Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import pymysql\n",
"import calendar\n",
"from pymongo import MongoClient\n",
"import matplotlib.pyplot as plt\n",
"from sklearn.preprocessing import PolynomialFeatures\n",
"from sklearn.linear_model import LinearRegression\n",
"from operator import itemgetter"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"#User can insert their comments and ratings into our database, the avgrating in Player_Bio will also update\n",
"def user_comments(PlayerName, UserName, ratings, Comments):\n",
" #insert new entry in User_ratings\n",
" conn = pymysql.connect(\n",
" port=int(3306),\n",
" user=\"root\",\n",
" passwd= \"12345678\",\n",
" database = \"NBA_DB\")\n",
" #Get correct ratingID\n",
" my_cursor = conn.cursor()\n",
" my_cursor.execute(\"SELECT MAX(ratingID) FROM User_ratings\")\n",
" my_result = my_cursor.fetchall()\n",
" if not my_result[0][0]:\n",
" new_ID = 1\n",
" else:\n",
" new_ID = int(my_result[0][0]) + 1\n",
" \n",
" my_cursor = conn.cursor()\n",
" sqlFormula = \"INSERT INTO User_ratings (ratings, PlayerName, UserName, UserComments, ratingID) VALUES (%s, %s, %s, %s, %s)\"\n",
" records = (ratings, PlayerName, UserName, Comments, new_ID)\n",
" my_cursor.execute(sqlFormula, records)\n",
" conn.commit()\n",
" \n",
" #update in Player_Bio\n",
" myplayer = PlayerName\n",
" formula_1 = \"SELECT Avg(ratings) as AvgRating FROM User_ratings WHERE PlayerName = %s\"\n",
" my_cursor.execute(formula_1, myplayer)\n",
" my_result = my_cursor.fetchall()\n",
" new_avgRatings = float(my_result[0][0])\n",
" my_cursor = conn.cursor()\n",
" formula_2 = \"UPDATE Player_Bio SET AvgRating = %s WHERE PlayerName = %s\"\n",
" my_cursor.execute(formula_2, (new_avgRatings, myplayer))\n",
" conn.commit()\n",
" conn.close()\n",
" print(\"Successfully commented, your commentID is %d.\" % new_ID)\n",
"\n",
"#query Player_Bio table by PlayerName\n",
"def return_playerBio(PlayerName):\n",
" conn = pymysql.connect(\n",
" port=int(3306),\n",
" user=\"root\",\n",
" passwd= \"12345678\",\n",
" database = \"NBA_DB\")\n",
" my_cursor = conn.cursor()\n",
" formula_1 = \"SELECT * FROM Player_Bio WHERE PlayerName = '%s'\"\n",
" sqlformula = formula_1 % PlayerName\n",
" df = pd.read_sql(sqlformula, conn)\n",
" print(df.to_string())\n",
" conn.close()\n",
"\n",
"#新加的\n",
"#query Player_Bio table by PlayerName and Season\n",
"def return_playerBio_season(PlayerName, season):\n",
" conn = pymysql.connect(\n",
" port=int(3306),\n",
" user=\"root\",\n",
" passwd= \"12345678\",\n",
" database = \"NBA_DB\")\n",
" my_cursor = conn.cursor()\n",
" formula_1 = \"SELECT * FROM Player_Bio WHERE PlayerName = '%s' and Season = '%s'\"\n",
" sqlformula = formula_1 % (PlayerName,season)\n",
" df = pd.read_sql(sqlformula, conn)\n",
" print(df.to_string())\n",
" conn.close()\n",
"\n",
"#delete user rating and comments, then update average rating\n",
"def delete_ratings(deleteID):\n",
" conn = pymysql.connect(\n",
" port=int(3306),\n",
" user=\"root\",\n",
" passwd= \"12345678\",\n",
" database = \"NBA_DB\")\n",
" \n",
" #get playerName before deleting\n",
" my_cursor = conn.cursor()\n",
" formula_1 = \"SELECT PlayerName FROM User_ratings WHERE ratingID = %s\"\n",
" my_cursor.execute(formula_1, deleteID)\n",
" my_result = my_cursor.fetchall()\n",
" Player_name = my_result[0][0]\n",
" \n",
" #delete record\n",
" my_cursor = conn.cursor()\n",
" sqlformula = \"DELETE FROM User_ratings WHERE ratingID = %s\"\n",
" my_cursor.execute(sqlformula, deleteID)\n",
" \n",
" #update avgrating of the player in Player_Bio\n",
" myplayer = Player_name\n",
" formula_1 = \"SELECT Avg(ratings) as AvgRating FROM User_ratings WHERE PlayerName = %s\"\n",
" my_cursor.execute(formula_1, myplayer)\n",
" my_result = my_cursor.fetchall()\n",
" new_avgRatings = 0\n",
" if my_result[0][0]:\n",
" new_avgRatings = float(my_result[0][0])\n",
" my_cursor = conn.cursor()\n",
" formula_2 = \"UPDATE Player_Bio SET AvgRating = %s WHERE PlayerName = %s\"\n",
" my_cursor.execute(formula_2, (new_avgRatings, myplayer))\n",
" conn.commit()\n",
" print(\"Successfully deleted, the average rating of %s has been adjusted.\" % myplayer)\n",
" conn.close()\n",
" \n",
" "
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Successfully commented, your commentID is 3.\n"
]
}
],
"source": [
"user_comments(\"James Harden\", \"Xiao Ming\", 3, \"I hate seeing him scoring 40 while is 2/16\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Successfully commented, your commentID is 4.\n"
]
}
],
"source": [
"user_comments(\"James Harden\", \"Xiao Ming\", 4, \"I hate seeing him scoring 50 while shooting 3/16\")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" PlayerName TeamName AvgPoints AvgRebounds AvgAssists AvgSteals AvgRating Season SeasonType\n",
"0 James Harden HOU 36.1 6.6 7.5 2.0 3.5 2018-19 Regular_Season\n",
"1 James Harden HOU 31.6 6.8 6.6 2.2 3.5 2018-19 Playoff\n"
]
}
],
"source": [
"return_playerBio_season('James Harden', '2018-19')"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Successfully deleted, the average rating of James Harden has been adjusted.\n",
" PlayerName TeamName AvgPoints AvgRebounds AvgAssists AvgSteals AvgRating Season SeasonType\n",
"0 James Harden HOU 36.1 6.6 7.5 2.0 0.0 2018-19 Regular_Season\n",
"1 James Harden HOU 31.6 6.8 6.6 2.2 0.0 2018-19 Playoff\n"
]
}
],
"source": [
"delete_ratings(4)\n",
"return_playerBio_season('James Harden', '2018-19')"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Successfully commented, your commentID is 1.\n"
]
}
],
"source": [
"user_comments(\"James Harden\", \"Xiao Ming\", 3, \"I hate seeing him scoring 40 while is 2/16\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"# query player stats by playerName and Month, show results in past five years\n",
"def query_stats_by_month(PlayerName, Month):\n",
" conn = pymysql.connect(\n",
" port=int(3306),\n",
" user=\"root\",\n",
" passwd= \"12345678\",\n",
" database = \"NBA_DB\")\n",
" \n",
" Months = {}\n",
" Months[\"Jan\"] = \"01\"\n",
" Months[\"Feb\"] = \"02\"\n",
" Months[\"Mar\"] = \"03\"\n",
" Months[\"Apr\"] = \"04\"\n",
" Months[\"May\"] = \"05\"\n",
" Months[\"Jun\"] = \"06\"\n",
" Months[\"Jul\"] = \"07\"\n",
" Months[\"Aug\"] = \"08\"\n",
" Months[\"Sep\"] = \"09\"\n",
" Months[\"Oct\"] = \"10\"\n",
" Months[\"Nov\"] = \"11\"\n",
" Months[\"Dec\"] = \"12\"\n",
"\n",
" my_cursor = conn.cursor()\n",
" my_month = Months[Month]\n",
" # “有改动”\n",
" formula_1 = \"SELECT PlayerName, Avg(Points) as Points, Avg(Rebounds) as Rebounds, Avg(Assists) as Assists, Avg(Steals) as Steals, count(*) as Game_Played, Season FROM Game_Stats WHERE PlayerName = '%s' and CAST(Date AS CHAR) LIKE '____%s__' group by Season\"\n",
" sqlformula = formula_1 % (PlayerName, my_month)\n",
" df = pd.read_sql(sqlformula, conn)\n",
" print(df.to_string())\n",
" conn.close()\n",
"\n",
"def query_stats_by_opponent(PlayerName, Opponent):\n",
" conn = pymysql.connect(\n",
" port=int(3306),\n",
" user=\"root\",\n",
" passwd= \"12345678\",\n",
" database = \"NBA_DB\")\n",
"\n",
" my_cursor = conn.cursor()\n",
" #有改动\n",
" formula_1 = \"SELECT PlayerName, OpponentTeam, Avg(Points) as Points, Avg(Rebounds) as Rebounds, Avg(Assists) as Assists, Avg(Steals) as Steals, count(*) as Game_Played, Season FROM Game_Stats WHERE PlayerName = '%s' and OpponentTeam = '%s' group by Season\"\n",
" sqlformula = formula_1 % (PlayerName, Opponent)\n",
" df = pd.read_sql(sqlformula, conn)\n",
" print(df.to_string())\n",
" conn.close()\n",
" \n",
"#return a player's performance against each opponent team in a given season\n",
"#有改动\n",
"def query_all_results_groupby_opponent(PlayerName, season):\n",
" conn = pymysql.connect(\n",
" port=int(3306),\n",
" user=\"root\",\n",
" passwd= \"12345678\",\n",
" database = \"NBA_DB\")\n",
"\n",
" my_cursor = conn.cursor()\n",
" formula_1 = \"SELECT PlayerName, OpponentTeam, Avg(Points) as Points, Avg(Rebounds) as Rebounds, Avg(Assists) as Assists, Avg(Steals) as Steals, count(*) as Game_Played, Season FROM Game_Stats WHERE PlayerName = '%s' and Season = '%s' Group By OpponentTeam\"\n",
" sqlformula = formula_1 % (PlayerName,season)\n",
" df = pd.read_sql(sqlformula, conn)\n",
" print(df.to_string())\n",
" conn.close()\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" PlayerName OpponentTeam Points Rebounds Assists Steals Game_Played Season\n",
"0 LeBron James GSW 17.0000 13.0000 5.0000 1.0000 1 2018-19\n",
"1 LeBron James GSW 31.3333 8.0000 8.6667 1.3333 6 2017-18\n",
"2 LeBron James GSW 31.2857 11.5714 8.0000 1.4286 7 2016-17\n",
"3 LeBron James GSW 27.6667 10.3333 7.6667 2.2222 9 2015-16\n",
"4 LeBron James GSW 36.7143 13.0000 8.2857 1.5714 7 2014-15\n"
]
}
],
"source": [
"query_stats_by_opponent('LeBron James','GSW')"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" PlayerName OpponentTeam Points Rebounds Assists Steals Game_Played Season\n",
"0 LeBron James CHA 25.5000 7.5000 10.0000 0.5000 2 2018-19\n",
"1 LeBron James WAS 18.0000 6.5000 8.5000 0.5000 2 2018-19\n",
"2 LeBron James SAC 27.0000 9.0000 6.5000 1.5000 2 2018-19\n",
"3 LeBron James BKN 30.5000 11.0000 11.0000 1.0000 2 2018-19\n",
"4 LeBron James NYK 33.0000 6.0000 8.0000 0.0000 1 2018-19\n",
"5 LeBron James TOR 23.5000 3.0000 6.0000 0.5000 2 2018-19\n",
"6 LeBron James CHI 36.0000 10.0000 4.0000 2.0000 1 2018-19\n",
"7 LeBron James BOS 29.0000 11.0000 12.0000 1.5000 2 2018-19\n",
"8 LeBron James DEN 24.3333 8.3333 6.6667 2.0000 3 2018-19\n",
"9 LeBron James LAC 25.5000 11.0000 7.5000 1.0000 2 2018-19\n",
"10 LeBron James PHX 22.6667 7.3333 11.3333 1.0000 3 2018-19\n",
"11 LeBron James MIL 31.0000 7.0000 10.0000 1.0000 1 2018-19\n",
"12 LeBron James NOP 27.3333 8.3333 12.0000 2.6667 3 2018-19\n",
"13 LeBron James MEM 22.0000 11.3333 9.0000 2.0000 3 2018-19\n",
"14 LeBron James HOU 27.3333 7.3333 5.0000 1.6667 3 2018-19\n",
"15 LeBron James ATL 27.0000 9.0000 10.0000 2.5000 2 2018-19\n",
"16 LeBron James PHI 18.0000 10.0000 9.0000 0.0000 1 2018-19\n",
"17 LeBron James IND 28.0000 8.0000 8.0000 1.5000 2 2018-19\n",
"18 LeBron James GSW 17.0000 13.0000 5.0000 1.0000 1 2018-19\n",
"19 LeBron James MIA 39.5000 8.5000 7.5000 1.5000 2 2018-19\n",
"20 LeBron James SAS 36.0000 8.0000 8.7500 1.7500 4 2018-19\n",
"21 LeBron James DAL 28.5000 5.0000 5.0000 1.5000 2 2018-19\n",
"22 LeBron James ORL 23.0000 4.0000 7.0000 0.0000 2 2018-19\n",
"23 LeBron James UTA 22.0000 10.0000 7.0000 2.0000 1 2018-19\n",
"24 LeBron James CLE 32.0000 14.0000 7.0000 0.0000 1 2018-19\n",
"25 LeBron James POR 32.6667 9.0000 7.3333 0.6667 3 2018-19\n",
"26 LeBron James MIN 26.5000 10.5000 8.5000 1.0000 2 2018-19\n"
]
}
],
"source": [
"query_all_results_groupby_opponent(\"LeBron James\", \"2018-19\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" PlayerName Points Rebounds Assists Steals Game_Played Season\n",
"0 James Harden 43.5714 8.7143 7.5714 2.0714 14 2018-19\n",
"1 James Harden 27.8571 5.1429 9.0000 2.1429 7 2017-18\n",
"2 James Harden 28.2941 8.1765 10.4118 1.5294 17 2016-17\n",
"3 James Harden 26.8125 6.7500 7.2500 1.1875 16 2015-16\n",
"4 James Harden 25.8235 4.7059 6.7059 2.1765 17 2014-15\n"
]
}
],
"source": [
"query_stats_by_month(\"James Harden\", 'Jan')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Who is the best clutch free throw shooter in team?"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# More complicated query functions\n",
"# Find best free throw shooter, who has played more than 10 min in clutch moments\n",
"# for selected team and SeasonType, decision made by previous season:\n",
"def find_best_clutch_FT_Shooter(TeamName, SeasonType):\n",
" conn = pymysql.connect(\n",
" port=int(3306),\n",
" user=\"root\",\n",
" passwd= \"12345678\",\n",
" database = \"NBA_DB\")\n",
" my_cursor = conn.cursor()\n",
"\n",
" my_cursor.execute('''Create view Jointed_Table as \n",
" select * from (select * from Player_Clutch_Stats where Season = '2018-19') as short_clutch \n",
" natural join (select distinct PlayerName, TeamName from Player_Bio where Season = '2018-19') as short_bio;''')\n",
"\n",
" my_cursor.execute('''Create view BestFT_Shooters as\n",
" Select distinct PlayerName, Free_Throw_P, J.TeamName, J.Minutes_Played, J.SeasonType from Jointed_Table J, \n",
" (Select max(Free_Throw_P) as maxFT, TeamName, SeasonType from Jointed_Table where Minutes_Played > 10 group by TeamName, SeasonType) as bestFT\n",
" where J.Free_Throw_P = bestFT.maxFT and J.TeamName = bestFT.TeamName and J.Minutes_Played > 10;''')\n",
"\n",
" formula_1 = \"select PlayerName, Free_Throw_P, TeamName, Minutes_Played, SeasonType from BestFT_Shooters where TeamName = '%s' and SeasonType = '%s'\"\n",
" sqlformula = formula_1 % (TeamName, SeasonType)\n",
" df = pd.read_sql(sqlformula, conn)\n",
" print(df.to_string())\n",
" my_cursor.execute(\"Drop view Jointed_Table;\")\n",
" my_cursor.execute(\"Drop view BestFT_Shooters;\")\n",
" conn.close()\n",
"\n",
"# More complicated query functions\n",
"# Find best Three Pointer shooter, who has played more than 10 min in clutch moments\n",
"# for selected team and SeasonType, decision made by previous season:\n",
"def find_best_clutch_3pointer_Shooter(TeamName, SeasonType):\n",
" conn = pymysql.connect(\n",
" port=int(3306),\n",
" user=\"root\",\n",
" passwd= \"12345678\",\n",
" database = \"NBA_DB\")\n",
" my_cursor = conn.cursor()\n",
"\n",
" my_cursor.execute('''Create view Jointed_Table as \n",
" select * from (select * from Player_Clutch_Stats where Season = '2018-19') as short_clutch \n",
" natural join (select distinct PlayerName, TeamName from Player_Bio where Season = '2018-19') as short_bio;''')\n",
"\n",
" my_cursor.execute('''Create view BestFT_Shooters as\n",
" Select distinct PlayerName, 3pointer_P, J.TeamName, J.Minutes_Played, J.SeasonType from Jointed_Table J, \n",
