHXrXaBLkroZ6JI0IXob6H7aoiQN612gO2pRkrr1LtAlSd0MdEmaEL0L9OmWi8MWJWlY7wJdktTNQJekCWGgS9KEGCvQk5yUZHOSLUnO61h+SJK/TfL1JNckecX8l9ruq33zvy10SRo2Z6AnWQa8FzgZWAuclmTtyGq/BXyzqo4GTgT+R5J95rlWSdIsxrlCPxbYUlXXV9W9wEXA+pF1CjgozYeVHwh8D9g5r5VKkmY1TqCvAm4emN7azht0PvA0YBvwDeC3q+onoxtKcnaSTUk2TU1N7WHJjXLcoiQNGSfQu95sP5qmzwe+BjweeDpwfpKDH/Cgqguqal1VrVu5cuVuFztjNZKksQJ9K3D4wPRqmivxQa8ALq7GFuAG4KnzU6IkaRzjBPoVwFFJjmxf6DwVuGRknZuA5wAkeQzwFOD6+SxUkjS75XOtUFU7k7wauBxYBlxYVdckOaddvgH4I2Bjkm/QNEXOraodC1Hwrm8sWoiNS1KPzRnoAFV1GXDZyLwNA/e3Ac+b39IkSbvDd4pK0oTobaA7alGShvUu0ONXFklSp94FuiSpm4EuSROid4F+f8PFJrokDepdoEuSuhnokjQhehvoDluUpGG9C3RHLUpSt94FuiSpm4EuSROid4Hul0RLUrfeBbokqZuBLkkTwkCXpAnRu0CfHrboOHRJGta7QJckdTPQJWlC9C7Qd31JtD0XSRrSu0CXJHUz0CVpQhjokjQh+hfo08MWF7cKSVpy+hfokqROBrokTYjeBfquT1u05yJJQ3oX6JKkbga6JE0IA12SJkTvAn3Xpy06cFGShvQu0CVJ3Qx0SZoQvQv0zL2KJD0kjRXoSU5KsjnJliTnzbDOiUm+luSaJF+Y3zI72EKXpCHL51ohyTLgvcBzga3AFUkuqapvDqxzKPAnwElVdVOSRy9UwZKkbuNcoR8LbKmq66vqXuAiYP3IOi8BLq6qmwCq6vb5LVOSNJdxAn0VcPPA9NZ23qAnA4cl+XySK5Oc0bWhJGcn2ZRk09TU1B4VnHbcoh0XSRo2TqB3vQ45mqfLgWcAvwQ8H/iDJE9+wIOqLqiqdVW1buXKlbtdrCRpZnP20GmuyA8fmF4NbOtYZ0dV3Q3cneSLwNHAt+alSknSnMa5Qr8COCrJkUn2AU4FLhlZ51PACUmWJ9kfeBZw7fyWKkmazZxX6FW1M8mrgcuBZcCFVXVNknPa5Ruq6toknwGuAn4CfKCqrl6Igne99d8muiQNGaflQlVdBlw2Mm/DyPTbgbfPX2mSpN3Ru3eKSpK69S7Qp4fc+GmLkjSsd4EuSepmoEvShDDQJWlC9C7QHbYoSd16F+iSpG4GuiRNiB4Gut9ZJEldehjoDVvokjSst4EuSRpmoEvShOhdoN8/bNGmiyQN6l2gS5K6GeiSNCF6F+gOWpSkbr0L9Gl20CVpWG8DXZI0zECXpAnRu0DPrnGLi1uHJC01vQt0SVI3A12SJkTvAt1hi5LUrXeBPq1sokvSkN4GuiRpmIEuSROid4Eem+iS1Kl3gT7NT8+VpGG9DXRJ0rDeBXocuChJnXoX6NNsuUjSsN4GuiRpmIEuSRNirEBPclKSzUm2JDlvlvWemeTHSX51/koc3cdCbVmS+m3OQE+yDHgvcDKwFjgtydoZ1nsbcPl8F9nFFrokDRvnCv1YYEtVXV9V9wIXAes71nsN8NfA7fNYnyRpTOME+irg5oHpre28XZKsAn4F2DDbhpKcnWRTkk1TU1O7W6skaRbjBHpX13q04/Fu4Nyq+vFsG6qqC6pqXVWtW7ly5bg1zrStB/V4SZo0y8dYZytw+MD0amDbyDrrgIvar4dbAZySZGdVfXJeqpQkzWmcQL8COCrJkcAtwKnASwZXqKojp+8n2QhcaphL0t41Z6BX1c4kr6YZvbIMuLCqrklyTrt81r75fHPYoiR1G+cKnaq6DLhsZF5nkFfVyx98WWPUtDd2Ikk94jtFJWlCGOiSNCF6F+h+fK4kdetdoE9zGLokDettoEuShvUu0B22KEndehfo97PnIkmDehzokqRBBrokTYjeBbo9dEnq1rtAn+awRUka1ttAlyQN612g+05RSerWu0CfZsdFkob1NtAlScMMdEmaEL0LdIctSlK33gX6NIctStKw3ga6JGlY7wLdjoskdetdoEuSuvU20MuR6JI0pLeBLkka1rtAd9iiJHXrXaBPc9iiJA3rbaBLkob1MNDtuUhSlx4GuiSpS28D3Ra6JA3rbaBLkob1LtAdtihJ3XoX6NPKcYuSNKS3gS5JGjZWoCc5KcnmJFuSnNex/PQkV7W3f05y9PyXKkmazZyBnmQZ8F7gZGAtcFqStSOr3QA8u6p+Gvgj4IL5LnRXPQu1YUnquXGu0I8FtlTV9VV1L3ARsH5whar656r6fjv5ZWD1/JYpSZrLOIG+Crh5YHprO28mrwQ+3bUgydlJNiXZNDU1NX6VkqQ5jRPoXV2OziEmSX6BJtDP7VpeVRdU1bqqWrdy5crxqxzexx49TpIm3fIx1tkKHD4wvRrYNrpSkp8GPgCcXFX/d37KkySNa5wr9CuAo5IcmWQf4FTgksEVkjwBuBh4WVV9a/7LfCCHoUvSsDmv0KtqZ5JXA5cDy4ALq+qaJOe0yzcAbwIeBfxJ2xLZWVXrFq5sSdKocVouVNVlwGUj8zYM3D8LOGt+S+tmB12SuvX2naJ+SbQkDettoEuShvUu0B21KEndehfokqRuvQ10hy1K0rDeBrokaVjvAj0OXJSkTr0L9Gm2XCRpWG8DXZI0rHeB7rBFSerWu0CXJHXrbaDbQpekYb0NdEnSMANdkiZEbwO9HLcoSUN6G+iSpGG9C3SHLUpSt94FuiSpW28D3Q66JA3rbaBLkob1LtBjE12SOvUu0CVJ3ZYvdgF76h2Xb+b9X7x+scuQpN324mcezlknPHHet9u7QH/swY/gzOOPYOquexa7FEnaIysO3HdBttu7QF/2sPDm9f92scuQpCXHHrokTQgDXZImhIEuSRPCQJekCWGgS9KEMNAlaUIY6JI0IQx0SZoQWayvcksyBdy4hw9fAeyYx3IWWp/q7VOt0K96+1Qr9KvePtUKD67eI6pqZdeCRQv0ByPJpqpat9h1jKtP9fapVuhXvX2qFfpVb59qhYWr15aLJE0IA12SJkRfA/2CxS5gN/Wp3j7VCv2qt0+1Qr/q7VOtsED19rKHLkl6oL5eoUuSRhjokjQhehfoSU5KsjnJliTnLYF6Dk/yj0muTXJNkt9u5z8yyd8n+Xb772EDj/ndtv7NSZ6/CDUvS/J/klzag1oPTfJXSa5rz/HxS7XeJK9rfwauTvKJJI9YSrUmuTDJ7UmuHpi32/UleUaSb7TL3pMF+Ob2GWp9e/tzcFWSv0ly6FKodaZ6B5a9IUklWbHg9VZVb27AMuA7wBOBfYCvA2sXuabHAce09w8CvgWsBf47cF47/zzgbe39tW3d+wJHtsezbC/X/DvAx4FL2+mlXOuHgLPa+/sAhy7FeoFVwA3Afu30XwAvX0q1Aj8PHANcPTBvt+sD/jdwPBDg08DJe6nW5wHL2/tvWyq1zlRvO/9w4HKaN1GuWOh6+3aFfiywpaqur6p7gYuA9YtZUFXdWlVfbe/fCVxL88u9niaMaP/95fb+euCiqrqnqm4AttAc116RZDXwS8AHBmYv1VoPpvlF+TOAqrq3qu5YqvXSfKXjfkmWA/sD25ZSrVX1ReB7I7N3q74kjwMOrqp/qSaBPjzwmAWttao+W1U728kvA6uXQq0z1dt6F/CfgcHRJwtWb98CfRVw88D01nbekpBkDfAzwFeAx1TVrdCEPvDodrXFPoZ30/yA/WRg3lKt9YnAFPDBtkX0gSQHLMV6q+oW4B3ATcCtwA+q6rNLsdYRu1vfqvb+6Py97ddprmBhidaa5IXALVX19ZFFC1Zv3wK9q5+0JMZdJjkQ+GvgtVX1w9lW7Zi3V44hyQuA26vqynEf0jFvb57v5TRPY99XVT8D3E3TFpjJYp7bw2iuvI4EHg8ckOSlsz2kY96S+FluzVTfoted5I3ATuBj07M6VlvUWpPsD7wReFPX4o5581Jv3wJ9K01Patpqmqe1iyrJw2nC/GNVdXE7+7b2KRTtv7e38xfzGH4WeGGS79K0q/59ko8u0Vqn97+1qr7STv8VTcAvxXp/Ebihqqaq6j7gYuDfLdFaB+1ufVu5v9UxOH+vSHIm8ALg9LYtAUuz1ifR/HH/evv7thr4apLHsoD19i3QrwCOSnJkkn2AU4FLFrOg9lXoPwOurap3Diy6BDizvX8m8KmB+acm2TfJkcBRNC+ELLiq+t2qWl1Va2jO3eeq6qVLsda23u3AzUme0s56DvDNJVrvTcBxSfZvfyaeQ/N6ylKsddBu1de2Ze5Mclx7nGcMPGZBJTkJOBd4YVX9aOQYllStVfWNqnp0Va1pf9+20gye2L6g9S7EK74LeQNOoRlJ8h3gjUugnp+jeVp0FfC19nYK8CjgH4Bvt/8+cuAxb2zr38wCveo+Rt0ncv8olyVbK/B0YFN7fj8JHLZU6wXeDFwHXA18hGYUw5KpFfgETX//vjZgXrkn9QHr2mP8DnA+7TvO90KtW2h6z9O/ZxuWQq0z1Tuy/Lu0o1wWsl7f+i9JE6JvLRdJ0gwMdEmaEAa6JE0IA12SJoSBLkkTwkCXpAlhoEvShPj/C/NElcVerT0AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAEICAYAAAB25L6yAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAcI0lEQVR4nO3de5hcdZ3n8fenuvqSqwlJG3KDAGKU9RKwF0EHluGiIBBc13HCDqPjwsZ5dma84TA4uDOy+7ijM64z6nrZDCgqGAYRHAZRYQVUlFsHCLdwD5ALkA6QCyG3Tn/3j3OqU11Vna7upLp+TT6v5+mnq8+tvud096d+9Tu/OkcRgZmZpavQ7ALMzGzPHNRmZolzUJuZJc5BbWaWOAe1mVniHNRmZolzUO/nJB0n6dFm11FO0uclXd7sOkZDCsdf0l9LuqSZNdieOaibTNLTkrZKeqXsa1YDny8kvaH0c0T8JiLmN+r5bM8qj3/+93Byo55P0gmSVlfU8L8i4rxGPaftPQd1Gs6MiIllX2ubXZDte5KKDd6+JPl/+jXIv9REVbasyrsDJM3LW8YfkfSspPWSLipbtiV/O/ukpM2SlkmaK+nX+SLL85b7H1a2sCS9WdKtkjZIekjSwrJ5l0n6hqSf5tu9U9Jhg9T/c0l/XjFtuaQP5I+/KmmVpE15fccNsp2qFmD5sZFUkHRhvq8vSrpK0gH5vA5Jl+fTN0i6W9KMQZ6n5n5LOkbS85Jaypb9j5Lur+P5S7+ncyU9C9y8p/2T9APgIODf8t/PBWU1/C6vbbmkE8rWv1XSFyT9FngVOFTSRyWtyH9HT0n6WL7sBOBnwKzyd2+VXU2SFubHYEO+/TdXHPvPSLpf0kZJ/yKpI583XdL1+XovSfqNXzj2kYjwVxO/gKeBk4eaDnweuDx/PA8I4J+BccDbge3Am/P5fwk8AMwHlM+fls8L4A1l2z0BWJ0/bgWeAP4aaANOBDYD8/P5lwEvAUcDReAK4MpB9uvDwG/Lfj4C2AC05z+fA0zLt3M+8DzQUWNf++urdWyATwJ3AHOAduD/AkvzeR8D/g0YD7QA7wAm16h1qP1+EjilbPkfARfW8fyl39P3gQnAuBrPPWD/avzeZwMvAu8ja1idkv/cmc+/FXgW+Hf5sWwFTgcOy3/3/4EswI/aw/EsP95vBLbkz9MKXJAfm7ay+u4CZgEHACuAP83n/R3w7Xy9VuA4QM3+H3stfDXs1U7SdyStk/RgHcv+o6T78q/HJG1oVF2J+kneCtkg6SfDWO/iiNgaEcuB5WSBDHAe8LmIeDQyyyPixTq2dwwwEfhiROyIiJuB64Gzy5a5JiLuiohesqBeMMi2rgUWSDo4//mP8nW3A0TE5RHxYkT0RsT/Jgu5kfSVfwy4KCJW59v+PPBBZd0MO8leDN4QEbsiYllEbBrBfi8tPZY0iSw0l9bx/CWfj4gtEbF1BPt3DnBDRNwQEX0RcRPQnddQcllEPJQfy50R8dOIeDL/3f8KuJEsNOvxh8BPI+KmiNgJfJmsMfCusmW+FhFrI+IlshfC0t/ATmAmcHBex28iwhcT2gca+bbkMuDUehaMiE9FxIKIWAB8HbimgXWl6P0RMSX/ev8w1nu+7PGrZGEDMJesFThcs4BVEdFXNu0ZslbdUM85QERsBn4KLMonLSILdgAknZ+/Pd+YvzC/Dpg+gpoPBq4tvdCRtfB2ATOAHwC/AK6UtFbS30tqrbGNofb7h8AHJLUDHwDuiYhn6nj+klUj2K/y/fuDshfyDcDvkQVize1LOk3SHXn3wwayUK/32M4i23cA8mOyivr+Bv6BrPV9Y97lcmGdz2lDaFhQR8Svyd4m95N0WN53uSzvv3pTjVXPZndrZX+2hewte8mBw1h3Fdlb3+FaC8yt6Fc8CFgzgm1B3hKVdCxZq+wWyIakAX8FfAiYGhFTgI1kb9UrDTgOeV9xZ9n8VcBpZS90UyKiIyLW5K26iyPiCLIW4RlkXTKV9rjfEfEwWXidBvxnsuAe8vnLlhlOq7Jy2VXADyq2PyEivlhrnfzF5MdkLeEZ+bG9gd3Hdqha1pK9OJS2J7IX/iH/BiJic0ScHxGHAmcCn5Z00lDr2dBGu6N/CfAXEfEO4DPAN8tn5m+TD6HGSZf90H3AIkmtkrqADw5j3UuA/ynpcGXeJmlaPu8F4NBB1ruTLBgvyJ/3BLJ/uCtHtgvcQPZP/z+AfylrsU4CeoEeoCjpb4DJg2zjMaBD0ul5a/hzZN0kJd8GvlDqYpHUKems/PHvS3prHu6byN6a7xrhfv8Q+DhwPFkf9ZDPP0KVv5/LgTMlvVfZSeKO/ATknEHWbyM7Pj1Ar6TTgPdUbH+apNcNsv5VwOmSTsqP9/lk5z9+N1Thks6Q9IY83DeRHetax9uGadSCWtJEslbNjyTdR3bSZWbFYouAqyPCv1z472St4peBixnYihvKV8j+4W4k+4e5lKxFC1