" (Select max(3pointer_P) as maxFT, TeamName, SeasonType from Jointed_Table where Minutes_Played > 10 group by TeamName, SeasonType) as bestFT\n",
" where J.3pointer_P = bestFT.maxFT and J.TeamName = bestFT.TeamName and J.Minutes_Played > 10;''')\n",
"\n",
" formula_1 = \"select PlayerName, 3pointer_P, TeamName, Minutes_Played, SeasonType from BestFT_Shooters where TeamName = '%s' and SeasonType = '%s'\"\n",
" sqlformula = formula_1 % (TeamName, SeasonType)\n",
" df = pd.read_sql(sqlformula, conn)\n",
" print(df.to_string())\n",
" my_cursor.execute(\"Drop view Jointed_Table;\")\n",
" my_cursor.execute(\"Drop view BestFT_Shooters;\")\n",
" conn.close()\n"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" PlayerName 3pointer_P TeamName Minutes_Played SeasonType\n",
"0 Draymond Green 50.0 GSW 101 Regular_Season\n"
]
}
],
"source": [
"find_best_clutch_3pointer_Shooter('GSW','Regular_Season')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Just WoW! So suprising!"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" PlayerName Free_Throw_P TeamName Minutes_Played SeasonType\n",
"0 Klay Thompson 100.0 GSW 125 Regular_Season\n"
]
}
],
"source": [
"find_best_clutch_FT_Shooter('GSW','Regular_Season')"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" PlayerName Free_Throw_P TeamName Minutes_Played SeasonType\n",
"0 Jamal Murray 100.0 DEN 43 Playoff\n",
"1 Gary Harris 100.0 DEN 38 Playoff\n",
"2 Paul Millsap 100.0 DEN 43 Playoff\n"
]
}
],
"source": [
"find_best_clutch_FT_Shooter('DEN','Playoff')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Which team likes 3 pointer most?"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [],
"source": [
"def find_team_3PTA_ranking(TeamName, Season):\n",
" conn = pymysql.connect(\n",
" port=int(3306),\n",
" user=\"root\",\n",
" passwd= \"12345678\",\n",
" database = \"NBA_DB\")\n",
" \n",
" nbaTeams = {}\n",
" nbaTeams['Atlanta Hawks'] = 'ATL'\n",
" nbaTeams['Brooklyn Nets'] = 'BKN'\n",
" nbaTeams['Boston Celtics'] = 'BOS'\n",
" nbaTeams['Charlotte Hornets'] = 'CHA'\n",
" nbaTeams['Chicago Bulls'] = 'CHI'\n",
" nbaTeams['Cleveland Cavaliers'] = 'CLE'\n",
" nbaTeams['Dallas Mavericks'] = 'DAL'\n",
" nbaTeams['Denver Nuggets'] = 'DEN'\n",
" nbaTeams['Detroit Pistons'] = 'DET'\n",
" nbaTeams['Golden State Warriors'] = 'GSW'\n",
" nbaTeams['Houston Rockets'] = 'HOU'\n",
" nbaTeams['Indiana Pacers'] = 'IND'\n",
" nbaTeams['LA Clippers'] = 'LAC'\n",
" nbaTeams['Los Angeles Lakers'] = 'LAL'\n",
" nbaTeams['Memphis Grizzlies'] = 'MEM'\n",
" nbaTeams['Miami Heat'] = 'MIA'\n",
" nbaTeams['Milwaukee Bucks'] = 'MIL'\n",
" nbaTeams['Minnesota Timberwolves'] = 'MIN'\n",
" nbaTeams['New Orleans Pelicans'] = 'NOP'\n",
" nbaTeams['New York Knicks'] = 'NYK'\n",
" nbaTeams['Oklahoma City Thunder'] = 'OKC'\n",
" nbaTeams['Orlando Magic'] = 'ORL'\n",
" nbaTeams['Philadelphia 76ers'] = 'PHI'\n",
" nbaTeams['Phoenix Suns'] = 'PHX'\n",
" nbaTeams['Portland Trail Blazers'] = 'POR'\n",
" nbaTeams['Sacramento Kings'] = 'SAC'\n",
" nbaTeams['San Antonio Spurs'] = 'SAS'\n",
" nbaTeams['Toronto Raptors'] = 'TOR'\n",
" nbaTeams['Utah Jazz'] = 'UTA'\n",
" nbaTeams['Washington Wizards'] = 'WAS'\n",
" nbaTeams_2 = {v: k for k, v in nbaTeams.items()}\n",
" \n",
" my_cursor = conn.cursor()\n",
" sqlformula1 = '''Create view Jointed_Table as \n",
" select * from (select * from Shot_Selection where Season = '%s') as \n",
" short_shot natural join (select PlayerName, TeamName from Player_Bio where season = '%s') as short_bio;''' % (Season,Season)\n",
" \n",
" my_cursor.execute(sqlformula1)\n",
"\n",
" my_cursor.execute('''Create view Team_Shooting as\n",
" select TeamName, sum(3FGA) as Total_3pt_attempt, sum(2FGA) as Total_2pt_attempt from Jointed_Table group by TeamName;''')\n",
"\n",
" \n",
" sqlformula = \"SELECT Total_3pt_attempt FROM Team_Shooting where TeamName = %s\"\n",
" my_cursor.execute(sqlformula, TeamName)\n",
" my_result = my_cursor.fetchall()\n",
" Three_ptA = int(my_result[0][0])\n",
" \n",
" sqlformula = '''select count(*)+1 from Team_Shooting \n",
" where Total_3pt_attempt > %s;'''\n",
"\n",
" my_cursor.execute(sqlformula, Three_ptA)\n",
" my_result = my_cursor.fetchall()\n",
" ranking = my_result[0][0]\n",
" \n",
" print(\"The team %s attempted %s three pointers during %s season, which ranked No.%d in the league.\" % (nbaTeams_2[TeamName], Three_ptA, Season, ranking))\n",
" \n",
" my_cursor.execute(\"drop view Jointed_Table;\")\n",
" my_cursor.execute(\"drop view Team_Shooting\")\n",
" conn.close()\n",
"\n",
"def find_team_2PTA_ranking(TeamName, Season):\n",
" conn = pymysql.connect(\n",
" port=int(3306),\n",
" user=\"root\",\n",
" passwd= \"12345678\",\n",
" database = \"NBA_DB\")\n",
" \n",
" nbaTeams = {}\n",
" nbaTeams['Atlanta Hawks'] = 'ATL'\n",
" nbaTeams['Brooklyn Nets'] = 'BKN'\n",
" nbaTeams['Boston Celtics'] = 'BOS'\n",
" nbaTeams['Charlotte Hornets'] = 'CHA'\n",
" nbaTeams['Chicago Bulls'] = 'CHI'\n",
" nbaTeams['Cleveland Cavaliers'] = 'CLE'\n",
" nbaTeams['Dallas Mavericks'] = 'DAL'\n",
" nbaTeams['Denver Nuggets'] = 'DEN'\n",
" nbaTeams['Detroit Pistons'] = 'DET'\n",
" nbaTeams['Golden State Warriors'] = 'GSW'\n",
" nbaTeams['Houston Rockets'] = 'HOU'\n",
" nbaTeams['Indiana Pacers'] = 'IND'\n",
" nbaTeams['LA Clippers'] = 'LAC'\n",
" nbaTeams['Los Angeles Lakers'] = 'LAL'\n",
" nbaTeams['Memphis Grizzlies'] = 'MEM'\n",
" nbaTeams['Miami Heat'] = 'MIA'\n",
" nbaTeams['Milwaukee Bucks'] = 'MIL'\n",
" nbaTeams['Minnesota Timberwolves'] = 'MIN'\n",
" nbaTeams['New Orleans Pelicans'] = 'NOP'\n",
" nbaTeams['New York Knicks'] = 'NYK'\n",
" nbaTeams['Oklahoma City Thunder'] = 'OKC'\n",
" nbaTeams['Orlando Magic'] = 'ORL'\n",
" nbaTeams['Philadelphia 76ers'] = 'PHI'\n",
" nbaTeams['Phoenix Suns'] = 'PHX'\n",
" nbaTeams['Portland Trail Blazers'] = 'POR'\n",
" nbaTeams['Sacramento Kings'] = 'SAC'\n",
" nbaTeams['San Antonio Spurs'] = 'SAS'\n",
" nbaTeams['Toronto Raptors'] = 'TOR'\n",
" nbaTeams['Utah Jazz'] = 'UTA'\n",
" nbaTeams['Washington Wizards'] = 'WAS'\n",
" nbaTeams_2 = {v: k for k, v in nbaTeams.items()}\n",
" \n",
" my_cursor = conn.cursor()\n",
" sqlformula1 = '''Create view Jointed_Table as \n",
" select * from (select * from Shot_Selection where Season = '%s') as \n",
" short_shot natural join (select PlayerName, TeamName from Player_Bio where season = '%s') as short_bio;''' % (Season,Season)\n",
" \n",
" my_cursor.execute(sqlformula1)\n",
"\n",
" my_cursor.execute('''Create view Team_Shooting as\n",
" select TeamName, sum(3FGA) as Total_3pt_attempt, sum(2FGA) as Total_2pt_attempt from Jointed_Table group by TeamName;''')\n",
"\n",
" \n",
" sqlformula = \"SELECT Total_2pt_attempt FROM Team_Shooting where TeamName = %s\"\n",
" my_cursor.execute(sqlformula, TeamName)\n",
" my_result = my_cursor.fetchall()\n",
" Two_ptA = int(my_result[0][0])\n",
" \n",
" sqlformula = '''select count(*)+1 from Team_Shooting \n",
" where Total_2pt_attempt > %s;'''\n",
"\n",
" my_cursor.execute(sqlformula, Two_ptA)\n",
" my_result = my_cursor.fetchall()\n",
" ranking = my_result[0][0]\n",
" \n",
" print(\"The team %s attempted %s two pointers during %s season, which ranked No.%d in the league.\" % (nbaTeams_2[TeamName], Two_ptA, Season, ranking))\n",
" \n",
" my_cursor.execute(\"drop view Jointed_Table;\")\n",
" my_cursor.execute(\"drop view Team_Shooting\")\n",
" conn.close()"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The team Houston Rockets attempted 7617 three pointers during 2018-19 season, which ranked No.1 in the league.\n"
]
}
],
"source": [
"find_team_3PTA_ranking(\"HOU\",'2018-19')"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The team Houston Rockets attempted 6509 two pointers during 2017-18 season, which ranked No.16 in the league.\n"
]
}
],
"source": [
"find_team_2PTA_ranking(\"HOU\",'2017-18')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Advance Function:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## AF1: Predict a player's game stat line based on his past games vs the selected opponent team"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# Call Stored procedure in mysql server:\n",
"'''\n",
" DROP PROCEDURE IF EXISTS I_Hate_Your_Team;\n",
" DELIMITER //\n",
" CREATE PROCEDURE I_Hate_Your_Team(IN player_name varchar(255), In Opponent_Team VARCHAR(255))\n",
" BEGIN\n",
" declare Done int default 0;\n",
" declare temp char(10) default 0;\n",
" declare currDate INT;\n",
" declare DateCurr cursor for select distinct Date from Game_Stats where PlayerName = player_name and OpponentTeam = Opponent_Team;\n",
" declare continue handler for NOT FOUND set Done = 1;\n",
" \n",
" Drop table if exists new_table;\n",
" Create table new_table(\n",
" Date Int primary key,\n",
" Month char(10),\n",
" PlayerName VARCHAR(255),\n",
" Points Int,\n",
" Rebounds Int,\n",
" Assists Int,\n",
" Steals Int,\n",
" OpponentTeam VARCHAR(255)\n",
" );\n",
" \n",
" open DateCurr;\n",
" Repeat \n",
" fetch DateCurr into currDate;\n",
" Insert ignore into new_table (Date, Month, PlayerName, Points, Rebounds, Assists, Steals, OpponentTeam)\n",
" (SELECT Date, Substring(CAST(Date AS CHAR),-4,2), PlayerName, Points, Rebounds, Assists, Steals, OpponentTeam\n",
" from Game_Stats where PlayerName = player_name and OpponentTeam = Opponent_Team);\n",
"\t set temp = (select Month from new_table where Date = currDate);\n",
" if temp = '01' then\n",
" Update new_table\n",
" Set Month = \"Jan\"\n",
" where Date = currDate;\n",
"\t elseif temp = '02' then\n",
" Update new_table\n",
" Set Month = \"Feb\"\n",
" where Date = currDate;\n",
"\t elseif temp = '03' then\n",
" Update new_table\n",
" Set Month = \"Mar\"\n",
" where Date = currDate;\n",
"\t elseif temp = '04' then\n",
" Update new_table\n",
" Set Month = \"Apr\"\n",
" where Date = currDate;\n",
"\t elseif temp = '05' then\n",
" Update new_table\n",
" Set Month = \"May\"\n",
" where Date = currDate;\n",
"\t elseif temp = '06' then\n",
" Update new_table\n",
" Set Month = \"Jun\"\n",
" where Date = currDate;\n",
"\t elseif temp = '07' then\n",
" Update new_table\n",
" Set Month = \"Jul\"\n",
" where Date = currDate;\n",
"\t elseif temp = '08' then\n",
" Update new_table\n",
" Set Month = \"Aug\"\n",
" where Date = currDate;\n",
"\t elseif temp = '09' then\n",
" Update new_table\n",
" Set Month = \"Sep\"\n",
" where Date = currDate;\n",
"\t elseif temp = '10' then\n",
" Update new_table\n",
" Set Month = \"Oct\"\n",
" where Date = currDate;\n",
"\t elseif temp = '11' then\n",
" Update new_table\n",
" Set Month = \"Nov\"\n",
" where Date = currDate;\n",
"\t else\n",
" Update new_table\n",
" Set Month = \"Dec\"\n",
" where Date = currDate;\n",
" end if;\n",
" \n",
"\t \n",
" UNTIL Done\n",
" End Repeat;\n",
" close DateCurr;\n",
" \n",
" select Month, PlayerName, OpponentTeam, AVG(Points) as AVG_Points, AVG(Rebounds) as AVG_Rebounds, AVG(Assists) as AVG_Assists, AVG(Steals) as AVG_Steals from new_table group by Month, PlayerName, OpponentTeam;\n",
" END//\n",
" DELIMITER ;\n",
"'''\n",
" \n",
"def stat_predictor(Player_Name, Opponent_Team, Month):\n",
" conn = pymysql.connect(\n",
" port=int(3306),\n",
" user=\"root\",\n",
" passwd= \"12345678\",\n",
" database = \"NBA_DB\")\n",
" \n",
" Months = {}\n",
" Months[\"Jan\"] = 1\n",
" Months[\"Feb\"] = 2\n",
" Months[\"Mar\"] = 3\n",
" Months[\"Apr\"] = 4\n",
" Months[\"May\"] = 5\n",
" Months[\"Jun\"] = 6\n",
" Months[\"Jul\"] = 7\n",
" Months[\"Aug\"] = 8\n",
" Months[\"Sep\"] = 9\n",
" Months[\"Oct\"] = 10\n",
" Months[\"Nov\"] = 11\n",
" Months[\"Dec\"] = 12\n",
" \n",
" my_cursor = conn.cursor()\n",
" sqlformula = 'call I_Hate_Your_Team(\"%s\", \"%s\")' % (Player_Name, Opponent_Team)\n",
" df = pd.read_sql(sqlformula, conn)\n",
" conn.close()\n",
" \n",
" Month_dict = dict((v,k) for k,v in enumerate(calendar.month_abbr))\n",
" Month_digit = [Month_dict[key] for key in df.Month.tolist()]\n",
" df.Month = Month_digit\n",
" df = df.sort_values(by=['Month'])\n",
"\n",
" X = [[value] for value in df.Month.tolist()]\n",
" point = [value for value in df.AVG_Points.tolist()]\n",
" rebound = [value for value in df.AVG_Rebounds.tolist()]\n",
" assist = [value for value in df.AVG_Assists.tolist()]\n",
" steals = [value for value in df.AVG_Steals.tolist()]\n",
"\n",
" poly_reg = PolynomialFeatures(degree=2)\n",
" X_poly = poly_reg.fit_transform(X)\n",
" pol_reg_point = LinearRegression()\n",
" pol_reg_point.fit(X_poly, point)\n",
" pol_reg_rebound = LinearRegression()\n",
" pol_reg_rebound.fit(X_poly, rebound)\n",
" pol_reg_assist = LinearRegression()\n",
" pol_reg_assist.fit(X_poly, assist)\n",
" pol_reg_steal = LinearRegression()\n",
" pol_reg_steal.fit(X_poly, steals)\n",
"\n",
" plt.plot(X, pol_reg_point.predict(poly_reg.fit_transform(X)), color='blue',label = \"Points\")\n",
" plt.plot(X, pol_reg_rebound.predict(poly_reg.fit_transform(X)), color='red',label = \"Rebounds\")\n",
" plt.plot(X, pol_reg_assist.predict(poly_reg.fit_transform(X)), color='green',label = \"Assists\")\n",
" plt.plot(X, pol_reg_steal.predict(poly_reg.fit_transform(X)), color='yellow',label = \"Steals\")\n",
" plt.title('Stat_Prediction: %s vs %s' %(Player_Name, Opponent_Team))\n",
" plt.xlabel('Month')\n",
" plt.ylabel('Stats')\n",
" plt.legend(loc=\"upper right\")\n",
" plt.show()\n",
" \n",
" predicted_point = pol_reg_point.predict(poly_reg.fit_transform([[Months[Month]]]))\n",
" predicted_rebound = pol_reg_rebound.predict(poly_reg.fit_transform([[Months[Month]]]))\n",
" predicted_assist = pol_reg_assist.predict(poly_reg.fit_transform([[Months[Month]]]))\n",
" predicted_steal = pol_reg_steal.predict(poly_reg.fit_transform([[Months[Month]]]))\n",
" \n",
" predicted_stat_line = \"%s will have %d points, %d rebounds, %d assists, %d steals against %s.\" %(Player_Name, int(predicted_point[0]), int(predicted_rebound[0]), int(predicted_assist[0]), int(predicted_steal[0]),Opponent_Team)\n",