kf6vfyt9EfKl8pInYAC8lajuvJXkg/HBGPjGQH8j7ba4CTK+r/Bdnog8fIWqrbGKR7ICI2Av+N7MVnDVmglo8C+SpwHdnb7c1kJ/bemc87ELia7BisAH5FFnyVz1HPfi8lOxF3c0Ssr/P5R+LvgM/lv5/PRMQq4CyyE509ZMfpLxnkfzfvcvo42e//ZbJ3ANeVzX8k35en8ueYVbH+o2T94l8nOxZnkg0f3VFH7YcD/w94Bbgd+GZE3FrnftseqJF9/ZLmAddHxFskTQYejYjKcC5f/l7gzyJiyFdvM7P9xai1qPOz7Ssl/QH0D84vjVJA0nxgKtkrsZmZ5Ro5PG8pWejOl7Ra0rlkQ7TOlbQceIjsLV3J2WRjcj2cx8ysTEO7PszMbO/5451mZolryEVipk+fHvPmzWvEps3MXpOWLVu2PiI6a82rK6glfYrsY8lBdg2Jj0bEtsGWnzdvHt3d3SOp1cxsvyTpmcHmDdn1IWk22bjMroh4C9nFbRbteS0zM9tX6u2jLgLj8gvNjCf7mKmZmY2CIYM6v2bBl8kupfgcsDEibqxcTtJiSd2Sunt6evZ9pWZm+6l6uj6mko13PoTsyloTJJ1TuVxELImIrojo6uys2R9uZmYjUE/Xx8nAyojoya9Pew0Dr01rZmYNVE9QPwscI2l8flWsk8gucGNmZqOgnj7qO8muQHYP2dC8AtnlSs3MbBTUNeojIv42It4UEW+JiD8u3U5pX/v6Lx/nV4/5RKSZWbmkPkL+zVuf5LbHHdRmZuWSCmrVuhGTmdl+LqmgBvDF/MzMBkoqqMXw7gJqZrY/SCuo3fdhZlYlqaAGd32YmVVKKqizrg8ntZlZuaSCGrlFbWZWKamgdg+1mVm1pILazMyqJRXUkvBd0c3MBkosqJtdgZlZepIKavAHXszMKiUV1MKjPszMKqUV1JLHUZuZVUgrqJtdgJlZguq5ue18SfeVfW2S9MlGFeSuDzOzgYpDLRARjwILACS1AGuAaxtRjOSTiWZmlYbb9XES8GREPNOIYtz5YWZWbbhBvQhYWmuGpMWSuiV19/SM/HZa7vowMxuo7qCW1AYsBH5Ua35ELImIrojo6uzsHFEx2QdenNRmZuWG06I+DbgnIl5oVDEeR21mVm04QX02g3R77Cv+CLmZWbW6glrSeOAU4JrGluMWtZlZpSGH5wFExKvAtAbXgvAnE83MKqX1yUTf4cXMrEpaQd3sAszMEpRUUIMH55mZVUoqqLM7vDS7CjOztCQV1GZmVi25oPaoDzOzgZIKagl3UpuZVUguqJ3TZmYDpRXUHqBnZlYlqaAGCA/7MDMbIKmgdteHmVm1tIK62QWYmSUoqaAGX+vDzKxSUkEtyV0fZmYV0gpqfDLRzKxSUkHtTmozs2ppBTUe9WFmVqneW3FNkXS1pEckrZB0bCOK8U3Izcyq1XUrLuCrwM8j4oOS2oDxjShGvrutmVmVIYNa0mTgeOBPACJiB7CjUQX56nlmZgPV0/VxKNADfFfSvZIukTShciFJiyV1S+ru6ekZUTHZqI8RrWpm9ppVT1AXgaOAb0XEkcAW4MLKhSJiSUR0RURXZ2fniIrxzW3NzKrVE9SrgdURcWf+89Vkwb3P+ep5ZmbVhgzqiHgeWCVpfj7pJODhRhXkPmozs4HqHfXxF8AV+YiPp4CPNqIYd32YmVWrK6gj4j6gq8G1mJlZDf5koplZ4pIKaknu+jAzq5BWUANuU5uZDZRWUHt0nplZlaSCGjzqw8ysUlJB7ZvbmplVSyuo/clEM7MqSQU1+FZcZmaVkgpqd32YmVVLK6jxyUQzs0pJBbXH55mZVUsrqHHXh5lZpaSCOuv6cFSbmZVLK6jd82FmViWpoDYzs2pJBbVHfZiZVavrxgGSngY2A7uA3ohoyE0EJPlWXGZmFeq9FRfA70fE+oZVAv4AuZlZDUl1fYC7PszMKtUb1AHcKGmZpMW1FpC0WFK3pO6enp4RFeOb25qZVas3qN8dEUcBpwF/Jun4ygUiYklEdEVEV2dn54iK8dXzzMyq1RXUEbE2/74OuBY4ulEF+WSimdlAQwa1pAmSJpUeA+8BHmxINe76MDOrUs+ojxnAtco+NlgEfhgRP29EMcLX+jAzqzRkUEfEU8DbR6EWn0w0M6shueF5blKbmQ2UVFALfzLRzKxSUkFdbBG9fQ5qM7NyaQV1QfTuclCbmZVLK6hbCuzc1dfsMszMkpJUULe2iF3u+jAzGyCpoG4pFNxHbWZWIamgbi3IXR9mZhWSCupii08mmplVSiyo3fVhZlYpqaBuLYjePnd9mJmVSyqoWwoFd32YmVVIKqhbW3wy0cysUlJBXfQ4ajOzKmkFdT6OOnytUzOzfokFdXbPRI/8MDPbLa2gbsnK8QlFM7Pd6g5qSS2S7pV0faOKaW0ptah9QtHMrGQ4LepPACsaVQiUdX24RW1m1q+uoJY0BzgduKSRxZS6Pna6RW1m1q/eFvU/ARcAgyaopMWSuiV19/T0jKgYt6jNzKoNGdSSzgDWRcSyPS0XEUsioisiujo7O0dUTKlF7bHUZma71dOifjewUNLTwJXAiZIub0QxpZOJ/nSimdluQwZ1RHw2IuZExDxgEXBzRJzTiGKKhXx4nlvUZmb9khpH3VJwi9rMrFJxOAtHxK3ArQ2phN1dH+6jNjPbLakWdf/wPI/6MDPrl1RQt/YPz3PXh5lZSVJB3eKLMpmZVUkqqPsvyuSgNjPrl1RQ91+UyV0fZmb9kgrq0jhqn0w0M9stqaD2ZU7NzKolFdSlk4keR21mtltSQd3qcdRmZlWSCuqiTyaamVVJK6hLJxPd9WFm1i+poG4rZuXs6HWL2sysJKmgbndQm5lVSSqo21oc1GZmlZIK6kJBFAtix65dzS7FzCwZSQU1ZP3UblGbme1Wz81tOyTdJWm5pIckXdzIgtqKBbY7qM3M+tVzh5ftwIkR8YqkVuA2ST+LiDsaUVBbi1vUZmblhgzqiAjglfzH1vyrYQOd21sd1GZm5erqo5bUIuk+YB1wU0TcWWOZxZK6JXX39PSMuKC2lgLb/clEM7N+dQV1ROyKiAXAHOBoSW+pscySiOiKiK7Ozs4RF9RWbHGL2syszLBGfUTEBrK7kJ/akGrwyUQzs0r1jProlDQlfzwOOBl4pFEFtbcU2NHrcdRmZiX1jPqYCXxPUgtZsF8VEdc3qqC2YoFXd/Q2avNmZmNOPaM+7geOHIVagOx6Hxu2uuvDzKzEn0w0M0tckkHtk4lmZrulF9T+ZKKZ2QDpBbW7PszMBnBQm5klLsmg9kfIzcx2Sy6o2/OPkGfXgjIzswSDOr8dl1vVZmZAgkHt+yaamQ2UXFB3tLUAsHWnr/dhZgYJBvW41iyot+1wi9rMDBIM6vF5i/rVnb4wk5kZJBjUpRb11h3u+jAzgxSDus1BbWZWLr2gbvXJRDOzcskFdX8ftVvUZmZAgkHd4T5qM7MB6rln4lxJt0haIekhSZ9oZEHjPY7azGyAeu6Z2AucHxH3SJoELJN0U0Q83IiCxrnrw8xsgCFb1BHxXETckz/eDKwAZjeqoI6iW9RmZuWG1UctaR7ZjW7vrDFvsaRuSd09PT0jL6ggOloLbPWdyM3MgGEEtaSJwI+BT0bEpsr5EbEkIroioquzs3OvihrfVnSL2swsV1dQS2olC+krIuKaxpaUjaV2H7WZWaaeUR8CLgVWRMRXGl9SdkJxm1vUZmZAfS3qdwN/DJwo6b78632NLGp8WwtbtjuozcygjuF5EXEboFGopd/E9iKvbPfJRDMzSPCTiQCTO1rZvG1ns8swM0tCkkE9qaPIpq1uUZuZQbJB7Ra1mVlJkkE9eVyRLTt20es7kZuZpRnUkzpaAXxC0cyMZIM6G4yyeZuD2swsyaCenLeoN7mf2sws1aDOWtQe+WFmlmhQl/qoPfLDzCzRoJ48Lm9Ru4/azCzNoD5gQhsAL23Z3uRKzMyaL8mgnthepK1Y4MVXdjS7FDOzpksyqCUxfUIb6x3UZmZpBjXAtIntvOiuDzOzlIO6jZe2uEVtZpZuUE9odx+1mRn13YrrO5LWSXpwNAoqmT6xjfWvbCciRvNpzcySU0+L+jLg1AbXUaVzUjvbe/v86UQz2+8NGdQR8WvgpVGoZYDZU8YBsHrDq6P91GZmSdlnfdSSFkvqltTd09Oz19ublQf1mpe37vW2zMzGsn0W1BGxJCK6IqKrs7Nzr7c3e2oe1Bsc1Ga2f0t41EcbHa0Ft6jNbL+XbFBLYvaUcax62X3UZrZ/q2d43lLgdmC+pNWSzm18WZnDOifyxLpXRuvpzMySVBxqgYg4ezQKqeWNMybxy0fWsb13F+3FlmaVYWbWVMl2fQAcPmMiu/qCleu3NLsUM7OmSTqo5x84CYAVz21qciVmZs2TdFAf/vpJTGovcvfTLze7FDOzpkk6qFsK4qiDp3L3ylH/YKSZWTKSDmqAow85gMfXveJLnprZfiv5oH7XYdMAuOWRdU2uxMysOZIP6gVzpzB7yjiuv39ts0sxM2uK5INaEme8bSa/eXw96zZva3Y5ZmajLvmgBjj76IPoi+C7v3262aWYmY26MRHU86ZP4LS3zuT7v3ua5zb6Ik1mtn8ZE0ENcMF759PbF/ztvz7k23OZ2X5lzAT1wdMm8OlT3siND7/ApbetbHY5ZmajZsiLMqXkvx53KPet2sAXbljBhPYiZx99ULNLMjNruDHTogYoFMRXPrSA4w/v5LPXPMCXfv4IO3f