" print(predicted_stat_line)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXxU5bnA8d+TAAmBsCZsCQmgglpAwAAiiKCiuO/bLSiCYuutW6tVr/cq1VqtWku9tVpuXSgo1uJeq6KA4goCIrKjyJIQIIBAQiAhyXP/eE+SyWRPZnKSzPP9fOYzM+ecmfOcLM+8877veY6oKsYYYyJHlN8BGGOMaViW+I0xJsJY4jfGmAhjid8YYyKMJX5jjIkwlviNMSbCWOI3YSMiL4jIb73Hp4jI+jq+zzMi8j+hjc7UlohME5HZfsdh6s8SfyMgIqNE5HMR2S8ie0XkMxEZ6q2bJCKf1uK9eomIikiLGmw7SUQKRSRHRA6IyAoROa8+x1IZVf1EVfvVMKYyx6uqP1PVB8MRV3X7bgqaatw1JSIni8gCEcn2/kfeFpHjA9aPEZH0gOetROQ17/+onbesr4j8U0R2e++xUkR+KSLRfhyT3yzx+8z7w/wX8L9AJyAJ+A2Q10AhfKGqbYEOwLPAKyLSqYI4q/0giWT28wkPERkBzAPeBHoAvYFvgM9EpE8F28cAr+H+ns9U1QMichSwGNgGDFDV9sDlQBoQ3yAH0shY4vdfXwBVnaOqhap6SFXnqepKETkOeAYY4bXK9wGIyLki8rXXSt8mItMC3m+Rd7/Pe82ImgShqkXAc0BroE9xK0pE7hKRHcDz3r7P874Z7PO+pQwsfg8RGSwiy72W2T+A2IB1wa2ynl6rLEtE9ojIn6s43pIuI+/5DSLynfft6C0R6RGwTkXkZyKyUUR+FJGnRERq8jMIJiI9RORVL8YfROSWgHXTRGSuiMwWkQPAJBGJEpG7ReR775hKPkQDvold5/3OfvTiHOq1PveJyJ+9bWO8YxsQsL8uInJIRBJreQzXicha73eySURuDFhX/Dv+tYjsEpFMEblIRM4RkQ1eDP8V9JaxIvIP7/2Wi8gJlez3GRF5PGjZmyLyS+/xXSKS4b3PehE5vZJDeBT4u6r+SVWzVXWvqv438CUwLej944C3gZbAuap60Fv1G+BzVf2lqmYCqOp6Vf0PVd1Xgx9j86OqdvPxBrQD9gAzgbOBjkHrJwGfBi0bAwzAfXAPBHYCF3nregEKtKjBvkveG2gB3ApkA+29fRQAvwdicB8IQ4BdwHAgGrgW2OytbwVsAW7H/eNdBhwBfhsQc7r3OBrXavsj0Ab3ATGqiuN9IeB9TgN2e7HE4L4pLQrYVnHfoDoAKUAWMN5blwLsA1Jq8POIApYB93nH1gfYBJzlrZ/mHd9F3ratgdtwCSnZi+2vwJyg38sz3vGeCRwG3gC64L7p7QJO9bb/C/D7gNhuBd6uLu4K1p0LHAUIcCqQCwwJ+J0UeMfYErjB+3m9hGsJ/8SLsU/QMV/mbX8H8APQsoL9jsa1sMV73hE4hGu19/PW9Qj42RxVwXvEAYXA2ArWXQdkBhxHFvAx8BYQE7TtDuA6v//XG9PN9wDspgDH4ZJbuveP+BbQ1VtX6T91wOunA3/0HhcnmJom/gJcMtztJa0zvHVjgHwgNmD7p4EHg95jvZdQRgPbi//RvXWfU3HiH+H9o5aLsaLjpWzifxZ4NGBdWy8Z9fKeK96HiPf8FeDuGv4eSvaN+3DbGrT+HuB57/E0Aj5wvGVrgdMDnnf3YmsR8HtJCli/B7gy4PmrwG0B+98GRHnPlwJXVBd3DY7xDeDWgN/JISDaex7vxTg8YPtllDYqpgFfBqyLAjKBUyrYjwBbgdHe8xuABd7jo3EfcmdQwYdGwHske/EcW8G68cCRgOM4jPt7vbSCbY/gffjbzd2sq6cRUNW1qjpJVZOB/rhW0fTKtheR4SKy0OuC2A/8DEio4+6/VNUOqpqgqiep6ocB67JU9XDA81TgV163xD6vK6anF28PIEO9/zTPlkr22RPYoqoFdYi3R+D7qmoOLoEmBWyzI+BxLu7DobZSgR5Bx/pfQNeAbbZV8JrXA7Zfi2uxBr5mZ8DjQxU8bwugqouBg8CpInIsLlm+VduDEJGzReRLr9tmH3AOZf9W9qhqYcD+K4ox8OdXcszqugfTcb+TMry/g5eBq71F/wG86K37DvftaBqwS0ReDuyuC/AjUIT7AA3WHddYKbYbuAqYKSJnBW27p5L3iFiW+BsZVV2Ha+H2L15UwWYv4ZJAT3UDVc/gWliVbV/ncIKebwMe8j4oim9xqjoH1/JLCupPT6nkfbcBKVLxgGh18W/HJVgARKQN0BnIqOZ1tbUN+CHoWONV9ZwqYt0GnB30mlhVrWtsM4EJwERgbtCHcLXEDXS+CjyO+wbZAfg3pX8rddEz4P2jcK3y7ZVsOwe4TERScd9gXi1eoaovqeoo3O9ScV2KZajro/8CNxAb7ApgftD2r+G+WcwVkbEBqz4ELq32yCKIJX6ficixIvIrEUn2nvfEtZK+9DbZCSSLSKuAl8UDe1X1sIgMw7WmimXhWknlZjyEwP8BP/O+cYiItBE30ByP+wctAG4RkRYicgkwrJL3WYL7oHjEe49YERnpravoeAO9BFwnIoO8xPY7YLGqbg7RMQbGeMAbhGwtItEi0l+8abaVeAZ4yEt0iEiiiFxYjxhmARfjkv/fq9lWvJ9jyQ03NhGD+5soEJGzcWML9XGiiFzifWjfhpt99mVFG6rq196+/wa8r95Aqoj0E5HTvN/fYdy3isKK3gO4G7hWRG4RkXgR6ShuoH8EbtA2eJ9zgF8Abwb8Td0PnCwij4lINy+Go8UNzHeo00+hibPE779sXGtosYgcxP0TrQJ+5a1fAKwGdohI8Vfbm4AHRCQbNzD3SvGbqWou8BBuuts+ETkpVIGq6lJci+rPuK/h3+H6l1HVfOAS7/mPwJW4aXUVvU8hcD6u+2IrrrvgSm91Rccb+Nr5wP/gWo+ZuIHLq2oSv4ikiJstVNk3EfBa8QExDsINYO7GJbD2Vbz2T7hvYvO8382XuN9tnahqOrDci+mTajY/GZdAg2+34P4+fsQ1EGrdXRTkTdzv6kfcN5FLVPVIFdvPwfXlvxSwLAZ4BPcz3YEb3A6ePQSAqn4KnIX728rEdfMNxo3jbKzkNTNx/z/viMgwVf0e90HRC1jtdY++ihs3ya7+kJuf4hF3YyKeuOmap6nqRX7HUkxEngO2q5vCaExI2EknxgBe18iFwEK/YykmIr1wLd3B/kZimhvr6mnmvBNpciq4PeN3bI2FuBOldgAHcN1YvhORB3Fdfo+p6g9+x2OaF+vqMcaYCGMtfmOMiTBNoo8/ISFBe/Xq5XcYxhjTpCxbtmy3qpar79QkEn+vXr1YunSp32EYY0yTIiIVnj1vXT3GGBNhLPEbY0yEscRvjDERpkn08Rtjmo8jR46Qnp7O4cO1qjlnqhAbG0tycjItW7as0faW+I0xDSo9PZ34+Hh69eqF1O3iaCaAqrJnzx7S09Pp3bt3jV5jXT3GmAZ1+PBhOnfubEk/RESEzp071+oblCV+Y0yDs6QfWrX9eYatq8erKngesEtV+wetuwN4DEhU1XKld40xpiGoQlFR5bfCwvLL2reHNm38jrx+wtnH/wKu4FWZC0h4FxoZh6vDbowxlaoqMVeUlKtaHrhu8OBojj56AAUFBfTufRzTps0kNjau0jgmTz6Z5577HIDMTOjZExITIbChPX36dKZOnUpcXOXv01iELfGr6iKvrGywPwK/xl3QwRjThBUWQm4uHDxYeh/4uKJl48fDli01S9RFRbWPKSqq4luLFtCqlXscG9uaDz9cQVQU3HzzT1mw4BluuumX5V4THe3uly37nKgo90H0ww+wdas7ltRUtx5c4p8wYUJkJ/6KiMgFuAtyf1Ndn5SITAWmAqSkVHXBJGNMZQoKapaMa5u8i+/z8moXjwiMHAk//lg2sUZFQcuWFSfdypJxZbeadHeLuFY7wJlnnsLKlStJSIAnnniC5557DoDrr7+e2267DYC2bduSk5PDRx99xLRp02jTJoHVq1fRv/+JzJ07mxkz/pft27czduxYEhIS+PDDD5kyZQpLly5FRJg8eTK333577X5YYdRgiV9E4oB7qeE1P1V1BjADIC0tzWpHm2YpP79+ibe6ZUequihiBaKiXP91XJy7D3zcoUP5ZcH31S2LjYV16+C449z+brsNVqwI7c900CCYPr1m2xYUFPDuu+8yfvx4li1bxvPPP8/ixYtRVYYPH86pp57K4MFlr4Pz9ddfs3r1auLiejBmzEjmzPmMSZNu4YknnmDhwoUkJCSwbNkyMjIyWLVqFQD79u0L7UHWU0O2+I8CegPFrf1kYLl3TcwdDRiHMTWi6lq0oU7GgfcFBbWLKTq6NJkGJ9mEhLol48BlrVrVrMXc1B06dIhBgwYBcMoppzBlyhSefvppLr74Ytp4I7eXXHIJn3zySbnEP2zYMJKTkwE46aRB7NixmQ0bRlFY6P5mAPr06cOmTZu4+eabOffccznzzPpe4z60Gizxq+q3uIsqAyAim4E0m9Vj6koVDh2qX+Ktbvva9jG3alVxQo2Ph27d6peU4+Lc+zcnNW2Zh1rr1q1ZEfRVo6YXpYqJiSl53KpVNF27FtCxoxur2LwZOnWCjh078s033/D+++/z1FNP8corr5R0ITUG4ZzOOQcYAySISDpwv6o+G679mcanqMgl5nB0YeTmulttLyAXE1NxQu3QAXr0qFsyLr6Pi3P91KZpGj16NJMmTeLuu+9GVXn99deZNWtWta+LioI+faB9+3i2b88mLi6B9u13065dKy699FKOOuooJk2aFP4DqIVwzuq5upr1vcK1bxN669bBnDnlE3BVCfrQodrvp3XripNsQgKkpNSvKyMuznWVGFORIUOGMGnSJIYNGwa4wd3gbp7KiMBNN03lzjvPpn377txxx3R+97vrEHFfGR9++OGwxV0XTeKau2lpaWoXYvHP+vUwahTs3l3/PuSqlrVuXTo1zjRfa9eu5bji0d1mKC8Pvv/eNX569IDu3Rtm3KSin6uILFPVtOBtrUibqdK2bTBunEvIGzbAMcf4HZExjVtMDBx7rDtXYft29wHQq5c7j6CxsPaVqdTu3XDmmbB/P7z/viV9Y2oqKsol+5493f/PunV16/oMF0v8pkLZ2XDOOW6Wwttvu7nRxpiaE4GuXaFvXzfjZ+1a2LvX76gcS/ymnLw8uPhiWL4cXnkFRo/2OyJjmq74eHfCWuvWsGkTpKfXfjZaqFniN2UUFsJPfwrz58Pzz8P55/sdkTFNX6tW0K+fK+y2Ywds3Fj7k/dCyRK/KaEKP/85vPqqO7Fm4kS/IzKm+YiKckXdUlNdV+qaNW7g15dY/NmtaYzuvRf+7//gv/8bbr3V72iMCZ/o6GgGDRpE//79Of/886utpbN582b69+9f5TY1lZjoZv2A6/ffs6fi7aZNm8bjjz8ekn0Gs8RvAPjDH+Dhh+FnP4MHHvA7GmPCq7hkw6pVq+jUqRNPPfVUg+6/TRvX79+2bWmZ57qUoK4rS/yG55+HO+6AK66AP/85Mop0GVNsxIgRZGRklDx/7LHHGDp0KAMHDuT+++8vWV5QUMC1117LwIEDueyyy8j1+mnmz5/P4MGDGTBgAJMnTybPq1Xdq1cvdu92pciWLl3KmDFjANeSnzx5MuPGjeHss/vwzjtPsmuXO0/mgQceol+/fpxxxhmsX7++ZN9PPvkkxx9/PAMHDuSqq66q9zE3olMKjB/eeAOuv97N1581y0oamAbmc13mwsJC5s+fz5QpUwCYN28eGzduZMmSJagqF1xwAYsWLSIlJYX169fz7LPPMnLkSCZPnsxf/vIXfvGLXzBp0iTmz59P3759ueaaa3j66adL6vhXZt26dSxcuJDs7Gz69evHjTf+nPnzVzJr1st89tnXxMYWMGTIEE488UQAHnnkEX744QdiYmJCUuLZWvwR7KOP4KqrYNgweO215lf50ZjKFJdl7ty5M3v37mXcuHGAS/zz5s1j8ODBDBkyhHXr1rFx40YAevbsyciRIwGYMGECn376KevXr6d379707dsXgGuvvZZFixZVu/9zzz2XmJgYEhIS6NKlCwUFO8nI+ITTT7+YbdviyMtrxwUXXFCy/cCBA/npT3/K7NmzaRGCU4CtxR+hli2DCy6Ao4+Gd95p+hePNk2UT3WZi/v49+/fz3nnncdTTz3FLbfcgqpyzz33cOONN5bZfvPmzQRfNVBEqizl3KJFC4q8jvvDhw+XWRdY2jk6OpqCggJatYLERCE+3pV7OHDA1fkBeOedd1i0aBFvvfUWDz74IKtXr67XB4C1+CPQ+vXuuqedOrlSDJ06+R2RMf5o3749Tz75JI8//jhHjhzhrLPO4rnnniMnJweAjIwMdu3aBcDWrVv54osvAJgzZw6jRo3i2GOPZfPmzXz33XcAzJo1i1NPPRVwffzLli0D4NVXX602ltGjR/Pmm6+TnHyI+Phs5s17m1274PDhIrZt28bYsWN59NFH2bdvX0l8dWUt/giTnu7680Xggw8gKcnviIzx1+DBgznhhBN4+eWXmThxImvXrmXEiBGAu9bu7NmziY6O5rjjjmPmzJnceOONHHPMMfz85z8nNjaW559/nssvv5yCggKGDh3Kz372MwDuv/9+pkyZwu9+9zuGDx9ebRxDhgzhyiuvZPDgQaSmpnLKKadQUAC5uYVMmDCB/fv3o6rcfvvtdOjQoV7HbGWZI8iePXDKKZCR4fr3a1hq3JiQau5lmUOpsLDmEy6sLLMpp7jo2g8/uO4dS/rGNH7hmmVniT8C5OXBJZe4Ad3XXrOia8ZEOkv8zVxhIUyYAB9+CDNnupk8xpjIFrZZPSLynIjsEpFVAcseE5F1IrJSRF4XkfqNUJgqqcJNN8HcufDEE3DNNX5HZIxpDMI5nfMFYHzQsg+A/qo6ENgA3BPG/Ue8e++FGTPc/e23+x2NMaaxCFviV9VFwN6gZfNUtbgK9ZdAcrj2H+mKi67deCM8+KDf0RhjGhM/T+CaDLxb2UoRmSoiS0VkaVZWVgOG1fS98IIrunb55fDUU1Z0zZiKvP7664gI69atq/Vr77vvPj788MNK17/xxhusWbOmPuGFlS+JX0TuBQqAFyvbRlVnqGqaqqYlJiY2XHBN3JtvuqJr48ZZ0TVjqlJ89u3LL79c69c+8MADnHHGGZWut8QfRESuBc4DfqpN4eyxJuTjj+HKKyEtzU3bDCgHYowJkJOTw2effcazzz5bkvgzMzMZPXp0yQVaPvnkEwoLC5k0aRL9+/dnwIAB/PGPfwRg0qRJzJ07F4C77767pGTyHXfcweeff85bb73FnXfeyaBBg/j+++9DXla5vhp0OqeIjAfuAk5VVZ8uOtY8LV/uro971FGu6Frbtn5HZEz1bnvvNlbsCG1Z5kHdBjF9fNXF39544w3Gjx9P37596dSpE8uXL2fhwoWcddZZ3HvvvRQWFpKbm8uKFSvIyMhg1So3OTG4JPLevXt5/fXXWbduHSLCvn376NChAxdccAHnnXcel112GRD6ssr1Fc7pnHOAL4B+IpIuIlOAPwPxwAciskJEngnX/iPJhg2lRdfmzYPOnf2OyJjGbc6cOSUt76uuuoo5c+YwdOhQnn/+eaZNm8a3335LfHw8ffr0YdOmTdx888289957tGvXrsz7tGvXjtjYWK6//npee+014uLiKtxfqMsq11fYIlDVqytY/Gy49hep0tNdfz64pG9F10xTUl3LPBz27NnDggULWLVqFSJCYWEhIsKjjz7KokWLeOedd5g4cSJ33nkn11xzDd988w3vv/8+Tz31FK+88grPPfdcyXu1aNGCJUuWMH/+fF5++WX+/Oc/s2DBgnL7DHVZ5fry/6PH1NmePXDWWfDjj67omnctCGNMFebOncs111zDX//615Jlp556KosWLWLkyJHccMMNHDx4kOXLl3POOefQqlUrLr30Uo466igmTZpU5r1ycnLIzc3lnHPO4aSTTuLoo48GID4+nuzsbACKikrLKo8aNYqXXnqJnJycelfYrA9L/E1UTg6cey58/70rujZkiN8RGdM0zJkzh7vvvrvMsksvvZRJkybRpk0bWrZsSdu2bfn73/9ORkYG1113XckFVR5++OEyr8vOzubCCy/k8OHDqGrJ4O9VV13FDTfcwJNPPsnLL7/MlClTQlpWub6sLHMTlJfnBnIXLHCzd6z+jmlKrCxzeFhZ5massBAmTnQXUXnhBUv6xpjas0svNiGq8J//Cf/8pyvJcO21fkdkjGmKLPE3If/93/DXv8I998Avf+l3NMaYpsoSfxPxxBPwu9/B1Knw0EN+R2OMacos8TcBM2fCr34Fl10Gf/mLFV0zxtSPJf5G7q23YMoUOOMMmD3biq4ZY+rPEn8j9vHHcMUVcOKJ8PrrVnTNmFB66KGH+MlPfsLAgQMZNGgQixcvZvr06eTm1r2MWGDxtsbMpnM2Ul9/7aZq9ukD//63FV0zJpS++OIL/vWvf7F8+XJiYmLYvXs3+fn5XHnllUyYMKHSmjvNhbX4G6ENG1wphg4drOiaMeGQmZlJQkICMd7X6ISEBObOncv27dsZO3YsY8eOBWDevHmMGDGCIUOGcPnll5OTkwO4evxDhw6lf//+TJ06lYpOhA0u19yY2Jm7jUxGBowcCbm58OmnVn/HND9lzzC9DQhtWWYYBFRd/C0nJ4dRo0aRm5vLGWecwZVXXsmpp55Kr169WLp0KQkJCezevZtLLrmEd999lzZt2vD73/+evLw87rvvPvbu3UunTp0AmDhxIldccQXnn38+kyZN4rzzzuO0005jxIgR5co1h1Ntzty1Fn8jsncvnHmmu3/3XUv6xoRL27ZtWbZsGTNmzCAxMZErr7ySF154ocw2X375JWvWrGHkyJEMGjSImTNnsmXLFgAWLlzI8OHDGTBgAAsWLGD16tVlXlvTcs1+sT7+RiInB845xxVde+89N6BrTPPX8GWZi0VHRzNmzBjGjBnDgAEDmDlzZpn1qsq4ceOYM2dOmeWHDx/mpptuYunSpfTs2ZNp06Zx+PDhMtvUtFyzX6zF3wjk5cEll8BXX8E//gFjxvgdkTHN2/r169m4cWPJ8xUrVpCamlqmnPJJJ53EZ599xnfffQdAbm4uGzZsKEnyCQkJ5OTkVDiLJycnh/3793POOecwffp0VqwIdXdW/ViL32eFhXDNNa7o2nPPwYUX+h2RMc1fTk4ON998M/v27aNFixYcffTRzJgxgzlz5nD22WfTvXt3Fi5cyAsvvMDVV19NXl4eAL/97W/p27cvN9xwAwMGDKBXr14MHTq03PtXVq65sbDBXR+pws9/7urvPP64OzvXmObOyjKHhw3uNhH/8z8u6d99tyV9Y0zDscTvkz/+0RVbu+EGV3zNGGMaStgSv4g8JyK7RGRVwLJOIvKBiGz07juGa/+N2d//7soqX3opPP20FV0zkacpdDE3JbX9eYazxf8CMD5o2d3AfFU9BpjvPY8ob78NkyfD6afDiy9a0TUTeWJjY9mzZ48l/xBRVfbs2UNsbGyNXxO2WT2qukhEegUtvhAY4z2eCXwE3BWuGBqbRYtc0bUhQ6zomolcycnJpKenk5WV5XcozUZsbCzJyck13r6hp3N2VdVMAFXNFJEulW0oIlOBqQApKSkNFF74fP21u0B6796u6Fp8vN8RGeOPli1b0rt3b7/DiGiNdnBXVWeoapqqpiUmJvodTr1s3Ajjx5cWXUtI8DsiY0wka+jEv1NEugN497saeP8NLiMDxo2DoiKX9GvxbcwYY8KioRP/W8C13uNrgTcbeP8Nau9eV155zx5Xf6dfP78jMsaY8E7nnAN8AfQTkXQRmQI8AowTkY3AOO95s3TwIJx7ruvmeestK7pmjGk8wjmr5+pKVp0ern02Fvn5rujakiXw6qvgXdPBGGMaBSvSFmLFRdfmzXNF1y66yO+IjDGmrEY7q6cpUoVf/MKVVn7sMbjuOr8jMsaY8izxh9B998Ezz8Bdd0Eju8SmMcaUsMQfItOnw29/C1OmwMMP+x2NMcZUzhJ/CMyaBbff7gZ0n3nGiq4ZYxo3S/z19Pbbri//9NPhpZeghQ2XG2MaOUv89VBcdG3wYCu6ZoxpOizx19GKFa7oWmoqvPuuFV0zxjQdlvjrYONGV4qhfXt3kXQrumaMaUos8dfS9u1w5pmlRdd69vQ7ImOMqR0biqyF4qJru3fDwoVw7LF+R2SMMbVnib+GDh6E886DDRtcn35amt8RGWNM3Vjir4H8fHdh9MWL4Z//hNNO8zsiY4ypO0v81Sguuvb++/C3v7mTtIwxpimzwd0qqMItt7iia48+6soxGGNMU2eJvwr33w9/+Qv8+tdw551+R2OMMaFhib8Sf/oTPPiga+U/0myvE2aMiUSW+CswezbcdhtcfLEVXTPGND+W+IO88w5MmuRm7ljRNWNMc+RL4heR20VktYisEpE5IhLrRxzBPvkELrvMFV174w2IbRRRGWNMaDV44heRJOAWIE1V+wPRwFUNHUewFSvcCVqpqfDvf1vRNWNM8+VXV08LoLWItADigO0+xQHAd9/B+PHQrp2rv5OY6Gc0xhgTXg2e+FU1A3gc2ApkAvtVdV7wdiIyVUSWisjSrKyssMWzfTuMGwcFBS7pp6SEbVfGGNMo+NHV0xG4EOgN9ADaiMiE4O1UdYaqpqlqWmKYmuCBRdfefReOOy4suzHGmEbFj66eM4AfVDVLVY8ArwEnN3QQgUXX3ngDhg5t6AiMMcYfNUr8InKriLQT51kRWS4iZ9Zxn1uBk0QkTkQEOB1YW8f3qpP8fDd7Z/FimDPHXS/XGGMiRU1b/JNV9QBwJpAIXAfU6XxWVV0MzAWWA996Mcyoy3vVRVERXHstvPce/PWvVnTNGBN5anp6UvG5q+cAz6vqN15rvU5U9X7g/rq+vu77dRImFKoAABkxSURBVEXXXn7ZlWG4/vqGjsAYY/xX0xb/MhGZh0v874tIPFAUvrDCY9o0eOopV3Dtrrv8jsYYY/xR0xb/FGAQsElVc0WkM667p8l48kl44AGYPBl+/3u/ozHGGP/UtMX/gaouV9V9AKq6B/hj+MIKrRdfhFtvhYsucv36VnTNGBPJqmzxezV04oAEb/59ccpsh5uD3+gVF10bO9bN4LGia8aYSFddGrwRuA2X5JdRmvgPAE+FMa6Q+PRTN23zhBOs6JoxxhSrMvGr6p+AP4nIzar6vw0UU8j885+uBMO777o6PMYYY2o4uKuq/ysi/YHjgdiA5X8PV2ChMH26K8vQubPfkRhjTONRo8QvIvcDY3CJ/9/A2cCnQKNO/CKW9I0xJlhNZ/VchiutsENVrwNOAGLCFpUxxpiwqWniP6SqRUCBiLQDdgF9wheWMcaYcKnp5MalItIB+D/c7J4cYEnYojLGGBM2NR3cvcl7+IyIvAe0U9WV4QvLGGNMuNS0LPP84sequllVVwYuM8YY03Q0+zN3jTHGlFXbM3eLZdMEztw1xhhTXnVdPZ/jLot4h6r2AX4DrAI+Bl4Kc2zGGGPCoLrE/1cgzztzdzTwMDAT2E8DXjXLGGNM6FTX1ROtqnu9x1cCM1T1VeBVEVkR3tCMMcaEQ3Ut/mgRKf5wOB1YELDOChwbY0wTVF3inwN8LCJvAoeATwBE5Ghcd0+diEgHEZkrIutEZK2IjKjrexljjKmd6soyP+TN1+8OzFNV9VZFATfXY79/At5T1ctEpBVuyqgxxpgGUG13jap+WcGyDXXdoVfrZzQwyXuvfCC/ru9njDGmdmpapC2U+gBZwPMi8rWI/E1E2gRvJCJTRWSpiCzNyspq+CiNMaaZ8iPxtwCGAE+r6mDgIHB38EaqOkNV01Q1LTExsaFjNMaYZsuPxJ8OpKvqYu/5XNwHgTHGmAbQ4IlfVXcA20Skn7fodGBNQ8dhjDGRyq+5+DcDL3ozejYB1/kUhzHGRBxfEr+qrgDS/Ni3McZEOj/6+I0xxvjIEr8xxkQYS/zGGBNhrNCaMcYEOnIE0tNh61bYsqXs/datkJsLqu4G4X/82mswblxID9ESvzEmsuzfX5rEgxP7li2wfXtp0i3WpQukpMDxx0O7dm6ZiLuF+3HPniH/EVjiN8Y0H0VFkJlZeVLfutUl/kAtW7rkmpoKZ5zh7lNSSu979oTWrf05njCxxG+MaTpyc2Hbtoq7YLZscV00R46UfU2HDi6J9+oFp55aNqmnpEC3bhAVWcOdlviNMY2DKuzeXXVrPbhgY1QUJCW5BH7SSeVb6ykppV0zpoQlfmNMw8jPh4yMypP61q1w6FDZ18TFlSbxE08sm9RTU6FHD9dVY2rFEr8xJjT276+8C2br1ooHTbt2dUl8wAA499yyLfXUVOjUqXSw04SMJX5jTPUKC2HHjspb61u2wIEDZV/TqpUbGE1JcdMRg1vrycnNbtC0qbDEb4xxg6ZVTXFMT4eCgrKv6djRJfHevd2gaXD/eteuETdo2lRY4jemuVN1g6KVdcFs2eIGVQMVD5qmpsLJJ5dvraekQHy8P8dj6s0SvzFNXX5+5WeaFt8fPlz2NcWDpqmpbtA0OKknJUELSw/Nlf1mjWns9u2rOqlnZlY8aJqaCgMHwvnnl5/iaIOmEc0SvzF+Kix0ibuyLpitWyseNC1O4GedVXYWTPGZprGx/hyPaRIs8RsTTgcPVnymafF9ZYOmqanQpw+MHVu+f71LFxs0NfViid+YuioeNK3qhKTgQdPo6NIzTUeOLJ/Ue/a0QVMTdpb4jalMfr5rrVfWBVPRoGmbNqWDpkOHVnymqQ2aGp/59hcoItHAUiBDVc/zKw4ToVQrPtM08H7HjvKDpt26uSR+wglu0DR4NkzHjjZoaho9P5setwJrAaugZEKvsNCVCKhqNkx2dtnXFA+apqbC+PHlk3pysg2ammbBl8QvIsnAucBDwC/9iME0cQcPVn1CUnq6S/6BOnVySfzoo+G008ondhs0NRHCrxb/dODXgI1imfJUYdeuqlvre/aUfU3xoGlqKowaVXF53rZt/TkeYxqZBk/8InIesEtVl4nImCq2mwpMBUhJSWmg6EyDyMtzLfKqKjnm5ZV9Tdu2pUl8+PDySd0GTY2pMdHgwatw71DkYWAiUADE4vr4X1PVCZW9Ji0tTZcuXdpAEZp6Ua3+TNPKBk2DW+mB9x062KCpMbUkIstUNS14eYM3kVT1HuAeL6gxwB1VJX3TyBQUlD3TtKL7nJyyr4mJKW2Zn312xeV5Y2L8OR5jIpB9NzaVU4WNG+HDD91t+fKKB007d3ZJ/Jhj4PTTy19MIzHRBk2NaUR8Tfyq+hHwkZ8xmCA7dsD8+aXJPj3dLS8+07R37/JnmtqgqTFNirX4I112Nnz8cWmiX73aLe/UyU15POMM14o/6ijrYzemmbDEH2ny82Hx4tJEv3ix67qJjYVTToFrrnHJftAg654xppmyxN/cFRXBqlWliX7RInfyU1QUpKXBXXe5Fv3JJ9tZqcZECEv8zdGWLaWJfv58V0ESoF8/mDTJtejHjHFTJI0xEccSf3OwZw8sXFia7L//3i3v1s1dqKO4nz452d84jTGNgiX+pujQIfj009JE//