1NbssM7OGGlNBDTCurYV//nAXi/79XL5165N88Nu388Dqjc0uy8ysYcZcUAO0FQt88T+9ja+dfSRrXn6Vhd+4jY8vvZcH1ziwzey1Z0z1UVda+PZZnDC/k2/c8gRX3PEs1y1fy9vnTuHMt83ktLfOZHZ+J3Mzs7FM9Qx1k3Qq8FWgBbgkIr64p+W7urqiu7t731RYp03bdnLV3au49t41PLQ2u371wdPG885DDmDB3Km8ccZEDp8xideNax3VuszM6iFpWUR01Zw3VFBLagEeA04BVgN3A2dHxMODrdOMoC63cv0WfrniBe5c+RJ3rXyJjVt39s+bPrGdWVM6OHByBzNf18H0ie1MHtfK5HFFJne0MnlcKxPairQVC7QXC7S3FmhvaaG9tUBbS4FCQU3bLzN77dpTUNfT9XE08EREPJVv7ErgLGDQoG62Q6ZP4LzjDuW84w6lry9Yu3Erj72wmUeff4Wn12/h+U3beObFV7n9qRfZvK13WNsuFkRBolCAgkSLhJRdO7sgIYmWfF5pOVEd7qqYVCv+VbFQzZeIGhMrJ1VuZ9BtmdlemTq+jav+9Nh9vt16gno2sKrs59XAOysXkrQYWAxw0EHpjG8uFMScqeOZM3U8J75pRtX8Hb19bN62k03betm0dScbt+7k1R29bO/tY3tvHzvy79t7d7Ej/7kvICLY1Rf0BfRF9H/t6queV6nyXUyt9zSVq9Vepsa2h5wAUXNrZra3Jnc0pmu1nqCu1fiqzoOIJcASyLo+9rKuUdNWLDBtYjvTJrY3uxQzs5rqGZ63Gphb9vMcwBeHNjMbJfUE9d3A4ZIOkdQGLAKua2xZZmZWMmTXR0T0Svpz4Bdkw/O+ExEPNbwyMzMD6vzAS0TcANzQ4FrMzKyGMfkRcjOz/YmD2swscQ5qM7PEOajNzBJX10WZhr1RqQd4ZoSrTwfW78NyGmks1Qpjq96xVCuMrXpda+PsTb0HR0RnrRkNCeq9Ial7sAuTpGYs1Qpjq96xVCuMrXpda+M0ql53fZiZJc5BbWaWuBSDekmzCxiGsVQrjK16x1KtMLbqda2N05B6k+ujNjOzgVJsUZuZWRkHtZlZ4pIJakmnSnpU0hOSLkygnrmSbpG0QtJDkj6RTz9A0k2SHs+/Ty1b57N5/Y9Kem+T6m6RdK+k61OuV9IUSVdLeiQ/xsemWmv+/J/K/w4elLRUUkcq9Ur6jqR1kh4smzbs2iS9Q9ID+byvqdY93BpX7z/kfwv3S7pW0pQU6q1Va9m8z0gKSdMbXmtENP2L7PKpTwKHAm3AcuCIJtc0EzgqfzyJ7Aa/RwB/D1yYT78Q+FL++Ii87nbgkHx/WppQ96eBHwLX5z8nWS/wPeC8/HEbMCXhWmcDK4Fx+c9XAX+SSr3A8cBRwINl04ZdG3AXcCzZXZ1+Bpw2ivW+Byjmj7+USr21as2nzyW79PMzwPRG15pKi7r/BroRsQMo3UC3aSLiuYi4J3+8GVhB9g97FlnIkH9/f/74LODKiNgeESuBJ8j2a9RImgOcDlxSNjm5eiVNJvsHuBQgInZExIYUay1TBMZJKgLjye5ylES9EfFr4KWKycOqTdJMYHJE3B5Zsny/bJ2G1xsRN0ZE6U7Td5DdSarp9Q5ybAH+EbiAgbclbFitqQR1rRvozm5SLVUkzQOOBO4EZkTEc5CFOfD6fLEU9uGfyP54+sqmpVjvoUAP8N28m+YSSRMSrZWIWAN8GXgWeA7YGBE3plpvbri1zc4fV05vhv9C1uqEBOuVtBBYExHLK2Y1rNZUgrquG+g2g6SJwI+BT0bEpj0tWmPaqO2DpDOAdRGxrN5VakwbrXqLZG8nvxURRwJbyN6eD6bZx3YqWWvpEGAWMEHSOXtapca0JP6eGby2JGqWdBHQC1xRmlRjsabVK2k8cBHwN7Vm15i2T2pNJaiTvIGupFaykL4iIq7JJ7+Qv5Uh/74un97sfXg3sFDS02RdRydKupw0610NrI6IO/OfryYL7hRrBTgZWBkRPRGxE7gGeFfC9TKC2lazu7uhfPqokfQR4Azgj/IuAkiv3sPIXrCX5/9rc4B7JB3YyFpTCerkbqCbn5W9FFgREV8pm3Ud8JH88UeAfy2bvkhSu6RDgMPJTiCMioj4bETMiYh5ZMfv5og4J8V6I+J5YJWk+fmkk4CHU6w19yxwjKTx+d/FSWTnLFKtt1RD3bXl3SObJR2T7+OHy9ZpOEmnAn8FLIyIV8tmJVVvRDwQEa+PiHn5/9pqskEHzze01n19lnQvzq6+j2xkxZPARQnU83tkb0/uB+7Lv94HTAN+CTyefz+gbJ2L8vofpUFnzOus/QR2j/pIsl5gAdCdH9+fAFNTrTV//ouBR4AHgR+QndlPol5gKVnf+c48OM4dSW1AV75/TwL/h/yTy6NU7xNk/bul/7Vvp1BvrVor5j9NPuqjkbX6I+RmZolLpevDzMwG4aA2M0ucg9rMLHEOajOzxDmozcwS56A2M0ucg9rMLHH/H/F9wyWrqZgeAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"while np.linalg.norm(gradient) >= err_tol:\n",
" # Calculation of f(x_k)\n",
" first_elm = np.dot(np.dot(x, Q), x)\n",
" second_elm = np.dot(b, x)\n",
" f_x = first_elm + second_elm + c\n",
" \n",
" alpha_arr = np.append(alpha_arr, alpha)\n",
" f_x_arr = np.append(f_x_arr, f_x)\n",
" x_arr = np.append(x_arr, x)\n",
"\n",
" # Calculation of f(x_k - alpha*gradient(f(x)))\n",
" x_ = np.subtract(x, alpha*gradient)\n",
" first_elm_ = np.dot(np.dot(x_, Q), x_)\n",
" second_elm_ = np.dot(b, x_)\n",
" f_x_ = first_elm_ + second_elm_ + c\n",
"\n",
"\n",
" # Armijo's rule for selecting step size\n",
" while f_x_ > (f_x - alpha*sigma*np.linalg.norm(gradient)*np.linalg.norm(gradient)):\n",
" alpha = alpha*beta\n",
"\n",
" # Calculation of f(x_k - alpha*gradient(f(x)))\n",
" x_ = np.subtract(x, alpha * gradient)\n",
" first_elm_ = np.dot(np.dot(x_, Q), x_)\n",
" second_elm_ = np.dot(b, x_)\n",
" f_x_ = first_elm_ + second_elm_ + c\n",
"\n",
" \n",
" # x and gradient are updated \n",
" x = x_\n",
" gradient = np.add(np.dot(2, np.dot(Q, x)), b)\n",
"\n",
" \n",
"print(alpha) \n",
"print(x)\n",
"print(f_x)\n",
"\n",
"\n",
"plt.plot(alpha_arr)\n",
"plt.title(\"Alpha values over iterations\")\n",
"plt.show()\n",
"\n",
"plt.plot(f_x_arr)\n",
"plt.title(\"Function values over iterations\")\n",
"plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[-0.05704387 0.68023741 -0.07965977 -0.93629827 -0.16708381]\n",
"0.692283152298834\n"
]
}
],
"source": [
"# matrix inversion\n",
"x_min = np.dot(np.linalg.inv(Q), -b/2)\n",
"print(x_min)\n",
"print(f(x_min))"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Optimization terminated successfully.\n",
" Current function value: 0.692283\n",
" Iterations: 467\n",
" Function evaluations: 765\n",
"[-0.05709283 0.68023614 -0.07964932 -0.93628897 -0.16705926]\n"
]
}
],
"source": [
"# scipy optimization\n",
"x0 = np.random.uniform(-1e5, 1e5, n)\n",
"minimum = optimize.fmin(f, x0)\n",
"print(minimum)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
%% Cell type:code id: tags:
```
python
import
numpy
as
np
from
scipy
import
optimize
import
matplotlib.pyplot
as
plt
```
%% Cell type:markdown id: tags:
Some necessary libraries are imported.