XXbuplfLxryd9yi0v2xx1nA7LGmHIs8TcFhYWwbFlpov/8c1fSoGVLGDECfvMbl+jT0twyY4ypgiX+xkgVNmwoTfQLF7ra8eDqwP/iFy7Rn3KKu/CHMcbUgiX+xiIzs+yJUxkZbnlqKlx+uUv0Y8e60sHGGFMPlvj9cuBA2ROn1qxxyzt1cgOxxQOyffpYP70xJqQs8TeU/Hz48svSRL9kieu7b93addkUT7M84QQ7ccoYE1aW+MOlqAi+/bbsiVO5uS6pDx0Kd9/tEv2IEVaZ0hjToCzxh9LmzaWJfsGC0hOnjj0WJk92if7UU+3EKWOMryzx18fu3WVPnNq0yS3v3t1drLu4nz4pyd84jTEmgCX+2sjNLXvi1IoVpSdOjR0Lt93mkv2xx9qArDGm0bLEX5WCgvInTuXnu5OkTj4ZHnjAteiHDrXrvRpjmgzLVoFUYf360kT/0UelJ04NGlRaCmHUKDtxyhjTZFni37697IlT27e75b17wxVXlJ44lZjob5zGmIhSUFTAgh8WMDp1NLEtQlsyPfIS//79ZU+cWrvWLe/cufyJU8YY04BUlRU7VjBr5SzmrJrDjpwdzL18Lpcef2lI99P8E39eXtkTp776qvTEqdGjS6dZDhxoJ04ZY3yxdf9WXvr2JWatnMWarDW0jGrJuX3PZeLAiZxzzDkh31+DJ34R6Qn8HegGFAEzVPVPYdnZfffBH/7gZuNER7tB2HvucYn+pJPsxCljjG/2Hd7Hq2teZdbKWXy85WMARqWM4plzn+Hyn1xOp9adwrZvP1r8BcCvVHW5iMQDy0TkA1VdE/I99e0LU6aUnjjVvn3Id2GMMTWVX5jPuxvfZfa3s3l7/dvkFebRt3NfHhz7IP8x4D/o07FhupgbPPGraiaQ6T3OFpG1QBIQ+sQ/YYK7GWOMT1SVL9O/ZNbKWfxj9T/Ye2gviXGJ3HjijUwYOIG0HmlIA5/342sfv4j0AgYDiytYNxWYCpCSktKgcRljTH1t3LOR2StnM/vb2Wz6cROtW7TmomMvYsLACYzrM46W0f5dNMm3xC8ibYFXgdtU9UDwelWdAcwASEtL0wYOzxhjai3rYBb/WP0PZq+czeKMxQjC6X1O577R93HxcRfTLqad3yECPiV+EWmJS/ovquprfsRgjDGhcOjIId5a/xazv53Ne9+9R0FRASd0PYHHxj3G1f2vJqld46vV5cesHgGeBdaq6hMNvX9jjKmvwqJCPt7yMbNXzmbumrlk52eTFJ/EL0/6JRMGTmBA1wF+h1glP1r8I4GJwLcissJb9l+q+m8fYjHGmGrlF+aTmZ3J1v1b+deGf/Hity+SkZ1BfKt4Ljv+MiYOnMjo1NFER0X7HWqN+DGr51PASlcaY3ynquw7vI+M7AwyDmSUvQ94vOvgrpLXtIhqwfijx/OHM//ABf0uoHXL1j4eQd00/zN3jTER6UjhETJzMqtM6BkHMjhUcKjcaxPiEkiKTyKpXRJpPdJKHifFu+eJbZp27a5mnfjnrpnLNzu+YXjycIYlDaNLmy5+h2SMqSdVZX/e/vIJPSix7zq4C6XshMCY6Bh6xPcgqV0SJ3Y/kQv6XlCS0Ivve8T3IKZF8z6rv1kn/i+2fcH0xdMp0iIAenXoxfAk9yEwPGk4Q7oPaZJf04xpro4UHmFHzo5qu15yj+SWe23n1p1LkveQbkPKJfSkdkl0bt25wU+WaoxEtfFPkU9LS9OlS5fW6bUH8w+yLHMZSzKWsDhjMYvTF7PtwDbA9dUN6DKA4UnDS74VHJtwLFFixdqMCSVV5UDegWoT+s6cneVa6a2iW7lWemASD0roPeJ7hLx0cXMgIstUNa3c8uae+CuSmZ3JkowlJR8GX23/igN57hyydjHtGNpjaMm3guHJw+nWtlvI9t00FeGqbGQBUWG8CTbu3/QUFBW4Vno1fekHjxws99pOrTtVmdCT4pNIiEuwVnodWeKvQpEWsX73+pJvBEu2L2HlzpUUFBUAkNI+pfSDwOsiatOquV2Baz+wCfihgvvNQF4DxSGU/SAI5wdNOD64/I4htDEfzD/EroO7ycrdw86c3ew6mMXOnCx2Hsxix8FdZGbvJCt3DwVFSpFScouWFiTGdaVr2+50beNu3eJ70K1ND7rHJ9G9bRLd45No3bJNJTGZULDEX0uHjhxieeby0i6ijMVs3rcZgGiJpn+X/qXjBcnDOS7huEY+hzcf2ErlyX1v0PYdgd5AH+/WGygeHC8K800bYB+NNfbG///YMBrzh2tnIAVIDbjvCTS+riZL/CGw6+Au90GQ7j4IlmQsYX+euyZv21ZtSeuRVmbwuGFP1VZgJxUn9U1AOi6xFGsF9KI0qQffd2iguE1ZSn0/PLLz9rMzJ5NduTvYmZNJVu5OduXsICt3J7tzd7E7dxc/Ht4DKFECUQIi0DIqmi5tOtOlTQKJbTqTGOduCXGdSIjrROe4jnRu3ZGYFi3rFV/j+qCt7a0Q1+W5nfIf0l0o/TAI/mBIwX1gNOy3GUv8YVCkRWzcs7HkQ2BxxmK+2fENR4qOAJAUn1RmrCCtRxptW7Wtxx5zcIk8OKlvwnXHBM906EHFSb2Pty6qHrGYhlZYVFijGS85+TnlXtshtkO1femJbRJtYkONHQEygC24b9IV3QefHxBH6YdCRR8MSbgGWehY4m8ghwsOs2LHijLfCr7/8XsAoiSK4xOPLxkrGJY0jJ90+Qktoopn1RbgWubFyTw4wWcF7S2eipN6H9wfk01VbSqy87KrTeg7cnaUTE0u1iKqBd3bdq8yoSe1SyKuZZxPRxapFNhD2Q+D4A+GXUGvEVyDLPiD4XzvvvYs8ftod+5uvsr4isUZX7J296fszV1Kp7gD9OkIx3SKZmDXeHp3UDq2ziZKAv+xW+B+4YH97IH3nbCBsMatsKiQnQd3VjvjJTs/u9xr28e0L5/EgxJ6lzZdrJXeZB0CtlHxh8JWb10+8AFwRp32YIm/wRzCdbtU1GL/ASj7D56d15rN+6JZnZXLd3uL+GEf7Dvckc6t0+jTYTRDk0YwNGloo6njbUrl5OdUe/bojpwdFGphmddFSzTd47tX2/XS/GaOmdopwo3bdaCu394t8YdMEa5vr7JB1Myg7eOovJ+9F+D6/PMK8li5c2XJDKIlGUvYsGcDAIJwXOJxZaaU9u/S39cr+DRnhUWF7Dq4q9qul+JzPwK1j2lfUhKgsoTepU2XRj4DzDQXlvhrZR8VJ/VNuK9h+QHbRuGmclXUz148BbJu3TF7D+31uohKB4935+4GoHWL1gzpPqTMlNLU9ql2oks1DuYfrDahZ2ZnVthK79a2W6UJPbldMj3ie9Rz8N6Y0LLEX0Y+LoFXNoi6L2j7TlTez96TUI/EV0ZV+WHfD2WmlC7PXE5eoTu5qkubLmW+FQxNGkqH2MiYllmkRa6VXk1fevH020DtYtpV2u1S3Hrv2qartdJNkxOhiX818DXlk3s6ZefgxuASeUVdMr2B9nWOPdyOFB4p6SIq/lawbve6kvX9OvdzdYh6uG8FA7sOpFV0w3xQhUrukdxq+9IzczJLzrQuFiVR1c546RHfg/iYeJ+OzJjwitDE/5/AX7zHSVQ+9bEbzWlO+/7D+/lq+1cl5ScWpy9m58GdgCtLO7j74DJTSvt07ONLF1FNWunbs7ez73DwNzCIbxVf7YwXa6WbSBehiX8zrsZMKo3xdOqGoqps3b+1TPmJZduXlVyAIiEugWFJw0q+FQxLGkan1p3qtc/6tNK7te1W7YwXa6UbU70ITfymMgVFBazatarMiWZrstaUlMQ9utPRJd8KhicP54SuJxDTIoYiLSLrYFa1A6QVtdLbtmpbbULv2rZrwAltxpj6aFSJX0TGA38CooG/qeojVW1vib9hHMg7wNLtS8tcuyAzx01PbRXdiq5turIjZ0dJSYpiglQ546X43s5FMKZhNZrELyLRwAZgHG6U9SvgalVdU9lrLPH7Q1XJyM5wYwUZS8jMySx/QYx2SXRr281a6cY0QpUlfj/+W4cB36nqJgAReRm4EKg08Rt/iAjJ7ZJJPj6ZS4+/1O9wjDEh4sdUliRcEYpi6d6yMkRkqogsFZGlWVnBxcmMMcbUlR+Jv6J5g+X6m1R1hqqmqWpaYmJiA4RljDGRwY/En4473bVYMu6qBsYYYxqAH4n/K+AYEektIq2Aq4C3fIjDGGMiUoMP7qpqgYj8AngfN53zOVVd3dBxGGNMpPJlDp6q/hv4tx/7NsaYSNd8CtQYY4ypEUv8xhgTYZpErR4RycIV0G8KEoDdfgcRJs352KB5H58dW9NVn+NLVdVy8+GbROJvSkRkaUWnSDcHzfnYoHkfnx1b0xWO47OuHmOMiTCW+I0xJsJY4g+9GX4HEEbN+digeR+fHVvTFfLjsz5+Y4yJMNbiN8aYCGOJ3xhjIowl/hAQkZ4islBE1orIahG51e+YQk1EokXkaxH5l9+xhJqIdBCRuSKyzvsdjvA7plARkdu9v8lVIjJHRGL9jqk+ROQ5EdklIqsClnUSkQ9EZKN339HPGOuqkmN7zPu7XCkir4tIh1DsyxJ/aBQAv1LV44CTgP8UkeN9jinUbgXW+h1EmPwJeE9VjwVOoJkcp4gkAbcAaaraH1cU8Sp/o6q3F4DxQcvuBuar6jHAfO95U/QC5Y/tA6C/qg7EXbL2nlDsyBJ/CKhqpqou9x5n4xJHuauKNVUikgycC/zN71hCTUTaAaOBZwFUNV9V9/kbVUi1AFqLSAsgjiZ+7QtVXQTsDVp8ITDTezwTuKhBgwqRio5NVeepaoH39Evc9UvqzRJ/iIlIL2AwsNjfSEJqOvBroMjvQMKgD5AFPO91Zf1NRNr4HVQoqGoG8DiwFcgE9qvqPH+jCouuqpoJrhEGdPE5nnCZDLwbijeyxB9CItIWeBW4TVUP+B1PKIjIecAuVV3mdyxh0gIYAjytqoOBgzTdroIyvL7uC4HeQA+gjYhM8DcqUxcici+uS/nFULyfJf4QEZGWuKT/oqq+5nc8ITQSuEBENgMvA6eJyGx/QwqpdCBdVYu/oc3FfRA0B2cAP6hqlqoeAV4DTvY5pnDYKSLdAbz7XT7HE1Iici1wHvBTDdGJV5b4Q0BEBNdHvFZVn/A7nlBS1XtUNVlVe+EGBheoarNpNarqDmCbiPTzFp0OrPExpFDaCpwkInHe3+jpNJOB6yBvAdd6j68F3vQxlpASkfHAXcAFqpobqve1xB8aI4GJuNbwCu92jt9BmRq7GXhRRFYCg4Df+RxPSHjfYuYCy4Fvcf/vTbq8gYjMAb4A+olIuohMAR4BxonIRmCc97zJqeTY/gzEAx94eeWZkOzLSjYYY0xksRa/McZEGEv8xhgTYSzxG2NMhLHEb4wxEcYSvzHGRBhL/MYAIqIiMivgeQsRyaprNVKv4udNAc/HNMfKpqZpssRvjHMQ6C8irb3n44CMerxfB+CmarcyxgeW+I0p9S6uCinA1cCc4hVezfc3vLroX4rIQG/5NK+O+kcisklEbvFe8ghwlHfSzWPesrYBdf9f9M6mNabBWeI3ptTLwFXexUoGUrbC6m+Ar7266P8F/D1g3bHAWcAw4H6vbtPdwPeqOkhV7/S2GwzcBhyPqwo6MpwHY0xlLPEb41HVlUAvXGv/30GrRwGzvO0WAJ1FpL237h1VzVPV3bgCYV0r2cUSVU1X1SJghbcvYxpcC78DMKaReQtXw34M0DlgeUXdMsX1TvIClhVS+f9VTbczJqysxW9MWc8BD6jqt0HLFwE/BTdDB9hdzTUXsnHFtYxpdKzFYUwAVU3HXYM32DTcVbpWArmUlgGu7H32iMhn3oWz3wXeCXWsxtSVVec0xpgIY109xhgTYSzxG2NMhLHEb4wxEcYSvzHGRBhL/MYYE2Es8RtjTISxxG+MMRHm/wExLh/KZgtKMgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Jeremy Lamb will have 12 points, 5 rebounds, 2 assists, 0 steals against OKC.\n"
]
}
],
"source": [
"stat_predictor(\"Jeremy Lamb\", \"OKC\",\"Dec\")"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXhV1bn48e+bGZIQhgAyB0RAZAgUEQplcBbB2YJVFEVxqhav9Ve997mKU7XWOtByHVpBnKBWxeKMAha0DgVkFChqUcOYEIYMJCHJ+/tj7SQn80lyTk6S836eZz9nz3vt5Jx3rb3W3muLqmKMMSZ8RIQ6AcYYYxqXBX5jjAkzFviNMSbMWOA3xpgwY4HfGGPCjAV+Y4wJMxb4TVCJyPMi8oA3/jMR2V7P/TwtIv8b2NT5ddwtIjKhsY/b2ERkhoh8Eup0mMZhgb+JEJGxIvJPETksIpki8qmInOwtq9OPUkRSRERFJMqPdWeISJGIZIvIERFZLyKTG3Iu1VHV1ara3880lTtfVb1BVe8PRrpqOraqnqSqHwf7uHXl/X9zvP9bhogsEpG2fm7r9/cjlCp8N7NF5DsRubHCOrEi8pCI/CAiR0Vkh4jcISLis85JIrJMRA6KyCERWSsikxr/jJoOC/xNgIi0Ad4G/gi0B7oB9wL5jZSEz1Q1AWgLPAe8KiLtq0hnkw4UYWio93/rA7QD5oQiESISGcTdf6aqCd55XgI8IiLDfJb/DTgNmAQkAtOBWcCTPuu8BXwIdAY6AbcCR4KY5ibPAn/T0A9AVRepapGqHlXVZaq6UUROBJ4GRnulnkMAInKuiHzlldJ/FJE5Pvtb5X0e8rYZ7U8iVLUYmA+0AvqIyAQRSROR34jIXmCBd+zJ3pXBIe8qZUjJPkRkmIisE5EsEfkrEOezbIKIpPlM9xCRN0QkXUQOiMifajjf0iojb/o6EfnGuzpaKiJdfZapiNzglf4Oisg83xJgXYjIThE53RufIyJ/E5GXvPPbJCL9ROQuEdnv/R/O9Nn2YxF5wPsbZYvIWyLSQURe9v5v/xKRFG/deSLyhwrHfktEZteWRlU9AiwFBlaVbp+0v+RN1vr9EJEBIvKh9/fdLiI/91n2vIg8JSLvikgOMLHCttNEZE2FebeJyFJvfJKIfO39DXeJyK9rO0fvPNcBW4ETvf2cBpwJXKyqm1W1UFU/B64AbhaRviKSDPQG/qyqBd7wqaqGdbWWBf6m4d9AkYgsFJFzRKRdyQJV3QrcQFnJp+RyPge4EldKPxe4UUQu8JaN8z7bett85k8ivBL9tUA2sMObfRzuKqQXMEtEhuMyh+uBDsAzwFLvkjsGeBN40dvmb8DF1RwrEneV8z2QgrvKWVzD+fpueyrwEPBzoIu3j8UVVpsMnAwM9dY7y9u2p5dh9fTnb1KFKd75tQO+Aj7A/Y66Affh/h6+puFKod2A44HPcBloe1wQu8dbbyFwmYhEeOlMxpVkF9WWIO/7cgHwuZ/nUOP3Q0TicSXkV3Al5MuA/xORk3xW+wXwIK6UXTGILgX6i8gJFdZ/xRt/DrheVROBQcAKfxItruqzH1CSqZwBfKGqP/qup6pfAGm4v98B4BvgJRG5QEQ6+3Osls4CfxPgldjGAgr8GUj3SrHVfklV9WNV3aSqxaq6ERcgxtczCaO8kvVe3I/8QlU97C0rBu5R1XxVPQpcBzyjql94VycLcVVSo7whGnhCVY+p6mvAv6o55kigK3CHquaoal4dSmGXA/NVdZ2q5gN34a4QUnzWeVhVD6nqD8BKIBVAVX9Q1bbe/PpYraofqGohLmPr6B3rGC7zSZHyde0LVPVb7+/5HvCtqn7ks/0wL11fAodxwQpchvGxqu6rIS3rvP9bBtCTyplOfU0GdqrqAq8UvQ54HVfVUuLvXsm5WFXzfDdW1Vzg77jvEl4GMACXIQAcAwaKSBtVPejtvzqjvIw6G/gSl+mWFEqSgT3VbLcHSFbXGdlEYCfwB2CPiKyqkCmFHQv8TYSqblXVGaraHVcK6go8Ud36InKKiKz0qkkO40rJyfU8/OdeMExW1VGq+pHPsvQKP+xewO3ej/GQF3h6eOntCuzS8j3/fV/NMXsA33sBsK66+u5XVbNxJbtuPuvs9RnPBRLqcZyq+Abio0CGqhb5TFPhWBXXrzjtu+5CXDUF3ueLtaRluHdFFAc8BawWkbhatvFHL+CUCv/jy3FXfyV+rHrTUq/gBX5caf9NL0MAdxU4CfheRP5RVVWTj5LvZoJ3/JOA33rLMnBXfFXp4i1HVdNU9Zeqerx3bjnAC7Wkv0WzwN8Eqeo24HlcBgDuSqCiV3AlqB6qmoSrF5ca1q93cipM/wg86P0YS4bWqroIV8rqVqE+vboqlR+BnlJ1g3Ft6d+N+wEDpVUTHYBdtWzX1L0EnC8iQ3H12G/6s5F3tfEXXF12yXcmB2jts5pv0K7t7/sj8I8K/+MEVfW9o6a2fSwDkkUkFZcBlFTzoKr/UtXzcdVIbwKv1rKvku324a48pnizPsJlUD181xORkbiCRaUqJK9aaB5lf6ewZIG/CfAa0m4Xke7edA/cj6WkznYf0N2rQy+RCGSqap73Rf+Fz7J0XBVNnyAk98/ADd4Vh4hIvLiG5kRc/XUhcKuIRInIRbgqnap8icsoHvb2ESciY7xlVZ2vr1eAq0UkVURicSXAL1R1Z4DOMSRUNQ1XNfYi8LpXtVYrr73katwVxHfe7PXANBGJFpERlK+mqe378TbQT0Sme9tHi8jJ4hre/T2XQuA14Pe49owPvbTGiMjlIpLkZVhHgKLq91TuPDsAFwJbvGN8BCwHXhd3y2akiIwCXgaeUtUdItJORO71GnojvLaTa/C/PaRFssDfNGQBpwBfeHdJfA5sBm73lq/Afdn3ikiGN+8m4D4RyQLuxqfU5F1SPwh86l2qjwpUQlV1Da6e/0/AQVzD2QxvWQFwkTd9EJgKvFHNfopwJbe+wA+4xrip3uKqztd32+XA/+JKf3twjabT/Em/17ibXUvjbihfUrEQGEzt1TwAG7y674PAVbi2mUxv2f/i/i4HcbcG+5a4a/x+qGoW7m6Zabirq73A74DYOp7LK8DpwN8qVOlNB3aKyBFcFeUVVW3sKbm7KxvXGJ4O3OKz/GJcG877uJsSXsI1HpesU4C7eeAjXCazGdcmNaOO59KiiNqLWIwpJSK3Aqeq6gW1rhyc44/DBa8U7/ZaYwLOSvzGeLyG0fMpu12wsY8fDfwK+IsFfRNMFvjDgLh+brKrGJ4OddqaChEZjKvSOIKrxmrs458IHMLdjVLt3VzGBIJV9RhjTJixEr8xxoSZZtHpVnJysqakpIQ6GcYY06ysXbs2Q1U7VpzfLAJ/SkoKa9aEpL3NGGOaLRGp8sl5q+oxxpgwY4HfGGPCjAV+Y4wJM82ijt8Y03IcO3aMtLQ08vLyal/Z+CUuLo7u3bsTHR3t1/oW+I0xjSotLY3ExERSUlKQ+r0YzfhQVQ4cOEBaWhq9e/f2axur6jHGNKq8vDw6dOhgQT9ARIQOHTrU6QrKAr8xptFZ0A+suv49LfAbY0wTVFgIP/wARX69raBuLPAbY8JOZGQkqampDBo0iEsvvZTc3Nwa1//pT39a6z6feOKJWvfjr5wc2LoV9u+HrKyA7LIcC/zGmLDTqlUr1q9fz+bNm4mJieHpp2vuqPaf//xnrfsMROBXdcF+2zY3PmAAtG3boF1WyQK/MSas/exnP+Obb74B4LHHHmPQoEEMGjSIJ54o6x07ISEBgI8//pgJEyZwySWXMGDAAC6//HJUlblz57J7924mTpzIxIkTKSoqYsaMGQwaNIjBgwfz+OOP15qOoiL47jtXvdOmDQwcCN5hA85u5zTGhMzs2bB+fWD3mZoKT/j5RoPCwkLee+89zj77bNauXcuCBQv44osvUFVOOeUUxo8fz7Bhw8pt89VXX7Flyxa6du3KmDFj+PTTT7n11lt57LHHWLlyJcnJyaxdu5Zdu3axefNmAA4dOlRjOnJz4dtvIT8funWD446DYLZ/W4nfGBN2jh49SmpqKiNGjKBnz57MnDmTTz75hAsvvJD4+HgSEhK46KKLWL16daVtR44cSffu3YmIiCA1NZWdO3dWWqdPnz5899133HLLLbz//vu0adOmynSoQnq6q88vLob+/aFLl+AGfbASvzEmhPwtmQdaSR2/L39fShUbW/bO+cjISAoLCyut065dOzZs2MAHH3zAvHnzePXVV5k/f365dYqK4PvvITPTVe307g1+PnjbYFbiN8YYYNy4cbz55pvk5uaSk5PDkiVL+NnPfub39omJiWR5t+BkZGRQXFzMxRdfzP3338+6devKrZub60r5mZmuaueEExov6IOV+I0xBoDhw4czY8YMRo4cCcC1115bqX6/JrNmzeKcc86hS5cuPPHEE1x99dUUFxcD8NBDDwGuaicjwzXgRkW5qp3ExMCfS22axTt3R4wYofYiFmNahq1bt3LiiSeGOhmNrqjIBfwDB1yw79MnsKX8qv6uIrJWVUdUXNdK/MYYE2RHj7q7dvLyoGvXxmnArYkFfmOMCaKSqp2ICOjXzzXkhpoFfmOMCYKKVTu9e0NMTKhT5VjgN8aYADt61D2Fe/Soq9bp2jW0VTsVWeA3xpgAOnDA3Z8fEeFu00xKCnWKKrPAb4wxAVBc7Kp2MjJcHzt9+jSdqp2K7AEuY0zY8e2WecqUKbX2pbNz504GDRpU7fK8PPdAVkaG62enf/+GB/05c+bw6KOPNmwn1Qha4BeRHiKyUkS2isgWEfmVN3+OiOwSkfXeMClYaTDGmKr4dsvcvn175s2bV+99ZWbC11/DsWOuaqd796ZVn1+VYJb4C4HbVfVEYBRws4gM9JY9rqqp3vBuENNgjDE1Gj16NLt27Sqd/v3vf8/JJ5/MkCFDuOeee0rnFxYWctVVVzFkyBAuueQSsrNz+f57WLx4OVdcMYwrrhjMbbddQ35+PgApKSlkZGQAsGbNGiZMmAC4kvw111zDhAkT6NOnD3Pnzi09xoMPPkj//v05/fTT2b59e+n8uXPnMnDgQIYMGcK0adMafM5Bq+NX1T3AHm88S0S2At2CdTxjTDMU4n6Zi4qKWL58OTNnzgRg2bJl7Nixgy+//BJV5bzzzmPVqlX07NmT7du389xzzzFmzBiuuuoa7r33/7jggl/ywAMzWLFiOQMG9OPKK6/kqaeeYvbs2TUed9u2baxcuZKsrCz69+/PjTfeyMaNG1m8eDFfffUVhYWFDB8+nJ/85CcAPPzww/znP/8hNja21mopfzRKHb+IpADDgC+8Wb8UkY0iMl9E2lWzzSwRWSMia9LT0xsjmcaYMFHSLXOHDh3IzMzkjDPOAFzgX7ZsGcOGDWP48OFs27aNHTt2ANCjRw/GjBlDZiaMHn0Fa9Z8QnHxdvr27c2AAf0AuOqqq1i1alWtxz/33HOJjY0lOTmZTp06sW/fPlavXs2FF15I69atadOmDeedd17p+kOGDOHyyy/npZdeIiqq4eX1oN/VIyIJwOvAbFU9IiJPAfcD6n3+Abim4naq+izwLLi+eoKdTmNMCISoX+aSOv7Dhw8zefJk5s2bx6233oqqctddd3H99deXW3/nzp2ICN9/7/rPj42FNm2ExMTqQ1NUVFRpJ215eXnlllXXtbNU0zjwzjvvsGrVKpYuXcr999/Pli1bGpQBBLXELyLRuKD/sqq+AaCq+1S1SFWLgT8DI4OZBmOMqU5SUhJz587l0Ucf5dixY5x11lnMnz+f7OxsAHbt2sX+/fs5fBh++OEHli//jM6d4dNPFzFu3FgGDBjAzp07S1/d+OKLLzJ+/HjA1fGvXbsWgNdff73WtIwbN44lS5Zw9OhRsrKyeOuttwAoLi7mxx9/ZOLEiTzyyCMcOnSoNH31FbQSv7is6zlgq6o+5jO/i1f/D3AhsDlYaTDGmNoMGzaMoUOHsnjxYqZPn87WrVsZPXo0APHxCTz44Evk5ETSp8+JfPrpQp544npOOOEEbrzxRuLi4liwYAGXXnophYWFnHzyydxwww0A3HPPPcycOZPf/va3nHLKKbWmY/jw4UydOpXU1FR69epV+i6AoqIirrjiCg4fPoyqctttt9G2gW9gD1q3zCIyFlgNbAKKvdn/DVwGpOKqenYC1/tkBFWybpmNaTmaQ7fMqrB/P5Tc7NO1K3Tq5J7GbaqaRLfMqvoJUFWFld2+aYxpsnJzXZcLOTmuJ81evVydfktiXTYYYwyuN83du2HfPvd2rD59oF27pv8wVn1Y4DfGhL3Dh10pv6AAkpPd07cBuGuyyWrBp2aMMTUrKIAff4SDByEuLnTvwG1sFviNMWFH1d2Pv2uX61Wza1fXuVpTbrwNJAv8xpiwcvQo7NzpGm8TE13jbVxcqFPVuMIkfzPGhLviYkhLcz1p5ufDli1LGDBA2LlzW533dffdd/PRRx9Vu/zNN9/k66+/bkhyg8oCvzGmxTtyBLZsgb17oX17OOkkeOedRYwdO5bFixfXeX/33Xcfp59+erXLLfAbY0yIHDvm3n3773+76X793EvP8/Oz+fTTT3nuuedKA/+ePXsYN25c6QtaVq9eTVFRETNmzGDQoEEMHjyYxx9/HIAZM2bw2muvAXDnnXeWdpn861//mn/+858sXbqUO+64g9TUVL799tuAd6vcUFbHb4wJmdnvz2b93sB2y5x6XCqPn/UEGRmuaqe42L3wvEuXssbbN998k7PPPpt+/frRvn171q1bx8qVKznrrLP4n//5H4qKisjNzWX9+vXs2rWLzZtdzzIVu0TOzMxkyZIlbNu2DRHh0KFDtG3blvPOO4/JkydzySWXAIHvVrmhrMRvjGlRCgth+3Z3X36rVjBwIHTrVv6OnUWLFpWWvKdNm8aiRYs4+eSTWbBgAXPmzGHTpk0kJibSp08fvvvuO2655Rbef/992rRpU+5Ybdq0IS4ujmuvvZY33niD1q1bV5mmQHer3FChT4ExJmw9cXbgumUuLnZ1+Hv2uDt3evVyD2NVfPL2wIEDrFixgs2bNyMiFBUVISI88sgjrFq1infeeYfp06dzxx13cOWVV7JhwwY++OAD5s2bx6uvvsr8+fNL9xUVFcWXX37J8uXLWbx4MX/6059YsWJFpbQFulvlhmrRgb+gwD19Fy735hoTrrKyXAk/L8813vboAdHRVa/72muvceWVV/LMM8+Uzhs/fjyrVq1izJgxXHfddeTk5LBu3TomTZpETEwMF198MccffzwzZswot6/s7Gxyc3OZNGkSo0aNom/fvgAkJiaSlZUFlO9WeezYsbzyyitkZ2c3uIfNhmjRgf/hh2HJErj3XpgypWX2uWFMuCoudrdl7tsHGRmuI7UTToCkpJq3W7RoEXfeeWe5eRdffDEzZswgPj6e6OhoEhISeOGFF9i1axdXX3116QtVHnrooXLbZWVlcf7555OXl4eqljb+Tps2jeuuu465c+eyePFiZs6cGdBulRsqaN0yB1J9u2X+29/grrvg22/hJz9xGcCkSZYBGBNK9emWubDQVd/k5pb/VHW/586d3dO34Xx13yS6ZW4KLr0ULrwQXnoJ7rsPJk+GkSNdBnDWWZYBGNPUqLoq2pLgXhLg8/PL1omKgtatXbBv1QoSElpet8nB1qIDP7gvyYwZcPnl8MILcP/9cM45MHq0ywBOP90yAGNCobjY1cn7luJzc133yCXi4lyQT052n61aubp7+802TIsP/CWio2HmTJg+HRYsgAcfhDPPhLFj3dXAxImhTqExLVdmJmzYAOvXw4gR7inavDxXwgdXRdOqlWuYbdWqLMhHRoY23S1V2AT+EjExcP317irguedcBnDqqTBhgrsCGDcu1Ck0pvkqLnYdoK1fXzZs2AA//FC2zrJl7neYlOQCfOvWrqrGSvGNJ+wCf4nYWLjpJrjmGnj2WXjoIRg/Hk47zWUAY8aEOoXGNG15ea7k7hvkN250/eKAK8UPGOCuqlNT3TB0KBw44O6+MaETtoG/RFwc3HorXHcdPP20uwV07FhXDXTvvTBqVKhTaEzopaeXVdWUDNu2ldXHJyS4oD59elmQP+kkV11T0YEDjZt2U1nYB/4SrVrBbbfBrFnw1FPwu9+5BuBzznEZwMknhzqFxgRfcTF8801ZFU1JkN+9u2ydHj1ckL/wwrIg37t387uV8sEHH+SVV14hMjKSiIgInnnmGT777DNmzZpVbdcLtZkxY0a5PnqaKgv8FcTHw69/DTfcAPPmwSOPuFtAp0yBOXNg+PBQp9CYwMjNhU2bygf5jRvdC0rA3RE3cKC7823o0LKqmg4dQpvuQPjss894++23WbduHbGxsWRkZFBQUMDUqVO54oor6h34mwsL/NVISIDf/AZuvBH++Ef4wx/cQ2AXXOAygKFDQ51CY/y3d2/lBtd//9uV8ME1tKamwrXXlgX4gQNb7v3xe/bsITk5mVjvBJOTk5k7dy67d+9m4sSJJCcns3LlSpYtW8Y999xDfn4+xx9/PAsWLCAhIYH77ruPt956i6NHj/LTn/6UZ555BqnQOn3nnXeydOlSoqKiOPPMM3n00UdDcapVatFP7gbS4cPw5JPw2GNu/OKLXQYwaFBIk2VMOYWFsGNH+SC/fj3s31+2TkpKWRVNSZDv1avx7qop/4TpbCCw3TJDKlBz52/Z2dmMHTuW3NxcTj/9dKZOncr48eNJSUlhzZo1JCcnk5GRwUUXXcR7771HfHw8v/vd78jPz+fuu+8mMzOT9u3bAzB9+nR+/vOfM2XKlNKqnlNPPZXRo0dX6q45mOzJ3SBISoK773YNwY8/7oY33oCf/xzuuQfq+AS6MQ2WleWqZnzr4jdtcnfbgLtlctAgOPfcsiA/ZAiEuJuYJiEhIYG1a9eyevVqVq5cydSpU3n44YfLrfP555/z9ddfM8a7xa+goIDRo0cDsHLlSh555BFyc3PJzMzkpJNOYsqUKaXb+nbXfO655zJ58uTGOzk/WOCvo7ZtXWPvr37lSv9PPgmvvgqXXeYyhv79Q51C09Kowq5d5atp1q93jbAlOnRwgf3mm8vq4wcMqL6HyqYjcN0y11VkZCQTJkxgwoQJDB48mIULF5ZbrqqcccYZLFq0qNz8vLw8brrpJtasWUOPHj2YM2cOeSW5rcff7ppDxQJ/PbVvDw88ALNnw6OPunaAxYvh/PPdswFnn+0ax4ypi2PH3G2SFevjfW+B7NvXBfYZM8qCfLdu9gBUXWzfvp2IiAhO8B4oWL9+Pb169WLnzp1kZWWRnJzMqFGjuPnmm/nmm2/o27cvubm5pKWl0alTJ8C1C2RnZ/Paa69Vuounuu6amwoLTQ2UnOzu/f+v/3JXAAsWuK6gjzsOrrwSrr7albyMqejQIVdV4xvkt2xxnZSBe8Zk8GC46KKyuvghQyAxMbTpbgmys7O55ZZbOHToEFFRUfTt25dnn32WRYsWcc4559ClSxdWrlzJ888/z2WXXUa+10vcAw88QL9+/bjuuusYPHgwKSkpnFzFvd7VddfcVAStcVdEegAvAMcBxcCzqvqkiLQH/gqkADuBn6vqwZr21RQad/117Bi8+67LAN5+2z3gMmqUuwqYOhUqvLnNhAFV95KQivfG79xZtk6nTuUbXFNT3dOtLfGqsT7dMpva1aVxN5iBvwvQRVXXiUgisBa4AJgBZKrqwyJyJ9BOVX9T076aU+D3tW+f6xJ6/nz4+mv3kNgll7irgPHjm98DL6Z2+fnuf10xyB8+7JaLuHagkiqakuG440Kb7sZkgT84msRdPaq6B9jjjWeJyFagG3A+MMFbbSHwMVBj4G+uOneG22931UD/+pe7Cli0CF580T3pOGMGXHWVu5XOND8HDpQP7hs2uKBfWOiWt27tAvwvflEW6AcNcg8JGhNKjXIhKSIpwDDgC6CzlymgqntEpFNjpCGURNzTvyNHunaAJUtcJjBnjhtOO81dBVx4YdV9m5jQKi6G//yncoPrjz+WrdO1qwvskyeX1ccff7x1K1wdVa30wJOpv7rW3AQ98ItIAvA6MFtVj/j7zxaRWcAsgJ49ewYvgY2sVStXAvzFL1y978KF8Pzz7kUxSUnuttCrr3Z9A9nvovEdPVq5x8kNGyA72y2PjHSN9ePGlX8AqmPH0Ka7OYmLi+PAgQN06NDBgn8AqCoHDhwgLi7O722C+uSuiEQDbwMfqOpj3rztwASvtN8F+FhVa7z7vbnW8furuBj+8Q93FfDaay74nHSSywCuuMJVGZnA27+/cl38tm1l3RgkJlauiz/pJHe3jam/Y8eOkZaWVuned1N/cXFxdO/enegKD26EonFXcHX4mao622f+74EDPo277VX1/9W0r5Ye+H0dPuweCJs/Hz7/3N3Vce657q6gc85pDg/kND1FRWU9TvoG+j17ytbp2bOs9F4S5FNSrAHeNG+hCPxjgdXAJtztnAD/javnfxXoCfwAXKqqmTXtK5wCv6+tW91VwIsvuk62OnVy/Z1ffbUreZrKcnLKepz07cYgN9ctj4pyfzvfID90qHsgz5iWptEDfyCFa+AvUVgI77/vrgLeestNjxzp7gqaNCk87wpSdSX2ii8H2bGj7D2ubdtW7ozsxBNbbo+TxlRkgb+FSE+Hl192mcCmTW5e797uZfElQ7duoU1joBUWwvbtlevj09PL1unTp3J9fI8e1kBuwpsF/hZG1d19smIFrFzpGocPes8/9+tXlglMmNC8GoePHCnrxqAkyG/a5B6MAldaHzSofJAfMsTdEWWMKc8CfwtXVOQC5sqVZRlBVpZbNnBg+YygKbxBSRXS0irfNvntt2XrJCeXr6ZJTXVPvVoDtzH+scAfZgoLYd26sozgk0/KXqk3dGhZRjBuXPD7Zy8ocA3VFevjS65QRMp6nPQN9F27WlWNMQ1hgT/MHTvmuo0oyQg+/dS9sCMiAoYNc5nAqafC2LEN6/3x4EEX4H2D/JYt7vjgHmAbPLh8kB882L3q0hgTWBb4TTn5+e45gZKM4PPPXck8MtI9NVxyRTBmjOtzpiJV1403wacAABMgSURBVLtkxQbX778vW+e44yo3uJ5wgnVjYExjscBvapSbC599VpYRfPmlqy6KjoZTTnGZQM+eZa/627ChrMfJiAhX917x3vhw6nHSmKbIAr+pk+xs1y5QkhGsXeu6MoiPL1+KHzrU3WVT1VWBMSa07GXrpk4SEtzrI88+200fPgwZGe6ZAevGwJjmzQK/8UtSkt0rb0xLYWU3Y4wJMxb4jTEmzFjgN8aYMGOB3xhjwowFfmOMCTMW+I0xJsxY4DfGmDBjgd8YY8KMBX5jjAkzFviNMSbMWOA3xpgwY4HfGGPCjAV+Y4wJMxb4jTEmzFjgN8aYMGOB3xhjwowFfmOMCTMW+I0xJsz4FfhF5Fci0kac50RknYicGezEGWOMCTx/S/zXqOoR4EygI3A18HBNG4jIfBHZLyKbfebNEZFdIrLeGybVO+XGGGPqxd/AL97nJGCBqm7wmVed54Gzq5j/uKqmesO7fh7fGGNMgPgb+NeKyDJc4P9ARBKB4po2UNVVQGYD02eMMSbA/A38M4E7gZNVNReIwVX31McvRWSjVxXUrrqVRGSWiKwRkTXp6en1PJQxxpiK/A38H6rqOlU9BKCqB4DH63G8p4DjgVRgD/CH6lZU1WdVdYSqjujYsWM9DmWMMaYqUTUtFJE4oDWQ7JXOS+r12wBd63owVd3ns+8/A2/XdR/GGGMapsbAD1wPzMYF+bWUBf4jwLy6HkxEuqjqHm/yQmBzTesbY4wJvBoDv6o+CTwpIreo6h/rsmMRWQRMwF0tpAH3ABNEJBVQYCcuYzHGGNOIaivxA6CqfxSRQcBAIM5n/gs1bHNZFbOfq3MKjTHGBJRfgV9E7sGV3gcC7wLnAJ8A1QZ+Y4wxTZO/d/VcApwG7FXVq4GhQGzQUmWMMSZo/A38R1W1GCgUkTbAfqBP8JJljDEmWPyq6gHWiEhb4M+4u3uygS+DlipjjDFB42/j7k3e6NMi8j7QRlU3Bi9ZxhhjgsXfbpmXl4yr6k5V3eg7zxhjTPPRqE/uGmOMCb26PrlbIot6PLlrjDEm9Gqr6vkn8FPg16raB7gX183CP4BXgpw2Y4wxQVBb4H8GyPee3B0HPAQsBA4DzwY7ccYYYwKvtqqeSFUteZnKVOBZVX0deF1E1gc3acYYY4KhthJ/pIiUZA6nASt8lvn7DIAxxpgmpLbgvQj4h4hkAEeB1QAi0hdX3WOMMaaZqa1b5ge9+/W7AMtUVb1FEcAtwU6cMcaYwKu1ukZVP69i3r+DkxxjjDHB5m8nbcYYY1oIC/zGGBNmLPAbY0yYscBvjDFhxgK/McaEGQv8xhgTZizwG2NMmLHAb4wxYcYCvzHGhBkL/MYYE2Ys8BtjTJixwG+MMWHGAr8xxoQZC/zGGBNmghb4RWS+iOwXkc0+89qLyIcissP7bBes4xtjjKlaMEv8zwNnV5h3J7BcVU8AlnvTxhhjGlHQAr+qrgIyK8w+H1jojS8ELgjW8Y0xxlStsev4O6vqHgDvs1N1K4rILBFZIyJr0tPTGy2BxhjT0jXZxl1VfVZVR6jqiI4dO4Y6OcYY02I0duDfJyJdALzP/Y18fGOMCXuNHfiXAld541cBf2/k4xtjTNgL5u2ci4DPgP4ikiYiM4GHgTNEZAdwhjdtjDGmEUUFa8eqelk1i04L1jGNMcbUrsk27hpjjAkOC/zGGBNmLPAbY0yYscBvjDFhxgK/McaEGQv8xhgTZizwG2NMmLHAb4wxYcYCvzHGhBkL/MYYE2Ys8BtjTJixwG+MMWHGAr8xxoQZC/zGGBNmLPAbY0yYscBvjDFhxgK/McaEGQv8xhgTZoL26kVjjGnSVKGoCIqLyz59x6tb5ju/McanTIFevQJ66hb4TdOl6obi4sqf1Y37O6+lbdPc0hvobWoL1lV9Nhd9+1rgr5MXXoCPPnLjqmXzS8armlfX8Zrm+X76O6+uy6qbDtb8xvzxm4aLiAAR9+k7XtW82pYHepvIyMDsp2RfkZFuXsVPf+fVZZnv/GCPJyUF/GvRsgP/N9/AJ5+UTYtUHq9qXl3Ha5rn++nvvLouq2ra90dRcb2GzC/58jf0x98UAk9T3CaQ+/H9XhrjQ9S3xNpEjRgxQtesWRPqZBhjTLMiImtVdUTF+XZXjzHGhBkL/MYYE2Ys8BtjTJixwG+MMWHGAr8xxoSZkNzOKSI7gSygCCisqtXZGGNMcITyPv6JqpoRwuMbY0xYsqoeY4wJM6EK/AosE5G1IjKrqhVEZJaIrBGRNenp6Y2cPGOMablCFfjHqOpw4BzgZhEZV3EFVX1WVUeo6oiOHTs2fgqNMaaFCkkdv6ru9j73i8gSYCSwKtDH+evmv/Llri/pktiFrold6ZLgfSZ2ITEmEbG+TIwxYajRA7+IxAMRqprljZ8J3BeMY63ds5an1jzF0cKjlZbFR8dXzhB8MoaS6TaxbSyDMMa0KI3eSZuI9AGWeJNRwCuq+mBN2zSkkzZV5Uj+EfZk72F31m72ZHmf2eU/d2ftJvdYbqXtW0e3Lp8hJLjPiplEUmySZRDGmCaluk7aGr3Er6rfAUMb63giQlJcEklxSQxIHlBTusgqyKqcMWTtYXe2+/xqz1e8k/UOOcdyKm0fFxVH18SuHJdwHJ3jO5f/TCib7pzQmdbRrYN5ysYYU6OW3R9/HYgIbWLb0Ca2Df2T+9e4blZ+VrVXEHuz97L9wHb+8f0/yDyaWeX2iTGJ5TID30yhYoYRFxUXjNM1xoQxC/z1kBibSGJsIv069KtxvYKiAvbn7Gdf9j72Zu9lX86+cuN7s/eyJX0LK/6zgoN5B6vcR1JsEp0TOld5FdE5vjOd4jvRMb4jneI7ER8db9VNxphaWeAPopjIGLq36U73Nt1rXTe/MJ/9OfurzSD25exjw74N7Mvex+H8w1XuIy4qjo6tO5ZmBqXjrTuWZg6+45ZRGBOeLPA3EbFRsfRI6kGPpB61rptXmMe+7H3sy9lHek46+3P2k56b7sZz95Oek056bjpfp39Nek56lXc1gWUUxoQrC/zNUFxUHL3a9qJX215+rZ9TkFMuc0jP9TIL3/HcdLamb2V/zv5qM4qYyJjSdpCk2KTS8boOraJaWQZiTAhZ4A8D8THx9I7pTe92vf1aP6cgp8rM4UDuAbIKsjiSf6R0SDuSVm46vyi/1v1HRURVnzHE1JxpJMWVZTh2BWJM/VjgN5XEx8QTHxNPStuUOm+bX5hPVkEWh/MOl8sQqhwKysb35+znm8xvSqereqaiIkHqdKVR3VVKQkwCkRGR9fhLGdM8WeA3ARUbFUtsVCzJrZMbtJ9jRccqXV34MxzKO8QPh3/gcL7LeLILsv06XkJMQo1XIb5XGtUNiTGJREdGN+i8jWkMFvhNkxQdGU37Vu1p36p9g/ZTVFxEdkG2/5mHdxVyOO8we7L2lFum1P6Ue6uoVtVXT9VSjeU7xEbFNui8jamJBX7TokVGRJY+ud0QqkrOsRy/M5CSK44j+Uf47uB3ZfPzDlOkRbUer6QhvSGN6EmxScRFxVk7iKnEAr8xfhAREmISSIhJoGti13rvR1XJK8yrU8YRiob0ilVb1pDesljgN6YRiQitolvRKroVnRM6N2hfJQ3plTKNqhrWG7EhvaarFGtIbxos8BvTTAWqIb2wuJCs/KwarzZqakgvmc4qyPLreDU1pPtbtWUN6Q1jgd+YMBcVEUW7Vu1o16pdg/ZTrMVkF2T7dytvhauQvdl7yy0r1uJaj1fSkJ4Qk+AywchYYiJjSsdjo7xpb7x0ecXpGtaval50ZDTREdFER0YTFRFVbjxSIptFlZgFfmNMQERIRGmJvCHq2pCeXZBNflE++YX55BflU1BUQHZBNgeOHig3r2Q8v9BN+9PIXh/VZQol49ER3nQV41Vtd/vo2xnSeUhA02iB3xjTpASqIb02RcVFlTIM38yhunnHio5xrPgYhcWFpePHirzpKsZL161hWX5hPtnF2VXu85rUawJ+7hb4jTFhKTIiktYRrcPyxUgtPPB/CHwNtAPae0M7n8+Y0CXNGGNCpIUH/r8Bf65heTxlGYJvplBxvOJ0AtD0G3CMMU2FAlnAQeCQ93nQz+m/AuMDmpoWHvifAh7G/fEyfYaD1Yxv9xmv6eGYKMpfOfhmDm2BNkCS99mmiulEwO5lNqZ5KQCOAIepW+A+5A01NSYLLna08xm6URZfAquFB/5IyoLy8XXc9ij+ZRYHgX3AVm/6CPjRp4u7aqguY/B3OgHLQIypjgJ5uJJ2Fu636e94VfMKajleNGWFv3ZAMnBChXntqplOBCIafMb+auGBvyFa4XLcbnXcrhjIwX1ZSkoHR/yc3u0znYV/GUgcrsqq4tC6AfNK5sfRNKu01BuKfcYbOh3IfdmxGvdYx6g+kBfin3jKrsYTvfEUn/FEn8E3aPuOt6Zp/l4qs8AfcBGUfUHqmmn48s1AasoscioMud5nOrCzwvyq36xV87n4ZgwxlP8hhiKQmKZNvCHCZzzY09GUBejjqBysaxuPJ9yunC3wN1mBykB8FVOWMVTMKKrLQHyHAoL3423MQBHKY7fk82wepV1jgT/MRODaBRJCnRBjTAg1XmuCMcaYJsECvzHGhBkL/MYYE2Ys8BtjTJgJSeAXkbNFZLuIfCMid4YiDcYYE64aPfCLSCQwDzgHGAhcJiIDGzsdxhgTrkJR4h8JfKOq36lqAbAYOD8E6TDGmLAUisDfDfjRZzqNKp5QEpFZIrJGRNakp6c3WuKMMaalC8UDXFU93lepUxpVfRZ4FkBE0kXk+2AnLECSgYxQJyJIWvK5Qcs+Pzu35qsh59erqpmhCPxpQA+f6e643smqpaodg5qiABKRNao6ItTpCIaWfG7Qss/Pzq35Csb5haKq51/ACSLSW0RigGnA0hCkwxhjwlKjl/hVtVBEfgl8gOsSb76qbmnsdBhjTLgKSSdtqvou8G4ojt0Ing11AoKoJZ8btOzzs3NrvgJ+fqLqz8s+jDHGtBTWZYMxxoQZC/zGGBNmLPAHgIj0EJGVIrJVRLaIyK9CnaZAE5FIEflKRN4OdVoCTUTaishrIrLN+x+ODnWaAkVEbvO+k5tFZJGIxIU6TQ0hIvNFZL+IbPaZ115EPhSRHd5nu1Cmsb6qObffe9/LjSKyRETaBuJYFvgDoxC4XVVPBEYBN7fA/od+BWwNdSKC5EngfVUdAAylhZyniHQDbgVGqOog3F1000KbqgZ7Hji7wrw7geWqegKw3Jtujp6n8rl9CAxS1SHAv4G7AnEgC/wBoKp7VHWdN56FCxyBelFuyIlId+Bc4C+hTkugiUgbYBzwHICqFqjqodCmKqCigFYiEgW0ppaHJZs6VV0FZFaYfT6w0BtfCFzQqIkKkKrOTVWXqWqhN/k57oHXBrPAH2AikgIMA74IbUoC6gng/+He1t7S9AHSgQVeVdZfRCQ+1IkKBFXdBTwK/ADsAQ6r6rLQpiooOqvqHnCFMKBTiNMTLNcA7wViRxb4A0hEEoDXgdmqeiTU6QkEEZkM7FfVtaFOS5BEAcOBp1R1GJBD860qKMer6z4f6A10BeJF5IrQpsrUh4j8D65K+eVA7M8Cf4CISDQu6L+sqm+EOj0BNAY4T0R24rrQPlVEXgptkgIqDUhT1ZIrtNdwGUFLcDrwH1VNV9VjwBvAT0OcpmDYJyJdALzP/SFOT0CJyFXAZOByDdCDVxb4A0BEBFdHvFVVHwt1egJJVe9S1e6qmoJrGFyhqi2m1Kiqe4EfRaS/N+s04OsQJimQfgBGiUhr7zt6Gi2k4bqCpcBV3vhVwN9DmJaAEpGzgd8A56lqbqD2a4E/MMYA03Gl4fXeMCnUiTJ+uwV4WUQ2AqnAb0OcnoDwrmJeA9YBm3C/92bdvYGILAI+A/qLSJqIzAQeBs4QkR3AGd50s1PNuf0JSAQ+9OLK0wE5lnXZYIwx4cVK/MYYE2Ys8BtjTJixwG+MMWHGAr8xxoQZC/zGGBNmLPAbA4iIisiLPtNRIpJe395IvR4/b/KZntASezY1zZMFfmOcHGCQiLTyps8AdjVgf22Bm2pdy5gQsMBvTJn3cL2QAlwGLCpZ4PX5/qbXL/rnIjLEmz/H60f9YxH5TkRu9TZ5GDjee+jm9968BJ9+/1/2nqY1ptFZ4DemzGJgmveykiGU72H1XuArr1/0/wZe8Fk2ADgLGAnc4/XbdCfwraqmquod3nrDgNnAQFyvoGOCeTLGVMcCvzEeVd0IpOBK++9WWDwWeNFbbwXQQUSSvGXvqGq+qmbgOgjrXM0hvlTVNFUtBtZ7xzKm0UWFOgHGNDFLcX3YTwA6+MyvqlqmpL+TfJ95RVT/u/J3PWOCykr8xpQ3H7hPVTdVmL8KuBzcHTpARi3vXMjCda5lTJNjJQ5jfKhqGu4dvBXNwb2layOQS1k3wNXt54CIfOq9OPs94J1Ap9WY+rLeOY0xJsxYVY8xxoQZC/zGGBNmLPAbY0yYscBvjDFhxgK/McaEGQv8xhgTZizwG2NMmPn/OzRVRWAs/6oAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Jimmy Butler will have 27 points, 6 rebounds, 2 assists, 1 steals against BOS.\n"
]
}
],
"source": [
"# Predict Player's game stat by Opponent Team and game month.\n",
"stat_predictor(\"Jimmy Butler\", \"BOS\", \"Dec\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXxU5dXA8d+ZmSyQAAGCirIEVFQEBIoK4oaKG7gvuIEIikvdaKnFt5+3pbZWaxfjggtVFDfQF8VabeuCWK1rwyIFQXFhFWQNZE8mc94/nhsyCQGSMDM3yZzv5zMfMnfu3HtmQs7z3Oc+91xRVYwxxiSPgN8BGGOMSSxL/MYYk2Qs8RtjTJKxxG+MMUnGEr8xxiQZS/zGGJNkLPGbuBKRp0Xkt97PJ4jIl43czmMi8r+xjS4+RCRHRFREQn7HYkxdLPE3ESJyvIh8JCLbRWSriHwoIkd7r40VkX83YFv1TjzetitFpFBEdojIIhEZuS+fZXdU9QNVPayeMdX4vKp6g6r+Jh5x1dr3FO+7u7XW8tu95VPiHUMdMZ3g/X4KRaTIi6Mw6tEt0TElkoiMF5ElIlIsIutFZKqItIt6/bci8nTU864iskJE7o9adpaIfCAiBSKyUUTeE5ERCf4oTYYl/iZARNoCrwMPAR2Ag4BfA2UJCuFjVc0EsoAngZdEpEMdcSZLD/Yr4Opay8Z4yxPOazAzvd/Rkd7irKplqrq6IduL9e8xnv8vROTnwN3AT4B2wFDgEOBNEUmpY/0ewPvA/6nqRG/ZZcCLwHTc31Zn3N/XufGKu8lTVXv4/AAGAfm7ee0IoBSoBAqr1gNGAAuBHcAaYErUe1YD6q1fCAzZw77HAv+Oep7hvXcQcDKwFvg5sAF41ltnJLAIyAc+AvpFvX8AsAAowP2xzQJ+6712MrA2at2uwCvAJmAL8PAePu/TVdvxnl8HfA1sBV4DDox6TYEbgBXANmAqIPX8XUwBngOWAUd6y470nj9X9T0DS4Bzot6XAmwG+gM5Xgwh77V2uAZ1PbAO+C0Q9F47BPgXsN17/4t7ia/GtqOWrwVOjnr+W+DpqH0ocI33f+PdqGVjvPduAiZHvT8A/A/wjRfXLKD97rZXR5wrgDOjnqd6v6t+QGvgBe93ng98BmTXsY32QDFwYa3lbbz3jon+rMChuL+FX9X6HOuAiX7/nTelh/X4m4avgEoRmeEdkravekFVl+GS2MfqendZ3ktFuD/aLFwjcKOInO+9dqL3b1Wv8OP6BOH13K7FJdwV3uIDcEch3YEJIjIQ13O6HugIPA68JiJpIpIKvAo8673n/4CLdrOvIO4oZxUumR0EzNrD541+7ynAPcCluN7bKlxiijYSOBo4ylvvDO+93UQkvx7DI8/ivl9wvf9nar3+DHBV1POzgfWquqiObc0AwriEOQA4Hfc9A/wGeAuX5Lrgjvri5UTgcNz/lyrHeXGdAfxaRA71lv/EW+9EL64i4MF6bK/KTODyqOdnAd+r6mJcg9Ha225H4CZcY1/bUCAE/DV6oaoWAP8EhkctrmpAH1LVX0ct7w0cCMyuY/tJyxJ/E6CqO4Djcb2ovwCbROQ1Edl/D+95T1X/q6oR749pJnBSI0MYLCL5uF795cAFqrrdey2C60GVqWoJrqf9uKp+qqqVqjoDNyQ12HukALmqWqGqs4H/7Gafx+D+IH+mqkWqWqqq9T2PcSUwXVUXqGoZcCcwRERyota5V1Xz1Q2DzMP1xFHV1aqapXsfHnkOuNwbTrjMe1779bO9YTqA0bjGogbvd3gWcLv3OTcC93vbBKjANaoHNvA7aIxfqWqx93usMsXb7wJgKa6hBNew/4+qrlPVUtyR0KUiEtjL9qq8AJwvIune8yu8ZeA+czZwiPd/KE9VC+vYRjawUVUr63htvfd6lX5AOq6zEa1j1PrGY4m/iVDVZao6VlW7AH1wSTF3d+uLyLEiMk9ENonIdlwvOXt36+/FJ14yzFbVwar6TtRrm7w//CrdgZ96veZ8r8Ho6sV7ILBOVaMr/63azT67AqtUNdyIeA+M3q6XNLbgjhqqbIj6uRjIbMgOvIbha+B3wApVXVPr9e+BD4GLRCQLl9yfr2NT3XGN4fqo7+txYD/v9TsAAT4TkaUiMq4hcTbQmtoLVHV331M34G9RMf8X1zHZL2r9XbYXtd3luGGiESKSiTsCq0r8TwPv4M4lrRORe3dznmAzsF+txqZKZ+/1Kq/gGt53RaRr1PItUesbjyX+Jsj7o3ka1wCA+4Or7QXc2HZXVW0HPIZLILtbv9Hh1Hq+BrjbayiqHq1VdSauV3WQiEjU+rsbUlkDdNvNH/ze4v8el1ABEJEMXM9u3V7e11DPAD9l12GeKjNwwz2X4Iam6tr/GtwRUXbU99VWVY8El3hV9TpVPRDXy35ERA5pRKxFuOGTKgfUXqFWg7w3a4HhtX7P6dENRT22VzXccwGwSFVXeu8rV9UpqnoE7kj3AtxRXG0f4s71nB+9UETa4Iam5tb6fLfhhs3eFZGqRP8F7v9LnUOOycoSfxMgIoeLyE9FpIv3vCvuD+YTb5UfgC7eGHqVNsBWVS0VkWNwh9JVNuGGaHrGIdy/ADd4RxwiIhkiMsL7Y/wYN5Z9q4iERORC3JBOXT7DNRT3ettIF5Gh3mt1fd5oLwDXiEh/EUnD9co/rUosMfQibjz+pd28/iowELiN3TQOqroel4z+JCJtRSQgIgeLyEkAInJJ1e8ddyJaccmuoRYBl3nf+zHAhY3YRrTHgN9VnQsRkf1EpKGzYGbijoQmUN3bR0ROEZE+Xk9+B27oZ5fPrKrbcOdAporI6SKS4s3a+T/gu+htRrkB+DcwV0Q6qWoE13hPEZGro34HJ4jIYw38PC2GJf6moQA4FvhURIpwCX8J7j8suFkYS4ENIlJ1eHsTcJeIFAC/JCo5qWoxbgrch96h+uBYBaqqebhx/odxiepr3MwgVLUcl3DGeq+Nwh2C17WdSuAc3Em51bge5ijv5bo+b/R75wL/C7yMazwOpnrMfI+8k7v1mvuuqiWq+s5uxrDxlr8M9GA3n9MzBjer5Qvc9zKb6qGHo3G/90LcEdxtqvpdfT5LLb/AnWjNx303dSXFhvgz7gTqXO//2EderPWmqmuBPNy5n+jG80Dc97UD93t+B9dI1LWN3wG/wp0X2YHrXHyHOxopr2N9BcbjZry9IyIdVHUWrmN0Ha73vwG4i1onjZOJNOzozxgTTUR+CfRS1av2urIxTUSyXJBjTMx5F7mNx83oMabZsKGeJCCuzk1hHY+kHePcVyJyHe7E7T9U9X2/4zGmIWyoxxhjkoz1+I0xJsk0izH+7OxszcnJ8TsMY4xpVubPn79ZVTvVXt4sEn9OTg55eXl+h2GMMc2KiNR55bwN9RhjTJKxxG+MMUnGEr8xxiSZZjHGb4xpOSoqKli7di2lpXWV4DeNkZ6eTpcuXUhJ2eWmZHWyxG+MSai1a9fSpk0bcnJyqFnI1TSGqrJlyxbWrl1Ljx496vUeG+oxxiRUaWkpHTt2tKQfIyJCx44dG3QEZYnfGJNwlvRjq6Hfpw31GGNMHSoqoLQUSkogGIQOHaCltFfW4zfGJJ1gMEj//v3p06cPF198CT/8UMzGjbB6NXz5JSxaBJ9/7n5evRqGDTuOL76AHTt2v83c3FyKi4sT9yH2QdwSv4hMF5GNIrKkjtcmiYiKSGPvEWuMMQ0SDkNhIWzaBOnprXjxxUU8//wSCgtTuffex1i9GjZvhkgEsrKga1c49FDo1w/ee+8jKivhq69gxQp3JFCbJX7naeDM2gu92woOx911yRhjYqqy0iX4zZthzRqXrD//3PXily+HVatA1a3Xti0MG3YCBQVf07cvzJv3Zy65pA8jR/Zh5sxc2rWD1FTo1i2TPn1g1ar3uPzykxkx4mIOOeRwLr/8SlSVBx98kO+//55hw4YxbNgwKisrGTt2LH369KFv377cf//9fn8tNcRtjF9V3xeRnDpeuh+4gyS+7Zkxxrn9dpeQG0PV9c5rPw45BH7q3bRUBFq1cgk+Pd393KoVBALQuzeEw2E++ugfnHnmmSxZMp+nn36KTz/9FFXl2GOP5aSTTmLAgAGAe0/HjrBixULefHMpgcCBXHvtUP72tw+5+eZb+fOf/8y8efPIzs5m/vz5rFu3jiVL3IBHfn5+LL6umEnoyV3vZs3rVPXzvZ2FFpEJuJs0063bXm+PaoxpwSIR10OvneSjBQLuJGxmpkv+6emQllb3CdmSkhL69+8PwAknnMD48eN59NFHueCCC8jIyADgwgsv5IMPPtiZ+Kscc8wxDB7cheJiOPLI/ixatJKePY8nEnGNEUDPnj359ttvueWWWxgxYgSnn356zL+TfZGwxC8irXE3hK7XN6Cq04BpAIMGDbK7xRjTAuXmVv8ciVTPoqn6t6QEysqq1xFxCT26996q1e4T/O60atWKRbUONep7U6q0tDQAWreGDh2CZGeHAXcO4ZtvICMD2rdvz+eff86bb77J1KlTeemll5g+fXr9A4yzRPb4DwZ6AFW9/S7AAhE5RlU3JDAOY4yPVKuTenSSr33CND29KrnWTPCBOJ2ZPPHEExk7diyTJ09GVZkzZw7PPvvsHt8j4mLs3RvatWvDli0FfPFFNoHAZrp3T+Wiiy7i4IMPZuzYsfEJupESlvhV9b/AflXPRWQlMEhVNycqBmNM4lT1gJcuhSVL3L9Ll8If/wjRk1/S0lxSb9++uiefnh6/BL87AwcOZOzYsRxzzDEAXHvttbsM8+xOIAA33TSBn/70LDp06Mwtt+RyxRXXEAxGSEmBe+65J56hN1jc7rkrIjOBk4Fs4AfgV6r6ZNTrK6ln4h80aJDajViMaZoqK+G773ZN8MuXQ3l59Xo9ekCfPjB58jIOO+wI3xJ8IpSWwtq1kJ/vZgV16eIatnheALZs2TKOOOKIGstEZL6qDqq9bjxn9Vy+l9dz4rVvY0zsRSJuKmRVYq9K8suW1Rym6dbNJfgzzoAjj3SPI45wY9/g1u/Y0Z/PkCjp6e4E844dbkrpt9+6z9+1qzv57Dcr2WCMqUHVJauqBF+V5Jctg6Ki6vUOOsgl9WHDqhN8797Qpo1/sTc1bdu672TLFli3zh0FdejgvjvvHLEvLPEbk6RU4fvvayb4qkdBQfV6Bxzgkvr48a4nX5Xgs7L8i705EYHsbDfUs2GDe2zb5r7XAw5wU1ATzRK/MS2cKvzwQ90JPvq6ok6dXFIfM8b926ePS/AtfVgmUYJB19PPzna9//Xr3dXFBx3kvuNEFoCzxG9MC7J5c80TrFWPLVuq1+nQwSX2yy6rHqI58kjYb7/db9fETloa9Ozpvu81a2DlSti40Y3/J2qYzBK/Mc3Qtm27zqJZutQlkCpt27pe+4UX1kzwBxzQcsoLN2eZmXD44e53uXatqwSaleVmAKWnx3fflviNacK2b4cvvtg1ya9fX71OZqYbkhk5smaCP+ggS/C7EwwG6du3L+FwmB49evDss8+StYeTFitXrmTkyJE7a+/Eiog7AsvKcsNx69e73+9++8Ff/jKFtm0zmTRpUkz3CZb4jWkSCgurE3x0kl+7tnqdVq1cgh8+vPok65FHuumTluAbJrpkw9VXX83UqVP5xS9+4Vs8gQB07lw9/v/DD+7oLRBw02hjfa2DJX5jEqi42E2LrD1VctWq6nXS0ty895NOqj7JeuSRkJPTMi928tuQIUNYvHjxzud/+MMfeOmllygrK+OCCy7g17/+NeAqeV599dUsXLiQXr168cwzz9C6dWvmzp3LpEmTCIfDHH300Tz66KOkpaWRk5NDXl4e2dnZ5OXlMWnSJN577z2mTJnC6tWr+fbbb1m9ejW33347t956KwD33Xc3zzzzDAce2JXWrTuRlvYj8vPhuece5LHHHiMUCtG7d29mzZq1T5/ZEr8xcVBa6uZs1z7J+u231RUcU1PhsMNgyBC49trqJN+zpz9T/HyxL3WZd6d//5rV3/agsrKSuXPnMn78eADeeustVqxYwWeffYaqcu655/L+++/TrVs3vvzyS5588kmGDh3KuHHjeOSRR7j55psZO3Ysc+fOpVevXowZM4ZHH32U22+/fY/7Xb58OfPmzaOgoIDDDjuMG2+8kcWLFzNr1iwWLlxIOBxm4MCBDBnyI9q3h3vvvZfvvvuOtLS0mJR4tsRvzD4oL3cn5Won+K+/ri4bHApBr14wcCCMHl2d4A85xL1mEq+qLPPKlSv50Y9+xPDhwwGX+N96662dNXoKCwtZsWIF3bp1o2vXrgwdOhSAq666igcffJDhw4fTo0cPevXqBVQPG+0t8Y8YMYK0tDTS0tLYb7/9+OGHH/jggw+44IILaN26NQDnnnsu6eluGK9fv35ceeWVnH/++Zx//vn7/Pntv50x9VBR4ZJ57Vk0K1a4YmTghmEOPdQl9VGjqsfge/VyvXtTh3r2zGOtaox/+/btjBw5kqlTp3Lrrbeiqtx5551cf/31NdZfuXIlte8hIiJ7LOUcCoWIeK1/aa3So2lRl+0Gg0HC3n+i3d2n5I033uD999/ntdde4ze/+Q1Lly4ltA+9BhsxNCZK1X1V58yB3/zGzXXv29fVWendGy69FO66CxYudAn9jjvg+efdaEVRkRveefllt86oUa4RsKTfdLVr144HH3yQP/7xj1RUVHDGGWcwffp0CgsLAVi3bh0bvTmyq1ev5uOPPwZg5syZHH/88Rx++OGsXLmSr7/+GoBnn32Wk046CYCcnBzmz58PwMsvv7zXWE488UTmzJlDSUkJBQUF/O1vfwMgEomwZs0ahg0bxn333Ud+fv7O+BrLevwmKUUi1RUlo2fRLF9e88YfOTmu1z5iRHUP/vDDXQ120zIMGDCAo446ilmzZjF69GiWLVvGkCFDAMjMzOS5554jGAxyxBFHMGPGDK6//noOPfRQbrzxRtLT03nqqae45JJLdp7cveGGGwD41a9+xfjx4/nd737Hscceu9c4Bg4cyKhRo+jfvz/du3fnhBNOANx5iKuuuort27ejqkycOHGPU0/rI25lmWPJyjKbxopEYPXquitKlpRUr9e1a3Vir5pFc8QRTaOSYktTV/lgs++aRFlmYxJJ1c15rz1N8osvalaUPPBAl9Svv75mwbG2bf2L3ZhEs8RvmhXV6qsbaz927Kheb//9XVIfN65mwbH27f2L3ZimwhK/abI2bqy74Ni2bdXrdOzokvpVV9UsV5Cd7V/cxjR1lviN77Zsqbvg2Oaom3JmZbkEf+mlu1aUtHIFxjSMJX6TMPn5u55kXbrU1SWp0qaNS+jnn18zwXfubAnemFiJW+IXkenASGCjqvbxlv0BOAcoB74BrlHVfb/+2DQpO3bUXVHy+++r16maF3/WWTULjnXpYgnemHiLZ4//aeBh4JmoZW8Dd6pqWER+D9wJ/DyOMZg4Kiqqu6LkmjXV67Rq5aZFnnpqzamS3bpZwTHjrzlz5nDhhReybNkyDj/88Aa995e//CUnnngip512Wp2vv/rqq/Tq1YvevXvHItSYi1viV9X3RSSn1rK3op5+Alwcr/2b2Ckpqbui5MqV1eukpbkLm044oeZ8+JycJCo4ZpqVqqtvZ82axZQpUxr03rvuumuPr7/66quMHDky+RJ/PYwDXvRx/6aWsrK6K0p+8011RcmUFFdR8thjq6dKHnkkHHywFRwzzUdhYSEffvgh8+bN49xzz2XKlCmsX7+eUaNGsWPHDsLhMI8++ijHHXcc48ePJy8vDxFh3LhxTJw4kbFjxzJy5EguvvhiJk+ezGuvvUYoFOL000/nwgsv5LXXXuNf//oXv/3tb3n55Zd54403YlpWeV/58qcqIr8AwsDze1hnAjABoFu3bgmKLDmUl7t6NHVVlKysdOsEg64WTf/+cOWV1Qn+0ENd8jcmFm7/5+0s2hDbssz9D+hP7pl7Lv726quvcuaZZ9KrVy86dOjAggULmDdvHmeccQa/+MUvqKyspLi4mEWLFrFu3bqdd96qXRJ569atzJkzh+XLlyMi5Ofnk5WVxbnnnruzYYDYl1XeVwlP/CJyNe6k76m6h3oRqjoNmAauZEOCwmtRwuG6K0p+9VXNipIHH+yGZS65pGZFyagCgsa0KDNnztxZOvmyyy5j5syZnHPOOYwbN46KigrOP/98+vfvT8+ePfn222+55ZZbGDFiBKeffnqN7bRt25b09HSuvfZaRowYwciRI+vcX6zLKu+rhCZ+ETkTdzL3JFUtTuS+W7LKSneDj9qzaL780vXuwc2U6dHDJfXzzqtZcCzeN3Y2Znf21jOPhy1btvDuu++yZMkSRITKykpEhPvuu4/333+fN954g9GjR/Ozn/2MMWPG8Pnnn/Pmm28ydepUXnrpJaZPn75zW6FQiM8++4y5c+cya9YsHn74Yd59991d9hnrssr7Kp7TOWcCJwPZIrIW+BVuFk8a8LZXd/oTVb0hXjG0NJGIO6FaV0XJ6HLf3bu7pH7mmTULjllFSWNg9uzZjBkzhscff3znspNOOon333+foUOHct1111FUVMSCBQs4++yzSU1N5aKLLuLggw9m7NixNbZVWFhIcXExZ599NoMHD+aQQw4BoE2bNhQUFAA1yyoff/zxvPDCCxQWFu5zhc19Ec9ZPZfXsfjJeO2vJVHdfUXJ4qjjpC5dXFI/5ZTqWTRHHOEugjLG1G3mzJlMnjy5xrKLLrqIsWPHkpGRQUpKCpmZmTzzzDOsW7eOa665ZucNVe65554a7ysoKOC8886jtLQUVeX+++8H3PDRddddx4MPPsisWbMYP358TMsq7ysry+wjVVi3ru6KktH3WejcueZVrFUVJX3+v2NMo1hZ5viwssxNjCps2FB3Rcnt26vX228/l9THjq2Z5Dt08C10Y0wLZIk/DiorYcYM+M9/qhP81q3Vr3fo4IZlrriiZoLv1Mm/mI0xycMSf4yVlrqEPmcOtGvnEvrFF9dM8Pvvb/VojDH+scQfQ/n5cO658MEHkJsLt95qCd4Y0/RY4o+Rdevc9Mkvv4SZM+Gyy/yOyBhj6maJPwaWL4czznDj+H//O+ymYJ8xxjQJVhh3H33yCQwd6sb2//UvS/rGNBd33303Rx55JP369aN///58+umn5ObmUlzc+KICY8eOZfbs2TGMMj6sx78P3njD1bc58EB4801X88YY0/R9/PHHvP766yxYsIC0tDQ2b95MeXk5o0aN4qqrrqJ1C7/M3Xr8jfT0067mzRFHwIcfWtI3pjlZv3492dnZpHmVCLOzs5k9ezbff/89w4YNY9iwYQC89dZbDBkyhIEDB3LJJZdQ6F1Zedddd3H00UfTp08fJkyYQF0Xwk6ePJnevXvTr18/Jk2alLgPVw925W4DqcLvfw933umGdV55xUokGNMQNa8wvR2IbVlm6A/sufhbYWEhxx9/PMXFxZx22mmMGjWKk046iZycHPLy8sjOzmbz5s1ceOGF/OMf/yAjI4Pf//73lJWV8ctf/pKtW7fSwbuycvTo0Vx66aWcc845O+v0n3LKKQwZMmSXcs3x1JArd63H3wCRCNx+u0v6l1/uhnos6RvT/GRmZjJ//nymTZtGp06dGDVqFE8//XSNdT755BO++OILhg4dSv/+/ZkxYwarVq0CYN68eRx77LH07duXd999l6VLl9Z4b3S55ldeeaXJDR3ZGH89lZXB1VfDiy+65P+nP9k9Y43Zd4kvy1wlGAxy8sknc/LJJ9O3b19mzJhR43VVZfjw4cycObPG8tLSUm666Sby8vLo2rUrU6ZMoTS6PC71L9fsF0td9bBjB4wY4ZL+738Pf/6zJX1jmrMvv/ySFStW7Hy+aNEiunfvXqOc8uDBg/nwww/5+uuvASguLuarr77ameSzs7MpLCyscxZPYWEh27dv5+yzzyY3N5dFi2I9nLVvrMe/Fz/8AGedBYsXu/o7Y8b4HZExZl8VFhZyyy23kJ+fTygU4pBDDmHatGnMnDmTs846i86dOzNv3jyefvppLr/8csrKygD47W9/S69evbjuuuvo27cvOTk5HH300btsf3flmpsKO7m7B19/7S7M2rABZs92DYAxZt9YWeb4sLLMMbBggUv0lZXw7rtw7LF+R2SMMbFhI9V1eOcdOOkkaNXKzdG3pG+MaUks8dcyaxacfba7MflHH8Fhh/kdkTEtT3MYYm5OGvp9WuKPkpvr5ucPGQLvv+9KMRhjYis9PZ0tW7ZY8o8RVWXLli2kp6fX+z1xG+MXkenASGCjqvbxlnUAXgRygJXApaq6LV4x1Jequyjr97+HCy+E55+HBnyHxpgG6NKlC2vXrmXTpk1+h9JipKen06VLl3qvH8+Tu08DDwPPRC2bDMxV1XtFZLL3/OdxjGGvKirg2mvhmWfghhvg4YchGPQzImNatpSUFHr06OF3GEktbkM9qvo+sLXW4vOAqsvjZgDnx2v/9VFU5AqtPfMM3HUXPPKIJX1jTMuX6Omc+6vqegBVXS8i++1uRRGZAEwA6NatW8wD2bwZRo50N0R//HGYMCHmuzDGmCapyZ7cVdVpqjpIVQd16tQppttetQqOPx4+/xxeftmSvjEmuSS6x/+DiHT2evudgY0J3j+LF7t745aUwNtvuwbAGGOSSaIT/2vA1cC93r9/TeTO//UvN6afmQkffAB9+sRxZ99/76q7Valr6lrtZbF+btu0bdo2Y7PNo46CgQN3Xd5MxXM650zgZCBbRNYCv8Il/JdEZDywGrgkXvuv7ZVX4Ior3IVZb74JcThtUG3JEujf39V7MMY0f+3bw5o1kJHhdyQxEbfEr6qX7+alU+O1z9157DG46SYYPBj+9jfo2DHOO7z/fkhLc2eNQ7W+YpHYPm8u27S4E7tNizt221y8GM49103/u/HGXbfVDLXo6pyqMGWKm6o5cqSrpx/3G+Fs3OgOJ8aNc/NDjTHNmyoccwwUFMAXXzSrm3Ek5a0XJ01ySX/cOJgzJwFJH1wvv6wMbr01ATszxsSdCEycCF9+6caJW4AWnfhHjoT//V944oldR1ziouk/Pr4AABzoSURBVKzM9fLPOgsOPzwBOzTGJMTFF7viXU3shiqN1aIT/7Bhrsdf1xBfXLz4ortry+23J2iHxpiESE2FH//YzQGvdWP15qhFJ/6EUnXlPXv3huHD/Y7GGBNrEya46o0PPOB3JPvMEn+sfPABLFzoevsJO8QwxiRMdra76fazz7qaL82YJf5Yyc1180SvusrvSIwx8XLbbVBa6iZxNGOW+GPh22/h1Vfh+uvd/RqNMS1T795w+ukwdSqUl/sdTaNZ4o+Fhx5y9ZxvusnvSIwx8TZxIqxfDy+95HckjWaJf1/t2AFPPgmjRsFBB/kdjTEm3k4/3U3Xvv/+uuv6NAOW+PfVU0+5K/psCqcxySEQcGP9CxbAhx/6HU2jWOLfF5WV8OCDMHQoDNrlqmhjTEs1Zowr3NZML+iyxL8v/vY3d2LXevvGJJfWrd1kjldfhe++8zuaBrPEvy9yc6F7dzjf11sHG2P88OMfu2Gfhx/2O5IGs8TfWAsXuju73HJLggoBGWOalC5d4JJLXDGwggK/o2kQS/yN9cAD7qYM48f7HYkxxi+33+5m9j31lN+RNIgl/sbYsAFmzoRrroGsLL+jMcb45ZhjYMgQN8mjGd1xzxJ/Yzz6KFRUWM19Y4y7oOubb+CNN/yOpN4s8TdUaalL/CNHwqGH+h2NMcZvF1wAXbs2q6mdviR+EZkoIktFZImIzBSRdD/iaJSZM2HTJpvCaYxxQiE3yeO992DRIr+jqZeEJ34ROQi4FRikqn2AIHBZouNolKqa+337uru8GGMMwLXXurn9zaRWv19DPSGglYiEgNbA9z7F0TDz5sHixVZz3xhTU/v2brLHCy+4yR9NXMITv6quA/4IrAbWA9tV9a3a64nIBBHJE5G8TZs2JTrMuuXmQqdOcMUVfkdijGlqbr3VlWp+7DG/I9mreiV+EblNRNqK86SILBCR0xuzQxFpD5wH9AAOBDJEZJe7l6jqNFUdpKqDOnXq1JhdxdaKFfD663Djje72a8YYE61XLxgxwk3+KC31O5o9qm+Pf5yq7gBOBzoB1wD3NnKfpwHfqeomVa0AXgGOa+S2Euehh9xJnBtv9DsSY0xTNXEibNzoJoE0YfVN/FUD2mcDT6nq51HLGmo1MFhEWouIAKcCyxq5rcTIz4fp0+Hyy+GAA/yOxhjTVJ1yCvTp44aFm3Ct/vom/vki8hYu8b8pIm2ASGN2qKqfArOBBcB/vRimNWZbCfPkk1BUZFM4jTF7JuLyxOLFbnpnEyVaj1ZJRAJAf+BbVc0XkY7AQaq6ON4BAgwaNEjz8vISsatdhcNwyCGQk9Okf5HGmCaitNRd0DVkCLz2mq+hiMh8Vd3lZiH17fG/raoLVDUfQFW3AM3nMrV98de/wqpV1ts3xtRPero7F/j6625SSBO0x8QvIuki0gHIFpH2ItLBe+TgZuS0fLm50KMHnHOO35EYY5qLG290k0EeesjvSOq0tx7/9cB84HDv36rHX4Gp8Q2tCcjLg3//283PDQb9jsYY01x07uwmg0yf7iaHNDF7TPyq+oCq9gAmqWpPVe3hPY5S1eZ325mGys2FNm1g3Di/IzHGNDe33eYmhTz5pN+R7KJeY/yq+pCI9BGRS0VkTNUj3sH56vvv4cUX3Y1W2rb1OxpjTHMzcCCceKIb7gmH/Y6mhvpeufsr4CHvMQy4Dzg3jnH575FH3I0VbrnF70iMMc3VxIlucsirr/odSQ31ndVzMe5Cqw2qeg1wFJAWt6j8VlLi6m2cdx707Ol3NMaY5uqcc9zkkNxcvyOpob6Jv0RVI0BYRNoCG4GWmxGfew62bLEpnMaYfRMMuskhH34I//mP39HsVN/EnyciWcBfcLN6FgCfxS0qP1XV3B8wwI3PGWPMvhg3zk0SaUK9/vqe3L1JVfNV9TFgOHC1N+TT8rzzDnzxhdXcN8bERtu2bpLISy/BunV+RwPU/+Tu3KqfVXWlqi6OXtai5ObC/vvDqFF+R2KMaSluucVNFnnkEb8jAezK3ZqWL4e//x1uugnSWu65a2NMgvXs6SaLPP44FBf7HU2Dr9zN8x4t88rdBx90Cf+GG/yOxBjT0kyc6CaNPPec35HsNfF/hLtJyiRV7Qn8GlgC/At4Ic6xJdbWrTBjBlx5Jey3n9/RGGNamhNOcJNGmkCt/r0l/seBMu/K3ROBe4AZwHaaeg39hnriCXcIdtttfkdijGmJqmr1L1sGb7/tayh7S/xBVd3q/TwKmKaqL6vq/wKHxDe0BKqocJdVn3IK9OvndzTGmJZq1Ch3F7/7/a1qv9fELyIh7+dTgXejXgvVsX7z9MorsHatXbBljImvtDQ3eeSf/3Q9f5/sLfHPBP4lIn8FSoAPAETkENxwT8uQm+vusjVihN+RGGNauuuvdw3Agw/6FsLeyjLfDfwUeBo4Xqvv0xgAWkb1sk8+cY/bboNAfS9kNsaYRtpvP7jqKjeZZMsWX0LYa6ZT1U9UdY6qFkUt+0pVFzR2pyKSJSKzRWS5iCwTkSGN3dY+y82Fdu1g7FjfQjDGJJnbbnPFIP/yF19271cX9wHgn6p6OK7Spz+DXWvWwOzZcO21kJnpSwjGmCTUty+ceio8/LCbXJJgCU/8XnXPE4EnAVS1vOom7gk3daqbT3vzzb7s3hiTxCZOdLV7Zs9O+K796PH3BDYBT4nIQhF5QkQyaq8kIhNEJE9E8jZt2hT7KIqKYNo0uPBCyMmJ/faNMWZPzjoLDj3UTe1M8AVdfiT+EDAQeFRVBwBFwOTaK6nqNFUdpKqDOnXqFPsonn0Wtm2zKZzGGH8EAm6s/z//cRNMErnrhO7NWQusVdVPveezcQ1B4kQi7qTuoEFw3HEJ3bUxxux09dWQlZXwC7oSnvhVdQOwRkQO8xadCnyR0CDefBO+/NJq7htj/JWZCdddBy+/7O7NmyB+zeq5BXheRBYD/YHfJXTvubnQuTNccklCd2uMMbu4+WbXAZ2auILHviR+VV3kjd/3U9XzVXVbwna+dCm89Zb7slNTE7ZbY4ypU7dubpLJtGlQWJiQXSbfpaoPPADp6TBhgt+RGGOMM3EibN/uruZNgORK/Js3u9k8o0dDdrbf0RhjjDN4MBxzjOuYRiJx311yJf5p06C01GruG2Oalqpa/StWuNu/xlnyJP7ycnfy5PTT4cgj/Y7GGGNquvhiOOggN/kkzpIn8c+eDd9/bxdsGWOappQUN+lk7lz473/juqvkSPyq7gKJww6DM87wOxpjjKnbhAnQqlXce/3Jkfg/+gjy8qzmvjGmaevQwV3N+/zzsHFj3HaTHFkwNxfat4cxY/yOxBhj9uzWW6GsDB5/PG67aPmJf9Uqd0/dCRMgY5cioMYY07QccQSceSY88ohrAOKg5Sf+hx5yU6V+/GO/IzHGmPqZOBE2bIAXX4zL5lt24i8ogCeecNOkunb1OxpjjKmf4cNdzz83Ny61+lt24p8xw10GbVM4jTHNSdUFXQsXwgcfxHzzoZhvsSkpLXUXbA0e7HckxhjTMFddBV99Bd27x3zTogm+5VdjDBo0SPPy8hr3ZlWruW+MSUoiMl9VB9Ve3rKHesCSvjHG1NLyE78xxpgaLPEbY0ySscRvjDFJxhK/McYkGd8Sv4gERWShiLzuVwzGGJOM/Ozx3wYs83H/xhiTlHxJ/CLSBRgBPOHH/o0xJpn51ePPBe4AdntXYRGZICJ5IpK3adOmxEVmjDEtXMITv4iMBDaq6vw9raeq01R1kKoO6tSpU4KiM8aYls+PHv9Q4FwRWQnMAk4Rked8iMMYY5JSwhO/qt6pql1UNQe4DHhXVa9KdBzGGJOsbB6/McYkGV/LMqvqe8B7fsZgjDHJxnr8xhiTZCzxG2NMkrHEb4wxScYSvzHGJBlL/MYYk2Qs8RtjTJKxxG+MMUnGEr8xxiQZS/zGGJNkLPEbY0ySscRvjDFJxhK/McYkGUv8xhiTZCzxG2NMkrHEb4wxScYSvzHGJBlL/MYYk2Qs8RtjTJJp0Yl/xZYVLFy/0O8wjDGmSWnRiX/Kv6YwcNpARs8Zzar8VX6HY4wxTULCE7+IdBWReSKyTESWisht8drX1LOnMnnoZGZ/MZteD/fiZ2/9jG0l2+K1O2OMaRb86PGHgZ+q6hHAYODHItI7HjvKSs/intPu4aubv+KKvlfwp4//xMEPHsyfPvoTpeHSeOzSGGOavIQnflVdr6oLvJ8LgGXAQfHcZ9d2XXnqvKdYdMMiju1yLJPensRhDx/Gc4ufI6KReO7aGGOaHF/H+EUkBxgAfFrHaxNEJE9E8jZt2hST/fXbvx//uPIfvD36bTq26sjoOaMZNG0Q73z7Tky2b4wxzYFviV9EMoGXgdtVdUft11V1mqoOUtVBnTp1ium+T+t5GnkT8njugufYWrKV4c8O58znzuTzDZ/HdD/GGNMU+ZL4RSQFl/SfV9VX/IghIAGu7Hcly29ezp9O/xOfrfuMAY8PYOyrY1mzfY0fIRljTEL4MatHgCeBZar650Tvv7b0UDo/GfITvrn1GyYdN4lZS2Zx6EOHMvmdyeSX5vsdnjHGxJwfPf6hwGjgFBFZ5D3O9iGOGtq3as99w+/jy5u/5NIjL+W+D+/j4AcPJveTXMrCZX6HZ4wxMSOq6ncMezVo0CDNy8tL6D4Xrl/IHe/cwTvfvkOPrB7cfcrdjOozioC06GvejDEtiIjMV9VBtZe38Cy2HFgANLzHPqDzAN4e/TZvXvUmbdLacMUrV3DMX45h3nfzYh6lMcYkUgtP/PcDPwLaAAOBa4FHcbNHS+q1hdMPPp0FExYw4/wZbCzayCnPnMLIF0ayZOOSeAVtjDFx1cKHelYBnwHzcT3/+cBW77UgcASuQfiR9+9RuEaibiUVJTz02UP87oPfUVBewDX9r+HXJ/+ag9rG9fozY0ySUlXcfJjG2d1QTwtP/LUpsIbqhqCqMfjBe12AXtRsDAYAWTW2sqV4C3d/cDcPf/YwoUCIiYMncsfQO2iX3i4GMRpjkl1ZuIzn//s8939yPy9f+jK9OvZq1HYs8e/Remo2BgtwDUSVntRsDAYC2Xy37Tt+8e4vmLlkJtmts/nlib/k+kHXkxpMjWOsxpiWKr80n8fzHueBTx9gfeF6jtr/KB4b+RiDuwxu1PYs8TfYJmo2BAuAb6Ne70pVY7BiSxvunPt/vLzsIw5ufzD3nHoPF/e+eJ8O0YwxyWPN9jXkfpLLXxb8hYLyAk7reRp3HHcHp/U8zYZ6/LcNWEjNxuAr3BASlIbb89m6Ct5bWUhh+cEckNmHoLQhFGhHKNCO1GAWacEOpKdkkZGSSWZqJhmpGWSkZNT4ORgI+vYJjTGJs/iHxfzxoz8yc8lMVJVRfUYxacgkBnQeEJPtW+KPmwJgEVUNgeoClKUEZPffa0ShuAKKyr1/a/1cFg5QVplCRWUKlZpGOJJGRFuh2gqlNUImAckkIG0IBdoSCrQjJdiOtGAHr2FpT2ZqGzJSMshI9RqVlAzSQ+l2FGKMz1SVeSvncd+H9/HmN2+SkZLBtQOvZeLgiXTP6h7Tfe0u8Ydiupek1AY4wXuACAjFuGrT+UAxkUgBZZX5lFdupSKynXBkB5WR7US0gKAU0Sa1iLZpxQQoIRAoJShlpATLSQ2WkxIoJi3U8NLRReWuESmugB8KoxuVIOWVIcorU6nUVMKRNCoj6SitUG0NZBCQTEQyqxuVQBYpwXakhzqSFmxP65RsMryGpepIJRSw/0rG7Ek4EublL17mvo/uY8H6BeyfsT93n3I3Nwy6gQ6tOiQ0FvtrjYvWuBPBTiAArQLQKqWx26vEXXdQ5D2KgSJUiwhHtlNWuZWy8DYqKvMJq2tYIpECIhSiWkRaqIj0UAnZrUsJBsoIBcpICZSTGiwgLbSN9EY0LMVeo5JfCusKoKRCKK0MUh4OUV6ZQkUklcpIKpWavvNoBTIQySAgbQjQhpRguxpHK+mhjqSHOngNS1syUjJondLajlJMs1ZUXsT0hdP58yd/ZmX+Snp17MW0kdMYfdRo0kPpvsRkib9ZCAKZ3qOaCKQE3SNznyYSRahuWFyjEtECysLbKA1vobwyn/LKbVREtlMZ2UGl7iCiBai6hkgoISO1hLZSSjBQ7jUqxaQGd5AeqqRVSsMblhKvYdlSAqVhoaQiSFlliIoaRyvpRDR9L0NgWaQF25Ma7LCzUWmd0omM1LY2+8rE1caijTz82cNM/c9UtpZsZWjXoeSekcs5h53je+kXS/wGdwF3hvfwlog7Qmn8UUo0JbphqajMpzS8lZLwZsrD2yiP5LujFW8YrKpRUYoQqR4Cy0gpIyW9nJRgGamBItJDlV7DogQaeFBQFoatJd6RSjhIaThIRcQ7WqlMo1JrD4G13tmoBANtCQXakhLIIjXYnrRQe9KCrlFp5TUsAbFGJVmt2LKCP338J2Z8PoOycBnnHX4ePzvuZxzX9Ti/Q9vJEr9JAMENf7UGICXYnZQgtEmL1fYVKEW1iNLwFkoqNlMS3kJZ5VbKw/mUR7YRjmynMlJAZWQH6g2BIUUIpQSlhGCglFCgnMzUclICO0gLhV2jEorQOgWCDeyglVdCcYVQGg5QGg5SFg5REXFDYOHKNCLqnbCnFarV51WC3tFKSjCLlIA7WkkLuWGw1inZpAbbI5IBWMPS1Hyy9hPu+/A+Xl3+KqnBVK4+6mp+MuQnHJZ9mN+h7cISv2kBBGiFSCtapWTTKiXWf2hKOFJEcflmisObKK3Y6obAItsor6w6WnFHKhEtQCkCdUcrIqWEok7YpwSKyEzbTnrQDYG1CikZqRBqYMNSUQkl4QBl4QCl3hBYRWUqFZE0KmvPApMMAmQSCLQhKO1I8RqWtFB7UoPtSQ91pFWoI8FAW9xRX2tcw2LnVvYmohFe/+p1/vDRH/j36n/TPr09/3PC/3DLMbewf+b+DdzadtyFo7UfP8eVl4kdS/zG7JUQCmTSNj2TtuTEdMuqSlllKfml27wjlc2UhrdSFt7qGpVIPuHK7VRqAZW6Y+d5FSgmICUEvIYlFCgnNVhGSrCI9FCYjFB1o5KR4s4DNUQ4AqXhAGXhkHduJYVwpOq8ShoRbQ1UnbB351ZC0o5goC0pwXakBjuQFswiPdQx6iilqlHJANJozg1LWbiM5xY/xx8//iPLNy+ne7vuPHDmA4wbMI7M1Mw63lFEzWS+ll0TfEGt9wSAA4ExWOI3pgUREdJDrUgPtcL9kcdOZaSS4opitpQUUVjuGpbS8FZvCMydWwlHthOu3EGEgp3nVkSKEYoJSO1ZYKWkBrfSKqWSViF2NiqtUyCtgZmkMgJllVFDYJXe1OKqITDvvIprVDIISlvvQsi2pATbkxZsT3qog3eUUtWYRDcs6cSjYckvzeexvMd44NMH2FC4gQEHDGDWRTO4qPexhALrgTnU3WvfVsfW9sdVADgMOM37OfrRmXilaEv8xrRQwUCQNmltaJPWBjggptsuryynsLyQwvIifigqoqg8n5KKLZSGt7ohsLB3tOINgVXqDqpnjbmjlWCglJCUeUcrRaQG80kPRchIdY1JRgo7f05vYKaKKJRXhigLhwhHUr3pxbVmgUkGQhuCgcwaQ2CpwfakBrMQyaSqMdlQuJq3vpnOV1veYb+McmZfsh999+9Fm9R1iFxdRwQdccm7O3A8uyb1A3FHPf6wxG+MabDUYCodWnWI+YVHEY1QUlFCYXkhRRVFrNtRRGF5IcUVOyiNml4cPQQW0QIiFIAWe+dViglQRihYSkjKSQmWkhYsIN0b+opuVFp5P+9t9toBmTDmKPdzZSSTYKATuybzqkcXqiYyNFWW+I0xTUZAAq5mVWrG3lduoIrKCooqiigqd43J5uLqn4sqdlAWzqcsXHV1vXtUagFKIVlp2Zx96PV0bnOMN7zUvPmS+EXkTOAB3JVJT6jqvX7EYYxJHinBFLKCWWSlZ+195RYu4ZePiUgQmAqcBfQGLheR3omOwxhjkpUf1w0fA3ytqt+qajkwCzjPhziMMSYp+ZH4D6Lm7a3WestqEJEJIpInInmbNm1KWHDGGNPS+ZH465pcu0vxelWdpqqDVHVQp06dEhCWMcYkBz8S/1rcnKcqXYDvfYjDGGOSkh+J/z/AoSLSQ0RSgcuA13yIwxhjklLCp3OqalhEbgbexE3nnK6qSxMdhzHGJCtf5vGr6t+Bv/uxb2OMSXbN4mbrIrIJWNXIt2cDm2MYTnNgnzk52GdODvvymbur6i6zY5pF4t8XIpJX113mWzL7zMnBPnNyiMdn9vfGj8YYYxLOEr8xxiSZZEj80/wOwAf2mZODfebkEPPP3OLH+I0xxtSUDD1+Y4wxUSzxG2NMkmmxiV9EuorIPBFZJiJLReQ2v2NKBBEJishCEXnd71gSQUSyRGS2iCz3ftdD/I4p3kRkovd/eomIzBSRdL9jijURmS4iG0VkSdSyDiLytois8P5t72eMsbabz/wH7//2YhGZIyIxuYtMi038QBj4qaoeAQwGfpwkN3y5DVjmdxAJ9ADwT1U9HDiKFv7ZReQg4FZgkKr2wZU9uczfqOLiaeDMWssmA3NV9VBgrve8JXmaXT/z20AfVe0HfAXcGYsdtdjEr6rrVXWB93MBLiHsUve/JRGRLsAI4Am/Y0kEEWkLnAg8CaCq5aqa729UCRECWolICHdX7xZX3VZV3we21lp8HjDD+3kGcH5Cg4qzuj6zqr6lqmHv6Se4asb7rMUm/mgikgMMAD71N5K4ywXuACJ+B5IgPYFNwFPe8NYTIhL7u3Q3Iaq6DvgjsBpYD2xX1bf8jSph9lfV9eA6dsB+PseTaOOAf8RiQy0+8YtIJvAycLuq7vA7nngRkZHARlWd73csCRQCBgKPquoAoIiWd/hfgzeufR7QAzgQyBCRq/yNysSbiPwCN3z9fCy216ITv4ik4JL+86r6it/xxNlQ4FwRWYm7j/EpIvKcvyHF3VpgrapWHcnNxjUELdlpwHequklVK4BXgON8jilRfhCRzgDevxt9jichRORqYCRwpcbowqsWm/hFRHBjv8tU9c9+xxNvqnqnqnZR1Rzcyb53VbVF9wRVdQOwRkQO8xadCnzhY0iJsBoYLCKtvf/jp9LCT2hHeQ242vv5auCvPsaSECJyJvBz4FxVLY7Vdlts4sf1gEfjer6LvMfZfgdlYu4W4HkRWQz0B37nczxx5R3dzAYWAP/F/Q23uDIGIjIT+Bg4TETWish44F5guIisAIZ7z1uM3Xzmh4E2wNteDnssJvuykg3GGJNcWnKP3xhjTB0s8RtjTJKxxG+MMUnGEr8xxiQZS/zGGJNkLPEbA4iIisizUc9DIrKpsVVOvaqhN0U9PzlZKqaaps8SvzFOEdBHRFp5z4cD6/Zhe1nATXtdyxgfWOI3pto/cNVNAS4HZla94NWCf9Wri/6JiPTzlk/x6qi/JyLfisit3lvuBQ72Lrr5g7csM+reAc97V94ak3CW+I2pNgu4zLuxST9qVnP9NbDQq4v+P8AzUa8dDpwBHAP8yqsRNRn4RlX7q+rPvPUGALcDvXGVRYfG88MYszuW+I3xqOpiIAfX2/97rZePB5711nsX6Cgi7bzX3lDVMlXdjCsctv9udvGZqq5V1QiwyNuXMQkX8jsAY5qY13D17k8GOkYtr2tYpqreSVnUskp2/3dV3/WMiSvr8RtT03TgLlX9b63l7wNXgpuhA2zey/0dCnDFtYxpcqzHYUwUVV2Lu49vbVNwd/paDBRTXR54d9vZIiIfejfO/gfwRqxjNaaxrDqnMcYkGRvqMcaYJGOJ3xhjkowlfmOMSTKW+I0xJslY4jfGmCRjid8YY5KMJX5jjEky/w/eyq4ZGswEcgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Myles Turner will have 13 points, 4 rebounds, 1 assists, 0 steals against OKC.\n"
]
}
],
"source": [
"stat_predictor(\"Myles Turner\", \"OKC\", 'Dec')"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXxU5b348c83CSFAEiAkYQ2yg5ZAQBYVZLEuSK22aqvWDUtF6y1q29tbe/1Vqdarbb1qqbbqveJaoK2KF1txqWARxAUQEWQJKkuQfQkJCYEk398fz5lkMswkk2Qmk2S+79frvGbOMuc8Z5L5Ps95nuc8R1QVY4wx8SMh1gkwxhjTtCzwG2NMnLHAb4wxccYCvzHGxBkL/MYYE2cs8BtjTJyxwG+MMXHGAr+JOBF5RkR+7b0/W0Q2NXA/j4vILyObutjy/26aExGZJCIFfvNbReTcWKbJRI8F/hgSkfEi8p6IFIrIQRFZLiKjvXXTRGRZPfbVR0RURJLC2HaaiFSISLGIHBGRNSJyUWPOJRRVfVdVB4eZphrnq6o3q+q90UhXwLFnicgLfvM9RWSjiMwWEYn28RtCRM70/naJfsv+J8Syx2OTyujxMioVkZcDlg/3lr/jt0xFZEDAdtO85d9toiQ3Kxb4Y0RE0oG/A38AMoCewK+AsiZKwgpVTQU6AU8BfxWRjCDprDMjaU1E5BRgKbBQVW/V5ntr+0ogERjpt+xs4KuAZRNw5xMTUf7/2QecJSJd/JZdD2wO47PXAwe917hjgT92BgGo6jxVrVDVUlV9U1XXisipwOPAmV6p/DCAiHxDRD72SnU7RGSW3/58P+7D3mfODCcRqloJzAHaAf18l/wi8nMR2Q087R37Iu/K4LB3lTLMtw8RGSEiq0WkSET+AqT4rQusQsgRkZdFZJ+IHBCRR2s53xrVIiJyo4hs8a6OFopID791KiI3i0i+iBwSkcfqW1oXkf7e9zhXVf/Db3lHEXlKRHaJyE4R+bWvVO2VHJeLyMPed/OFiJzlLd8hIntFJDC4ZIrIW9739S8vs/Ed6/fe546IyCoROTtYWlX1BPA+LrAjItlAMvCXgGWDvHNCRG4QkQ3ecb8QkZvC/F6GiMiXInKlN99DRF7y/oZfisitftvOEpEXReQFETkCTAvY1xkisjvgquTbIrLWez9GRFZ6579HRB6qJWnHgVcAX7oSge8Cf67jfE4BJgIzgAtEpGs430NrYoE/djYDFSLyrIhcKCKdfStUdQNwM16pXFU7eauOAtfhSunfAH4oIt/y1k3wXjt5n1kRTiK8EtkPgGIg31vcDXcVcgowQ0RG4jKHm4AuwBPAQhFpKyLJuB/f895n/gZcFuJYibirnG1AH9xVzvxaztf/s+cA9+N+2N29fcwP2OwiYDQw3NvuAu+zvb2g3LuWr6IfLkA+oaqB7QrPAuXAAGAEcD7uO/MZC6z1vpu5XrpGe9tfAzwqIql+218N3AtkAmuoGag+AvJw3+Vc4G8ikkJwS6n+u08AlnmT/7IvVdWX8e7FfUfpwA3Aw97fNiRv/ZvATFWdLyIJwKvAJ7i/39eB20XkAr+PXQK8iPs/rRGEVfV93P/xOX6Lv+edK8Dvgd+rajrQH/hrbekDnsP9JsD9vdfjrnpqcx2wUlVfAjbg/h7xRVVtitEEnAo8AxTgAstCoKu3bhqwrI7PPwI87L3vAyiQFMZxp3nHOwzsx5Ucz/XWTcKVpFL8tv8TcG/APjbhSk0TcD808Vv3HvBrv/0VeO/PxF2en5TGYOfrfTe+/TwF/NZvXSpwAujjzSsw3m/9X4E7wvw7zAKOeN9H/4B1XXHVb+38ll0FLPFLd77fulwvLV39lh0A8vzOaX7AeVQAOSHSdggYHmLdJG/fgguYN3r72+O37OlazvsV4LbAv5M3vxVX9VgATPZbPhbYHrCfX/iO432XS+v4vn8NzPHep+EyglO8+aXecTPr2If//1U+MBiX4V6Ny5Tf8dtWgQF+8/nA7X5p/6Qxv+OWOFmJP4ZUdYOqTlPVXsBQoAcumAclImNFZIl3iV2IKyVnNvDw76tqJ1XNVNUzVPWffuv2qeoxv/lTgJ96pebDXlVMjpfeHsBO9X5Fnm0hjpkDbFPV8gakt4f/flW1GBf0evpts9vvfQkuCIZrIe6qZrF/1Qvu3NsAu/zO/Qkg22+bPX7vS730BS7zT8uOgPM4iDs/ROSnXnVMoXesjoT+G7/v7XcoLgN+19vfDr9lVfX73pXl+15V2WFgai37Bvf/9Z6qLgn4PnoE/C/8Jy6DPOn8QpgLXCoibYFLgdWq6vvbTsdVT20UkY8kvE4HzwM/AiYDC2rbUETGAX2pvlqcC+SKSF4Yx2k1LPA3E6q6EVcaHOpbFGSzubgAlaOqHXH14lLL9g1OTsD8DuA+L6PwTe1VdR6wC+gZUJ8eqkplB9Bbgjf41ZX+r3BBBwAR6YCrWtlZx+fCpqo/wVVFLRYRX4ayA1fiz/Q793RV/VojDpXje+NVAWUAX3n1+T/HVVN1VlflVUj13zgwvcdwVUMXAd29/yGAd71lw6iu328LvAQ8iLsa6QS8Fmrfnptxf6+H/ZbtwFUf+f8vpKnqVP+k1XbyqvoZLhO/kJrVPKhqvqpehctYfwO86P2ta/M8cAvwmqqW1LHt9bhzXiOuDesDb/l1oT/S+ljgjxGvweynItLLm8/BVSG8722yB+jl1aH7pAEHVfWYiIzB/Wh89gGVuLrqSPsf4GbvikNEpIO4huY0YAWu2uhWEUkSkUuBMSH28yEuo3jA20eKVwKD4Ofrby5wg4jkeUHsv4APVHVrhM7R50fAYuBtEemqqrtwddz/LSLpIpIgIv1FZGIjjjFVXFfeZFxd/wequgP39y3Hqw4Tkbtw9fG1WQrcjqte81nmLdutqp97y5KBtt6+y0XkQlxbRW2KgCnABBF5wFv2IXBEXON/OxFJFJGh4nVDroe5wK24q5K/+RaKyDUikqWu08Fhb3FFbTtS1S9x1Y531rad11byXVyjbp7fNBO4OkSBpFWywB87Rbj60g9E5Cgu4K8DfuqtX4xrqNotIvu9ZbcA94hIEXAXfg1fXknnPmC5dwl+RqQSqqorcfXHj+LqnLfg9dZQ1eO4y/Vp3rorgJdD7KcC+Cau0XM7rv74Cm91sPP1/+zbwC9xpdZduIa/K8NJv9e4W1xH467vOIprxP4Q+KeIZOJKg8nAZ945vohrYG6oucDduCqe06luXHwDWIRr+N8GHKPuapN/4UrH/vdALPOWVVXzqGoRLtD+1TuH7+GuHmulqoeB84ALReRev79hHvAlro3of3FVUvUxD1dPv1hV/f/eU4D1IlKMa6O4MqDaMVQ6l6lqXY2638JVuz2nqrt9E679KNE7dlyQmlWzxhhjWjsr8RtjTJyxwN9KiRvnpjjI1Opu3zfG1I9V9RhjTJxpEa3YmZmZ2qdPn1gnwxhjWpRVq1btV9WswOUtIvD36dOHlStXxjoZxhjToohI0JsprY7fGGPijAV+Y4yJMxb4jTEmzrSIOn5jTOtx4sQJCgoKOHaszhtyTZhSUlLo1asXbdq0CWt7C/zGmCZVUFBAWloaffr0QZrnky1bFFXlwIEDFBQU0Ldv37A+Y1U9xpgmdezYMbp06WJBP0JEhC5dutTrCsoCvzGmyVnQj6z6fp+tOvAvXgy//z2UN+SxH8YY00q16sD/0ktw++0wYgS8806sU2OMaS4SExPJy8tj6NChfOc736GkpPbnt5x11ll17vORRx6pcz/NRasO/I8+CgsWQFERTJ4MV14JBQV1f84Y07q1a9eONWvWsG7dOpKTk3n88drHLnzvvfdqXQ8W+JsNEfjWt2DDBrj7bnjlFRg8GB54AMrKYp06Y0xzcPbZZ7NlyxYAHnroIYYOHcrQoUN55JHqx1+nprpHJr/zzjtMmjSJyy+/nCFDhnD11VejqsyePZuvvvqKyZMnM3nyZCoqKpg2bRpDhw4lNzeXhx9+OOixYyUuunO2awezZsF118FPfgK/+AXMmQOzZ8OUuHnmjjHNz+23w5o1kd1nXh74xexalZeXs2jRIqZMmcKqVat4+umn+eCDD1BVxo4dy8SJExkxYkSNz3z88cesX7+eHj16MG7cOJYvX86tt97KQw89xJIlS8jMzGTVqlXs3LmTdevWAXD48OFgh4+ZVl3iD9Svnyv1L1rk5i+80F0RfPllbNNljGlapaWl5OXlMWrUKHr37s306dNZtmwZ3/72t+nQoQOpqalceumlvPvuuyd9dsyYMfTq1YuEhATy8vLYunXrSdv069ePL774gpkzZ/L666+Tnl7Xo5ODi9ao+XFR4g80ZQp8+qkrFdx7L5x6Kvz8525q3z7WqTMmfoRbMo80Xx2/v3CfTdK2bduq94mJiZQH6TbYuXNnPvnkE9544w0ee+wx/vrXvzJnzpyw06cKBw7AV1/BgAGRj0txVeL317atC/SbNsGll8I998Bpp7nGYHs2jTHxZ8KECbzyyiuUlJRw9OhRFixYwNlnnx3259PS0igqKgJg//79VFZWctlll3HvvfeyevXqsPdz5Ah89hls3QphjsBQb3Eb+H169oS5c2HJEkhLc5nAlCkuQzDGxI+RI0cybdo0xowZw9ixY/nBD35wUv1+bWbMmMGFF17I5MmT2blzJ5MmTSIvL49p06Zx//331/n50lLYvNlNlZWuanrIkOjUQrSIRy+OGjVKm+JBLOXl8Mc/wl13QUmJa3j65S9dhmCMiYwNGzZw6qmnxjoZzcaJE7BzJ+zfD4mJ0L07ZGdDQj2L5cG+VxFZpaqjAreN+xK/v6QkuPVWl+Necw387neu++fcuVb9Y4yJrIoKV4f/6aeuPr9rV8jNhW7d6h/068sCfxDZ2a6754oV0KMHXH01TJoEa9fGOmXGmJZO1ZXu161zgb9jR/ja1yAnxxU+m4IF/lqccQZ88AE8+SSsX++Gfrj1VmhmXXKNMS2Ef8NtcrKrw+/fH1JSmjYdFvjrkJgIN97oqn9uvhkeewwGDXJXBJWVsU6dMaYlKC2F/HwXRyoqqhtuvRuCm5wF/jBlZLigv2qVC/zTp8OZZ8JHH8U6ZcaY5urECVe6X78eiouhVy8YOtTFk1iOTG2Bv57y8uDdd+H552H7dhg71l0R7NsX65QZY5qLwIbb7Oyma7gNRzNIQssj4nr9bNrkxv555hl3FfDoozb2vzEtgf+wzN/85jfrHEtn69atDB06tM79hmq47d27/g23s2bN4sEHH6zfh8Jkgb8R0tPhwQddb5/TT4eZM93dv3PmwPHjsU6dMSYU/2GZMzIyeOyxxxq9z8CG28GDY9NwGw4L/BFw6qnw1ltuALi0NFf/37+/G/2zhQzPbUzcOvPMM9m5c2fV/O9+9ztGjx7NsGHDuPvuu6uWl5eXc/311zNs2DAuv/zyqrH3X3vtbU47bQQjR+Zy553fp2fPMoYMgdzcPuzfvx+AlStXMmnSJMCV5L///e8zadIk+vXrx+zZs6uOcd999zF48GDOPfdcNvkNHzB79mxOO+00hg0bxpVXXtnoc47LQdqiQQQuuQQuvhjefBP+67/gttvg17+GH/8YbrnFXfYZY/zEeFzmiooK3n77baZPnw7Am2++SX5+Ph9++CGqysUXX8zSpUvp3bs3mzZt4qmnnmLcuHF8//vf5w9/+CPf+taPuOGGaTzxxNucccYgfvaz6/jLX/7E7bffXutxN27cyJIlSygqKmLw4MH88Ic/ZO3atcyfP5+PP/6Y8vJyRo4cyemnnw7AAw88wJdffknbtm0jMsSzlfgjTAQuuAD+9S/XCDxqFPznf8Ipp8D/+3+u/s8YE1u+YZm7dOnCwYMHOe+88wAX+N98801GjBjByJEj2bhxI/n5+QDk5OQwbtw4KipgypRrWLRoGatXb6JPn75cdNEgunWDadOuZ+nSpXUe/xvf+AZt27YlMzOT7Oxs9uzZw7vvvsu3v/1t2rdvT3p6OhdffHHV9sOGDePqq6/mhRdeICkCd3lFrcQvIjnAc0A3oBJ4UlV/LyIZwF+APsBW4Luqeiha6Yil8ePhtddg9Wq4/353FfDwwzBjBvz0p65rlzFxLUbjMvvq+AsLC7nooot47LHHuPXWW1FVfvGLX3DTTTfV2H7r1q2ICPv2uUbbAwcgOVno109p2zZ4w21SUhKV3s0+x44dq7Eu1NDOEqKP5z/+8Q+WLl3KwoULuffee1m/fn2jMoBolvjLgZ+q6qnAGcC/ichpwB3A26o6EHjbm2/VRo6Ev/3NNfx85zvwhz+4GzhmzADviW/GmBjo2LEjs2fP5sEHH+TEiRNccMEFzJkzh+LiYgB27tzJzp172bMHtm/fzquvriA5GT74YB4XXDCe4cOHsHXr1qpHNz7//PNMnDgRgD59+rBq1SoAXnrppTrTMmHCBBYsWEBpaSlFRUW8+uqrAFRWVrJjxw4mT57Mb3/7Ww4fPlyVvoaKWuBX1V2qutp7XwRsAHoClwDPeps9C3wrWmloboYMcV0/t2xxff+fe861/F99tevva4xpeiNGjGD48OHMnz+f888/n+9973uceeaZfO1ruXzzm5ezcmURe/ZA//6nsmzZs1xxxTCKig7ywx/+kJSUFJ5++mm+853vkJubS0JCAjfffDMAd999N7fddhtnn302iYmJdaZj5MiRXHHFFeTl5XHZZZdVPQugoqKCa665htzcXEaMGMGPf/xjOnXq1KhzbpJhmUWkD7AUGApsV9VOfusOqWrnIJ+ZAcwA6N279+nbtm2Lejqb2u7d8NBD8Kc/ubv6Lr4Y7rwTxoyJdcqMiZ7mPCyzKhQWwp49UFTkbrbq0sWNnNkcu2X6a1bDMotIKvAScLuqHgn3c6r6pKqOUtVRWVlZ0UtgDHXrBr/9LWzbBr/6FSxb5u4EPvdc92AYGwramKZRUQF797qhFbZsgWPH3EOahg1zHTOae9Cvr6gGfhFpgwv6f1bVl73Fe0Sku7e+O7A3mmloCTIy3MNftm1zN4StXw/nnANnnQWvvmoZgDHRcvw4FBS4mzC3b3cl/L593fAK3bs33TDJTS1qgV9c8/RTwAZVfchv1ULgeu/99cD/RSsNLU1qquvt8+WXrvpn925X/ZOXB/Pnu1KJMabxjh6FL75wbWu7d7sbLwcPdjdjdunSPMbTiaZont444FrgHBFZ401TgQeA80QkHzjPmzd+UlLcENCbN7sG4BMn4KqrXOPwU0/ZcBDGNIQqHDoEGzfChg3uuRq+wdMGDHDBP5YjZjalaPbqWaaqoqrDVDXPm15T1QOq+nVVHei9HoxWGlq6Nm3g2mvdgE8vveTu/P3BD2w4CGPqo6LCNdZ++il8/rkrSOXkwPDh7tWvS33caOUXNK1DQgJceqkb+//11909ALfd5hqdfvIT+PhjawcwJlBZGezYAZ984l6Tk12haehQ10snjB6WrZYF/hYkcDiICRPcw2FGjnSXq7/5jWuoMiZeqbpumFu2uBL+3r3QqZOrux8yBDp3rq7OWbBgASLCxo0b632cu+66i3/+858h17/yyit89tlnDT2NqLPA30KNH++qf3btgscfd//cd9zhxv3++tfdjWJHwu48a0zLVlnphlHYsME9J6O42HWXzs11V8gdOpz8mXnz5jF+/Hjmz59f7+Pdc889nHvuuSHXW+A3UZWRATfd5O4B2LIF7r7bdQu94Qb3j3/VVW68IHtAjGlNVF0nh6NHXeHn009db7jKSlf4yc11Y2ElJwf/fHFxMcuXL+epp56qCvy7du1iwoQJVQ9oeffdd6moqGDatGkMHTqU3NxcHn74YQCmTZvGiy++CMAdd9xRNWTyv//7v/Pee++xcOFCfvazn5GXl8fnn38e8WGVG6uV9lKNT/37u8B/113w/vvu8ZB/+YvrCpqd7TKBa691VUPx0nvBNG+3v347a3ZXD8usWnOqrAw97y8pyXWGSEqCvG55PDKl9sHfXnnlFaZMmcKgQYPIyMhg9erVLFmyhAsuuIA777yTiooKSkpKWLNmDTt37mTdunUAJw2JfPDgQRYsWMDGjRsREQ4fPkynTp24+OKLueiii7j88suByA+r3FhW4m+FRNyD4P/4R1caWrDAVQ396U9umOivfc2NFrp9e6xTauJBZaV7JvXatfDGG64aZtcu9/9XWOh6px096pYXF7v3JSVQWuoaaI8fdz1zVF1Hh6Qk1xMnJQXatXPVOO3a1e9mq3nz5lWVvK+88krmzZvH6NGjefrpp5k1axaffvopaWlp9OvXjy+++IKZM2fy+uuvk56eXmM/6enppKSk8IMf/ICXX36Z9u3bBz1epIdVbqwmGaunsUaNGqUrV66MdTJavEOH4K9/dVcCy5e7DGLiRHcVcPnl7lGSxoSrrMzd/LRrV/VrsPd79tSsaly0aAOZmaeSkOCqYnwl9VDvk5Iie4V64MABevXqRXZ2NiJCRUUFIsK2bdvYtWsX//jHP5g9ezY/+9nPuO666yguLuaNN97gmWeeISsrizlz5jBt2rSqEn1ZWRlvv/028+fPp6CggMWLF9dYD26gNd+wyq+99lqjh1UOpj5j9cQ+6zFNpnNn1x5w003ursUXXnCZwPTp8G//5p4gdu21cP757kdn4o9vkLJQwdx/2aEgT9EQcdWK3bu7NqZhw9xr9+7Vy9LT3VVnrLpTvvjii1x33XU88cQTVcsmTpzI0qVLGTduHDfeeCNHjx5l9erVTJ06leTkZC677DL69+/PtGnTauyruLiYkpISpk6dyhlnnMGAAQMASEtLo6ioCKg5rPL48eOZO3cuxcXFjR5hszEs8Mepfv1cW8AvfwkffOAygPnzXZtAVlZ1e8Dpp1t7QGtQXu66NoZTQg94ZgjgqlZ8wXvIEJg0qWYw973Pyqq7ymXDhtj2oZ83bx533FHzMSCXXXYZ06ZNo0OHDrRp04bU1FSee+45du7cyQ033FD1QJX777+/xueKioq45JJLOHbsGKpa1fh75ZVXcuONNzJ79mzmz5/P9OnTKSwsRFUjMqxyY1lVj6ly/DgsWuQygVdfdfNDhrgM4Oqr3Q1jpnkpKQkdwP3f790b/Ca/zp2DB3Dfe99rx46RKwA052GZWzKr6jENkpzsqnsuucRdxv/tby4TuPNON511lhs1dOJE9z5EO5ZpJFXXJ72uYL5rl7tZKVBiogvY3bq5IQnGjAkd1ONxuAJjJX4Thi+/dO0Bf/87rFrleli0aQOjR7tL/kmTXEYQ7CYZU+34cRew66o737PHjScTKDU1eAAPfN/cR5e0En901KfEb4Hf1EtRkesR9M47buiIjz5yGUFSkssIJk50GcG4cS5QtXaq7g7pcOrODxwIvo+srNoDue99a/k+LfBHh1X1mKhJS4MpU9wErt/18uUuE3jnHfcgmQcecNUNo0a5TGDiRHcfQVpaLFNePxUVru95ONUtpaUnfz45uTpoDxzoxlUKFsyzs60HlWl6FvhNo6SmuoHjLrjAzR89Cu+9V31F8NBDbvC4xER3x7Cvamj8+NjcN1BaGl4w37vX3XgUqFOn6qA9dmzoErr/YGDGNDcW+E1EdegA553nJnAZwYoV1VcEjzwCv/udq4MeObK6amj8eBdUG0IVDh6sO5jv3u36qAdKSHDD9PoC98iRwYN5t27uDlFjWjoL/CaqOnRwD4/3DWRYUuLGEfJlBH/4A/z3f7vgm5dXXTV09tnuamLPntobQn2NpcGeSta+fXXQzs11N6YFdlPs3h0yM+N7bPZ4dd999zF37lwSExNJSEjgiSeeYMWKFcyYMSPk0At1Cbxjt7mywG+aVPv2rkvoOee4+dJSdwPZO++46bHHXPWQSOiHy3TpUh20Bw8OXd0ST4/SM/WzYsUK/v73v7N69Wratm3L/v37OX78OFdccQXXXHNNgwN/S2GB38RUu3bV9f7g7hr94AP3oJmKipODedeuoYfaNSZcu3btIjMzk7bejQyZmZnMnj2br776ismTJ5OZmcmSJUt48803ufvuuykrK6N///48/fTTpKamcs899/Dqq69SWlrKWWedxRNPPIEElDLuuOMOFi5cSFJSEueffz4PPvhgLE41KOvOaYxpUjW7Hd4OrKlt8wbIA2oflrm4uJjx48dTUlLCueeeyxVXXMHEiRPp06cPK1euJDMzk/3793PppZeyaNEiOnTowG9+8xvKysq46667OHjwIBkZGQBce+21fPe73+Wb3/xmVVXPOeecw5lnnnnScM3RVJ/unM34Ng9jjImO1NRUVq1axZNPPklWVhZXXHEFzzzzTI1t3n//fT777DPGjRtHXl4ezz77LNu2bQNgyZIljB07ltzcXBYvXsz69etrfDbc4Zpjxap6jDExVHvJPJoSExOZNGkSkyZNIjc3l2effbbGelXlvPPOY968eTWWHzt2jFtuuYWVK1eSk5PDrFmzOBYwsl1SUhIffvhh1XDNjz76KIsXL476OYXLSvzGmLizadMm8vPzq+bXrFnDKaecUmM45TPOOIPly5ezZcsWAEpKSti8eXNVkM/MzKS4uLjqEYz+iouLKSwsZOrUqTzyyCOsWRPp6qzGsRK/MSbuFBcXM3PmTA4fPkxSUhIDBgzgySefZN68eVx44YV0796dJUuW8Mwzz3DVVVdRVlYGwK9//WsGDRrEjTfeSG5uLn369GH06NEn7T/UcM3NhTXuGmOalI3VEx3WuGuMMSYkC/zGGBNnLPAbY5pcS6hibknq+31a4DfGNKmUlBQOHDhgwT9CVJUDBw6QkpIS9mesV48xpkn16tWLgoIC9u3bF+uktBopKSn06tUr7O0t8BtjmlSbNm3o27dvrJMR16yqxxhj4owFfmOMiTMW+I0xJs5Y4DfGmDhjgd8YY+KMBX5jjIkzUQv8IjJHRPaKyDq/ZbNEZKeIrPGmqdE6vjHGmOCiWeJ/BpgSZPnDqprnTa9F8fjGGGOCiFrgV9WlwMFo7d8YY0zDxKKO/0cistarCuocaiMRmSEiK0Vkpd3abYwxkdPUgf9PQH8gD9gF/HeoDVX1SVUdpc3xsnEAABb+SURBVKqjsrKymip9xhjT6jVp4FfVPapaoaqVwP8AY5ry+MYYY5o48ItId7/ZbwPrQm1rjDEmOqI2OqeIzAMmAZkiUgDcDUwSkTxAga3ATdE6vjHGmOCiFvhV9aogi5+K1vGMMcaEx+7cNcaYOGOB3xhj4owFfmOMiTMW+I0xJs5Y4DfGmDhjgd8YY+KMBX5jjIkzFviNMSbOWOA3xpg4Y4HfGGPijAV+Y4yJMxb4jTEmzljgN8aYOGOB3xhj4owFfmOMiTNhBX4RuU1E0sV5SkRWi8j50U6cMcaYyAu3xP99VT0CnA9kATcAD0QtVcYYY6Im3MAv3utU4GlV/cRvmTHGmBYk3MC/SkTexAX+N0QkDaiMXrKMMcZES7jP3J0O5AFfqGqJiHTBVfcYY4xpYcIt8b+lqqtV9TCAqh4AHo5esowxxkRLrSV+EUkB2gOZItKZ6nr9dKBHlNNmjDEmCuqq6rkJuB0X5FdRHfiPAI9FMV3GGGOipNbAr6q/B34vIjNV9Q9NlCZjjDFRFFbjrqr+QUSGAqcBKX7Ln4tWwowxxkRHWIFfRO4GJuEC/2vAhcAywAK/Mca0MOH26rkc+DqwW1VvAIYDbaOWKmOMMVETbuAvVdVKoFxE0oG9QL/oJcsYY0y0hHsD10oR6QT8D653TzHwYdRSZYwxJmrCbdy9xXv7uIi8DqSr6troJcsYY0y0hDss89u+96q6VVXX+i8zxhjTctidu8YYE2fqe+euTxF2564xxrRIdVX1vAecBfy7qvYDfgWsA/4FzI1y2owxxkRBXYH/CaDMu3N3AnA/8CxQCDwZ7cQZY4yJvLqqehJV9aD3/grgSVV9CXhJRNZEN2nGGGOioa4Sf6KI+DKHrwOL/daFew+AMcaYZqSuwD8P+JeI/B9QCrwLICIDcNU9IYnIHBHZKyLr/JZliMhbIpLvvXZuZPqNMcbUU62BX1XvA34KPAOMV1X1+9zMOvb9DDAlYNkdwNuqOhB425s3xhjThOqsrlHV94Ms2xzG55aKSJ+AxZfgRvkE10j8DvDzuvZljDEmcsIdpC1SuqrqLgDvNTvUhiIyQ0RWisjKffv2NVkCjTGmtWvqwB82VX1SVUep6qisrKxYJ8cYY1qNpg78e0SkO4D3ureJj2+MMXGvqQP/QuB67/31wP818fGNMSbuRS3wi8g8YAUwWEQKRGQ68ABwnojkA+d588YYY5pQ1G7CUtWrQqz6erSOaYwxpm7NtnHXGGNMdFjgN8aYOGOB3xhj4owFfmOMiTMW+I0xJs5Y4DfGmDhjgd8YY+KMBX5jjIkzFviNMSbOWOA3xpg4Y4HfGGPijAV+Y4yJMxb4jTEmzljgN8aYOGOB3xhj4owFfmOMiTMW+I0xJs5Y4DfGmDhjgd8YY+KMBX5jjIkzFviNMSbOWOA3xpg4Y4HfGGPijAV+Y4yJMxb4jTEmzljgN8aYOGOB3xhj4owFfmOMiTMW+I0xJs5Y4DfGmDhjgd8YY+KMBX5jjIkzFviNMSbOJMU6AcYcKz/GkbIjFB4r5EjZkaoJICUppc4pOTEZEYnxWRjTcljgNw12ouKEC9hl1QHbF7xPWna8ZmD3X3+84nij0xIqU2iX1C6szKOhU7ukdiQlJFnGY1oUC/wGgNITpew9urfGtK9kX435A6UHagTv0vLSOveblJBEx7YdSW+bTscU99orvRentT3NLQtY51uW1jYNQThWfqz+U4V7LT1RWrVsf8n+kNufqDzRqO8uQRLql2Ek1iNjaVN3xpWUYD9jUz/2H9NKnag4wf6S/SGDeODy4uPFQffTLqkdXVO7ktU+i6z2WQzIGEB6cnqNYO0L3sGWpSSlNPvScEVlBWUVZWFlKv6ZSV0Zj/90pOxIyP1VaEWj0p8oiY2+amnM5xMTEiP0lzBNJSaBX0S2AkVABVCuqqNikY6WRlU5WHqQHUd2sKNwBzuO7AhZQj9YejDoPpISksjukE1W+yyyO2QzIGMA2R2yqybfct/UIblDE59l00tMSKR9Qnvat2kfk+OXV5Y37MomVOZUXnrS/KFjh0JmPIo2Kv1JCUlRzVjqmhLE+qjUVyxL/JNVdX8Mj9/sHD1+lB1HdrC9cHtVYN9euL1GoC85UVLjM4KQ0S6jKlDnZueGDOLZHbLplNKp2ZfA401SQhKpyamkJqc2+bFVtc6MJzAjqe9UfLz4pKo2/302VmpyKjnpOZzS6RR6p/d2rx17c0pH99ozvadVhwWwb6OJnKg4wc6inSGD+vbC7Rw6dqjGZwShe1p3ctJzyO2ay9SBU+ndsTc56TnkdMwhJz2HrA5Z9k9tGkxEaJPYhjaJbUhrm9bkx1dVjlccb1TG4rsK3la4jZVfrWR/Sc3yZIIk0DOt50kZQtVrp1NikunWqrAQli6FJUvgxz+GnJyI7l5UG3eZ16CDinwJHAIUeEJVnwyyzQxgBkDv3r1P37ZtW9Mmsp4KjxWSfzCfbYe3BQ3qu4t3n3RJndEuoyqI907vXRXMe3d073uk9SA5MTlGZ2RMy+R/5bzt8Db3Wlj9WnCkgPLK8hqf6ZzSudaMIbtDdnSrlI4ehWXLYPFiF+xXrYLKSmjbFl5+GaZObdBuRWRVsKr0WAX+Hqr6lYhkA28BM1V1aajtR40apStXrmy6BIZwpOwIWw5uIf9APvkHvelAPlsObmFfyb4a27ZLalcVwKuCuS/Ie+/jof7cmOamorKCXcW72F64PWTm4LuPxKdtYtuq327/zv0Z1GVQ1dSvc7/6F9BKS2HFChfkFy+GDz+E8nJo0wbGjoVzzoHJk+GMMyAlpcHn2qwCf40EiMwCilX1wVDbNDjwr10LRUUwapTLOcNQVFbkgvvB/KpXX6Dfe3RvjW17pvVkYJeBDMwYyICMAQzMGEjfzn3JSc8ho12G1aUb00IVHiusygiqMocj7jWwoJcgCfTt1JdBXQYxMGNgjUwhp2OOu1I4ftwFd1+gX7ECysogMdHFp8mT3TRuHHSIXIGw2QR+EekAJKhqkff+LeAeVX091GcaHPinT4c5c1zQHz0axo+H8eM5Ono4WyoP1AjqviC/u3h3jV30SOtRFdQHZgxkYBcX5Pt37m8ldmPi1KHSQ1XxY/OBzWw+uNm9Hthco2t0CkkMOJrCoIJSBu2tYNBBGJQxkEEjziVz4lRkwgRIT49aOptT4O8HLPBmk4C5qnpfbZ9paOD/fMuHfLLsJfI3ryB/70byK/eRnwG7AtqwurXLYmDWkOqSu18p3oK7MaZOlZXwySfo4sXsXraIzZveY3O7UjZ3gc1909icncTnbYo4odVtC51SOlVdGfhfKQzMGBixhvZQgb/Ju4Oo6hfA8KY41oMbn+bxbY9DW8geks3ATmdyQUVHBu4tZ+DG/Qz4IJ8BO46Sdnwf9EyG8T1gfBqMHwBZQ91lmDHGBFKFzz6rbox95x04dAgBug8aRPfJ1zHxnHNg0iTIzgbc/RrbDm+rujLwXSks3baUF9a+UGP33VO7V2UEM8fMJLdrbkSTH/M6/nA0tMS/af8mjp446u42bRvkcqqiAtatc63py5bBu+/Czp1uXVoanHVWVfUQY8ZA+9jc4GOMibGyMtdm+NFH1d0s93ptfn37VtfRT54MPXvWe/elJ0rZcnALmw9sJv9gfo3M4aXvvsTZp5zdoGQ3m6qehmiyXj2qsH17dUawbJnLGACSkuD0010mMG6cm7yc3BjTilRUwIYNLsj7prVrXQMtuMA+eXJ1z5s+faKaHFVtcEcRC/wNdeiQa4H3ZQQffuhyf4BBg6qvCMaPhwEDwHryGNNyqMLnn9cM8qtXQ4l3h3x6uivwjR5dPfXu3WJ+5xb4I6WszN1c4csIli+Hg964ONnZ7h8jLw+GD3ev/ftDgo0lYkzMqbqqXP8gv3IlHD7s1qekwIgRNYP8wIEt+vdrgT9aKith48bqjGD1ajdf4Y242KED5ObWzAxycyPaV9cYE8T+/dXB3Rfod3vdtZOS3O9w9GjXj370aPja19wNVK2IBf6mdOyYa/FfswY++aT6tbDQrRdx1UL+mcHw4a7usIVcQhrTrBQVuStx/9L81q1unQgMHlyzJD98OLRrF9MkNwUL/LHmazgOzAy++KJ6m4yMkzODU0+FZBuvx8SJyko4csQVkgoLXTWM733gvO/9tm2waZP7jYFrbPUP8iNHRvUmqebMAn9zdeSI6zHgnxl8+qm7agB36XnaaTUzg+HDoUuX2KbbmECqbrCx2oJ1XfNHjtR9nLZtoWNH6NTJvXbrVl1dM2oUZGVF/1xbCAv8LUl5OeTnu0zAP0PYtat6m169XAYwcCD06+cakfv3d6WdMMclMqaKqits1FW6rm3+yJHqtq1QkpJcsPZNvuAdbD7UOvv/DpsF/tZg796amcGnn8KWLdVdz8DVZ+bkVGcE/plC//7ux2NanxMn6l+6Dlx3vI6H3ou4KpPagnVd8+3bWztWE7LA31qpwp49ri/yF1+4V/9pb80RRcnICJ0p9OjRoruutVgVFeHXa4cK3qV1P/ie1NSGBWvffGqq/X+0MM1mrB4TYSKujrNbN3c3caCiIpchBGYKH34If/tbzUvzlBR3+3mwTKFvX7vEDkYViovrX7r2ny8qqvs4KSknB+PevcMP3unprprFGCzwt35padUNwoFOnHA9jYJdLSxZ4hrqfHwZTNeu7ka1wFf/91lZLSOTUHUl5YY2RPrqtSsraz9OmzYnB+NBg+pX8raeXSaCLPDHszZtqkv0gVRdNZF/prB9u1u2d6/rPrdnT3Xvo0CdOp2cIYTKMDp2bFi97/HjDW+I9L0/caL2YyQknFyvfcop9asmadfO6rVNs2KB3wQn4oJz165ulNJgfN339uypzhCCvd+wwQ1be+BA8P0kJwfPJCoraw/eoTIdf2lpNQNy166utB1uSTs11YK2aXUs8JuGE3GBMTU1+FVDoPJydxu9f+YQLLNYv969JiTUDMidO7vuquGWtNPT7ZkKxgRhgd80naSk6oZoY0zMWN8sY4yJMxb4jTEmzljgN8aYZqcM+BJYBhyK+N6tjt8YY5pUMbATKPAm//e+ef877hcBUyKaAgv8xhgTEYorndcW0AuAwiCfzQB6edNooKff/EkjLjSaBX5jjKnTMWCPN31F6OAeeG+JAN1wAXwQMJnqgN7T77VpHwpjgd8YE6eOUh3M65qCPSegDdXB+3TgEk4O6t287ZqXVh74FZfjGmNaP8XVnwcG7d1Blu3BBf5gOuMCdldgpPfqP/XABfVMWmr/mFYe+H8MPA10CTJl1LI8HcswjImGcqDUbyoJmA811bbdEaqDeajhqTOpDtxjOTmY+6ZsoPUPiNfKA/9EXCnggN+U770Ga2DxSeLkjKG2jML3vgWMSGlMDSeITPANd7vyBqZTcPXgwaY0YAAnB3FfqT2LVh/q6qmVfxvf9qZgynEt8AdCTAf93n8BfOS9L6vleB2ATrgrho7eq/8UzrI0Wurlo2ksBY4T/eDrP9XxqMSQEqgOvO05ORh3DrIs1LahJv9tk7Gr8Mhp5YG/Nkm4kkB9HsysuB+Uf6YQOBXiLj2PeO93+L0vDvM4aYSXYaThfhy+H0htr82vgan5U1xG35CA2tAg3dAn4iVRewDtQsODbrCpDRaIW644DvwNIbhSfQcgpwGfr8AF/yPUzByOBJkClxf4LQ/jiU0nSSR4hhBOpuF7TcH9y7SpZaprvW+bROofOBTXXS7awdc3HaPhgbgNoQNpGq4uuaFBN9i29lM24bP/liaViCupd2zkfiqpzkB8Aas+r4HLCnE9HwKXhzHefaPUlTkENgQ2Jj1tCR08O+LqgxtTFRE42XDQpvmywN8iJVBd5RNNlZxcwi7HNQiGmiK5vq7qi3ADdDus3cSYahb4TS0SqK4OMsa0FlYMMsaYOGOB3xhj4owFfmOMiTMW+I0xJs7EJPCLyBQR2SQiW0TkjlikwRhj4lWTB34RSQQeAy4ETgOuEpHTmjodxhgTr2JR4h8DbFHVL1T1ODAfN5C1McaYJhCLwN8TN4CNT4G3rAYRmSEiK0Vk5b59+5osccYY09rF4gauYAO0nDQgiqo+CTwJICL7RGRbtBMWIZnA/lgnIkpa87lB6z4/O7eWqzHnd0qwhbEI/AXUHOGsF+4hliGpan2G0IwpEVmpqpF/OnIz0JrPDVr3+dm5tVzROL9YVPV8BAwUkb4ikgxcCSyMQTqMMSYuNXmJX1XLReRHwBu4IQznqOr6pk6HMcbEq5gM0qaqrwGvxeLYTeDJWCcgilrzuUHrPj87t5Yr4ucnqg190IQxxpiWyIZsMMaYOGOB3xhj4owF/ggQkRwRWSIiG0RkvYjcFus0RZqIJIrIxyLy91inJdJEpJOIvCgiG72/4ZmxTlOkiMiPvf/JdSIyT0RSYp2mxhCROSKyV0TW+S3LEJG3RCTfe+0cyzQ2VIhz+533f7lWRBaISKdIHMsCf2SUAz9V1VOBM4B/a4XjD90GbIh1IqLk98DrqjoEGE4rOU8R6QncCoxS1aG4XnRXxjZVjfYMMCVg2R3A26o6EHjbm2+JnuHkc3sLGKqqw4DNwC8icSAL/BGgqrtUdbX3vggXOE4ahqKlEpFewDeA/411WiJNRNKBCcBTAKp6XFUPxzZVEZUEtBORJNwzNGu9WbK5U9WlwMGAxZcAz3rvnwW+1aSJipBg56aqb6pquTf7Pu6G10azwB9hItIHGAF8ENuURNQjwH/gnr7e2vQD9gFPe1VZ/ysiHWKdqEhQ1Z3Ag8B2YBdQqKpvxjZVUdFVVXeBK4QB2TFOT7R8H1gUiR1Z4I8gEUkFXgJuV9UjsU5PJIjIRcBeVV0V67RESRIwEviTqo4AjtJyqwpq8Oq6LwH6Aj2ADiJyTWxTZRpCRO7EVSn/ORL7s8AfISLSBhf0/6yqL8c6PRE0DrhYRLbihtA+R0ReiG2SIqoAKFBV3xXai7iMoDU4F/hSVfep6gngZeCsGKcpGvaISHcA73VvjNMTUSJyPXARcLVG6MYrC/wRICKCqyPeoKoPxTo9kaSqv1DVXqraB9cwuFhVW02pUVV3AztEZLC36OvAZzFMUiRtB84Qkfbe/+jXaSUN1wEWAtd7768H/i+GaYkoEZkC/By4WFVLIrVfC/yRMQ64FlcaXuNNU2OdKBO2mcCfRWQtkAf8V4zTExHeVcyLwGrgU9zvvUUPbyAi84AVwGARKRCR6cADwHkikg+c5823OCHO7VEgDXjLiyuPR+RYNmSDMcbEFyvxG2NMnLHAb4wxccYCvzHGxBkL/MYYE2cs8BtjTJyxwG8MICIqIs/7zSeJyL6Gjkbqjfh5i9/8pNY4sqlpmSzwG+McBYaKSDtv/jxgZyP21wm4pc6tjIkBC/zGVFuEG4UU4Cpgnm+FN+b7K9646O+LyDBv+SxvHPV3ROQLEbnV+8gDQH/vppvfectS/cb9/7N3N60xTc4CvzHV5gNXeg8rGUbNEVZ/BXzsjYv+n8BzfuuGABcAY4C7vXGb7gA+V9U8Vf2Zt90I4HbgNNyooOOieTLGhGKB3xiPqq4F+uBK+68FrB4PPO9ttxjoIiIdvXX/UNUyVd2PGyCsa4hDfKiqBapaCazxjmVMk0uKdQKMaWYW4sawnwR08VserFrGN95Jmd+yCkL/rsLdzpioshK/MTXNAe5R1U8Dli8FrgbXQwfYX8czF4pwg2sZ0+xYicMYP6pagHsGb6BZuKd0rQVKqB4GONR+DojIcu/B2YuAf0Q6rcY0lI3OaYwxccaqeowxJs5Y4DfGmDhjgd8YY+KMBX5jjIkzFviNMSbOWOA3xpg4Y4HfGGPizP8H/wOnR0/jD7AAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Kemba Walker will have 21 points, 5 rebounds, 4 assists, 2 steals against MIA.\n"
]
}
],
"source": [
"stat_predictor(\"Kemba Walker\", \"MIA\", 'Dec')"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXwV5d3//9eHBBIIIEIQEVAERaCAAUFBXMCFVkWtVYutG2rV1rta1Por7X230NZdW6nVqvQWxQ2quN5aWyziF+sOiBQFXEFZZJUl7Ek+vz+uSXISspwk5+QkOe/n4zGPnDMzZ+aak+Qz13yua64xd0dERNJHs1QXQERE6pcCv4hImlHgFxFJMwr8IiJpRoFfRCTNKPCLiKQZBX5JCjN72MxujF4fa2ZLa7md+83s14ktnUh6U+BPMTM7xszeNLPNZrbRzN4wsyHRsrFm9u8abKu7mbmZZcax7lgzKzSzfDPbYmYLzGx0XY6lMu7+ursfFmeZyhyvu//Y3X+fjHKV2/dEM3uslp/bE32P+Wa22MzOTkYZK9l/jf5GGisze83MflRu3ggzW2FmB8Z8//nR/8C2mPfHxnxmYrT8yPo/ioZDgT+FzKwt8CLwZ6A90AX4LbCrnorwlru3BtoBDwJPmln7CspZ7Ykkzf3N3VtH3+U44DEz61TRivouE8/dvyz+/qPfAcDhMfNeBzAzAy4ENgIXp6q8DYECf2r1AnD3ae5e6O473H2muy80sz7A/cCwqNayCcDMTjOz96Na+ldmNjFme3Oin5uizwyLpxDuXgRMAVoCPWJqUr8ws6+Bh6J9j46uDDZFVykDirdhZgPNbL6ZbTWzvwHZMctGmNmKmPfdzOwZM1tnZhvM7J4qjrckZRS9v9zMPo2ujl4wswNilrmZ/djMPjGzb8zs3uifvU7M7AAzezoq7xdmdk0V3+U/ga1Az9hjr+C7TMpxmNl4M/ss+j18ZGZnxSwbG11R3hX9Dj83s6Oj+V+Z2Vozuzhm/Swzu9PMvjSzNRbSbi2jZblm9mK0nY1m9rqZ7RVPos/cWW7e82Z2XfT6F2a2MirvUjM7MZ7jrKVjgQOAnwHnmVmLJO6rQVPgT62PgUIzm2pmp5jZvsUL3H0x8GOiWrm7t4sWbQMuItTSTwN+YmbfjZYdF/1sF33mrXgKEdVCfwTkA59Es/cnXIUcBFxhZoMIJ4crgQ7AA8ALUXBoATwHPBp95imgwnSHmWUQrnKWA90JVznTqzje2M+eANwCfB/oHG1jernVRgNDgMOj9b4dffbAKEgdGM93ErPPZsD/AR9EZT0RGGdm365gXTOz04AWwEcxi8p/l7U+jjh8Rghw+xCuHh8zs84xy48CFhJ+h09E+x0CHAJcANxjZsW15tsIlZO8aHkX4DfRsuuBFUBHoBPwK6Ci8V+eAMYUn7iiv/FRwHQzOwz4KTDE3dtEx7gszuOsjYsJv8u/Re+TktpsDBT4U8jdtwDHEP5h/gqsi2p/FaYJos+85u7/cfcid18ITAOOr2URhkY166+BHwBnufvmaFkRMMHdd7n7DuBy4AF3fye6OplKSEkNjabmwCR33+PuM4D3KtnnkYRa1w3uvs3dd7p7vDnq84Ep7j7f3XcBvyRcIXSPWedWd9/k7l8CswlBqzgd0C6aXxNDgI7u/jt33+3unxN+V+fFrPP96HvcBrwA3Ozum2KWl/8ua30c1XH3p9x9VfT38TfCiTw2n/2Fuz/k7oWEANgN+F1UtpnAbuCQKFBfDlzr7hvdfStwc8xx7yGctA6Kfueve8UDf71O+PsuzrOfQzi5rwIKgSygr5k1d/dl7v5ZPMdZU2bWCjgXeMLd9wAzSON0jwJ/irn7Yncf6+5dgX6EoDipsvXN7Cgzmx2lHTYTasm5tdz921EwzHX3oe7+r5hl69x9Z8z7g4Dro1rzpijQdYvKewCwstw//vJK9tkNWO7uBbUo7wGx23X3fGADoSZa7OuY19uB1tTNQcAB5Y77V4RabrEno++xFSHFc5GZXRmzvPx3mbTjMLOLrDQdt4nwNxX797Em5vWOaP/l57Um1ORbAfNitvWPaD7AHcCnwMwoZTS+ovJEfxPTCRULgB8Cj0fLPiW0iUwE1prZ9NiUVzkFhMpFrOaEE1A8zoq28ffo/ePAKWbWsfKPNF0K/A2Iuy8BHib8s0Lll84vAN3cfR9CXtyqWL/WxSn3/ivgpijAFU+t3H0asBroUi4PXVlK5SvgQKu4kbO68q8iBGIAzCyHkLJYWc3n6uIrQi059rjbuPupFa3s7suAl4HTY2eXWy0px2FmBxGuRn4KdIjSZYso/fuoifWEk8C3Yo57n+LGU3ff6u7Xu3sPwrFeV0V+fhpwTlS+o4Cnixe4+xPufgzh+3BCeqkiXxJSg7EOpvIKRnkXE05oX0ZtLU8RThw/qPJTTZQCfwqZWW8zu97MukbvuxH+EN+OVlkDdC3XCNUG2OjuOy10SfthzLJ1hLRCjyQU96/Aj6MrDjOzHAsNzW2Atwi1qWvMLNPMvkfZ9EKsdwknilujbWSb2fBoWUXHG+sJ4BIzyzOzLELq4Z0o2CZCs6g8xVNWVN4tUSNkSzPLMLN+FnW5LS/6XX4H+LCK/STrOHIIwXNdVJZLKK1E1EjU4P9X4C4z2y/aXpfitg0LDf3FKaEthLRNYSXbej8q0/8C/yxOg5nZYWZ2QvQd7CScaCrcBiEtdYmZHRn9/fUCrmXvtpG9mFlx28xoQsosj9B2chtpmu5R4E+trYQa0Dtmto0Q8BcRGs4AXiUEkK/NbH007yrgd2a2ldDQ9mTxxtx9O3AT8EZ0eT40UQV197mEnO89wDeEy/yx0bLdwPei998AY4BnKtlOIaGGeAihFrciWh8qPt7Yz84Cfk2oMa4mpFXOK79eRay0r3dVjbs/IASf4umzmPLmAV8QasL/S2g8LTYm2nY+oW3jDULDaoXqchyVbTLa7kfAHwgn4jVA/6gstfULwu/5bTPbAvwLKL4f49DofX60v7+4+2tVbGsacBLhpFcsC7iV8J1+DexHSKPtJeotNZ7QK2ozIWUzFZgcx3FcCCzw0GPu6+IJuBsYYGa1Ojk2ZlZxe4yINAYWupae4O7frXZlkYhq/CKNlJllA2cCc1NdFmlcFPibMAs3z+RXMN2f6rJJ3ZhZf0J6ZAsh/SYSN6V6RETSjGr8IiJpplEMGJWbm+vdu3dPdTFERBqVefPmrXf3vW5SaxSBv3v37sydq/YrEZGaMLMKb3BTqkdEJM0o8IuIpBkFfhGRNNMocvwi0nTs2bOHFStWsHPnzupXlrhkZ2fTtWtXmjcvP4BpxRT4RaRerVixgjZt2tC9e3es7g9IS3vuzoYNG1ixYgUHH3xwXJ9RqkdE6tXOnTvp0KGDgn6CmBkdOnSo0RWUAr+I1DsF/cSq6fepVI+ISANSUAA7d4Zp1y7IzYWsrMTuQ4FfRNJORkYG/fv3p6CggD59+jB16lRatWpV6fpHH300b775ZpXbnDRpEldccUWV2ylWWFga2GOD/M6dYVms1q0V+EVE6qxly5YsWLAAgPPPP5/777+f6667rtL1qwv6EAL/BRdcUBL4i4rKBvTYn3vKPSm4RYsQ3Nu3Dz+zs8PUogU0S0JCvknn+LduDV+yiEhljj32WD799FMA/vjHP9KvXz/69evHpEmTStZp3To86/61115jxIgRnHPOOfTu3Zsf/vB8tm93brvtblatWsUxx4zkqKNG8v77hZxxxlj69+/HkCH9ueOOu9i8OWxrn32gSxfo2RP69oWBA2HAADjsMDjoINh/f2jXLgT+ZAR9aOI1/v/5H7j7bujUCbp2rXzq0gVatkx1aUXSz7hxEFW8EyYvD2JiNgDuoQbuHiYIte89ewp48cWXOemk7zBnzjwefPAhXnnlHQoLnZNPPorDDz+efv0G4g5r1sDGjTB//vu8+OKH7LPPAVx44XCeeOINTjzxGv70pz/yl7/MpnPnXD7+eB5btqzkvfcWkZUFO3duokOHxB5nXTTpwH/mmaFhZMWKMH3+OcyZA998s/e6ublVnxy6doWcnPo/BpGGzj00SO7aBbt3h6mq1x06hP9Bd9ixozTtEftokLq8XrcunExig315O3bsYMCAPAAGDjyWo466jBkz7mPYsLNYtSr8ow8f/j1eeul12rQJgf+rr8K2+/Y9ktzcrmRlQV5eHnv2LKN372No0SLU3HNzYf/9e3DddZ8zYcLVnHbaaYwaNaq2X29SNOnAf8IJYSpv2zZYubL0hFA8ffVV+Pn227B+r0d9w777Vn9yaNs2+ccl6aWoKATHygJqvAE3UZ+raBs18fLL4ZgALr+88vWaNQOzMMW+ru59PJ/Lzm7Jm28uKLO8Y0cnMxN69w7rdewYpv79w/u8PNi8GXJzs+jbN5SxbdsMWrYsIMoEldh333354IMP+Oc//8m9997Lk08+yZQpU2r2RSVRkw78lcnJgV69wlSZnTurPjnMnx8u/cpr0wa6dav65NCuXfhDk4ahsDBxATAZnyvfEJgImZmlDYqxP8u/zskJFZ7K1qnsc1W9bt06/O9VF6iTySzUzGONGnUcY8eOZcKE8bg7L774LI8++mhJj5rMTMjIqHybbdq0YevWreTm5rJ+/XpatGjB2WefTc+ePRk7dmzSjqU20jLwxyM7OzS+9OxZ+Tq7d8OqVRWfGFasgEWLYPXqvS81c3Kqv3Lo0KFpnBzcQ2Ctz9pnTV+X7z6XCPEGw7ZtExdQ4103WT1F4rV4McTR47HeDRo0iLFjx3LkkUcC8KMf/YiBAwfG/fkrrriCU045hc6dOzNp0iQuueQSiqJLm1tuuSUpZa6tRvHM3cGDB3tjfRDLnj3w9deVnxxWrAgnj/LBJzu7