%% Cell type:code id: tags:
```
python
def
f
(
x
):
first_elm
=
np
.
dot
(
np
.
dot
(
x
,
Q
),
x
)
second_elm
=
np
.
dot
(
b
,
x
)
f_x
=
first_elm
+
second_elm
+
c
return
f_x
```
%% Cell type:markdown id: tags:
Objective function has been defined in order to use the scipy.optimize later.
%% Cell type:code id: tags:
```
python
global
Q
global
b
global
c
Q
=
np
.
loadtxt
(
"
Q.txt
"
)
b
=
np
.
loadtxt
(
"
b.txt
"
)
c
=
np
.
loadtxt
(
"
c.txt
"
)
```
%% Cell type:markdown id: tags:
The matrices defining the objective function have been inputted as global variables.
%% Cell type:code id: tags:
```
python
print
(
b
.
size
)
n
=
b
.
size
err_tol
=
1e-5
alpha
=
1
# recommended sigma [10^-5, 10^-1]
sigma
=
1e-1
# recommended beta [1/10, 1/2]
beta
=
0.4
x
=
np
.
random
.
uniform
(
-
1e4
,
1e4
,
n
)
gradient
=
np
.
add
(
np
.
dot
(
2
,
np
.
dot
(
Q
,
x
)),
b
)
alpha_arr
=
np
.
array
([])
f_x_arr
=
np
.
array
([])
x_arr
=
np
.
array
([])
```
%% Output
5
%% Cell type:markdown id: tags:
Initial guess is created and initial gradient is calculated.
%% Cell type:code id: tags:
```
python
while
np
.
linalg
.
norm
(
gradient
)
>=
err_tol
:
# Calculation of f(x_k)
first_elm
=
np
.
dot
(
np
.
dot
(
x
,
Q
),
x
)
second_elm
=
np
.
dot
(
b
,
x
)
f_x
=
first_elm
+
second_elm
+
c
alpha_arr
=
np
.
append
(
alpha_arr
,
alpha
)
f_x_arr
=
np
.
append
(
f_x_arr
,
f_x
)
x_arr
=
np
.
append
(
x_arr
,
x
)
# Calculation of f(x_k - alpha*gradient(f(x)))
x_
=
np
.
subtract
(
x
,
alpha
*
gradient
)
first_elm_
=
np
.
dot
(
np
.
dot
(
x_
,
Q
),
x_
)
second_elm_
=
np
.
dot
(
b
,
x_
)
f_x_
=
first_elm_
+
second_elm_
+
c
# Armijo's rule for selecting step size
while
f_x_
>
(
f_x
-
alpha
*
sigma
*
np
.
linalg
.
norm
(
gradient
)
*
np
.
linalg
.
norm
(
gradient
)):
alpha
=
alpha
*
beta
# Calculation of f(x_k - alpha*gradient(f(x)))
x_
=
np
.
subtract
(
x
,
alpha
*
gradient
)
first_elm_
=
np
.
dot
(
np
.
dot
(
x_
,
Q
),
x_
)
second_elm_
=
np
.
dot
(
b
,
x_
)
f_x_
=
first_elm_
+
second_elm_
+
c
# x and gradient are updated
x
=
x_
gradient
=
np
.
add
(
np
.
dot
(
2
,
np
.
dot
(
Q
,
x
)),
b
)
print
(
alpha
)
print
(
x
)
print
(
f_x
)
plt
.
plot
(
alpha_arr
)
plt
.
title
(
"
Alpha values over iterations
"
)
plt
.
show
()
plt
.
plot
(
f_x_arr
)
plt
.
title
(
"
Function values over iterations
"
)
plt
.
show
()
```
%% Output
0.06400000000000002
[-0.05708123 0.68024703 -0.0796436 -0.93631147 -0.16706706]
0.6922831525384057
%% Cell type:code id: tags:
```
python
# matrix inversion
x_min
=
np
.
dot
(
np
.
linalg
.
inv
(
Q
),
-
b
/
2
)
print
(
x_min
)
print
(
f
(
x_min
))
```
%% Output
[-0.05704387 0.68023741 -0.07965977 -0.93629827 -0.16708381]
0.692283152298834
%% Cell type:code id: tags:
```
python
# scipy optimization
x0
=
np
.
random
.
uniform
(
-
1e5
,
1e5
,
n
)
minimum
=
optimize
.
fmin
(
f
,
x0
)
print
(
minimum
)
```
%% Output
Optimization terminated successfully.
Current function value: 0.692283
Iterations: 467
Function evaluations: 765
[-0.05709283 0.68023614 -0.07964932 -0.93628897 -0.16705926]
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment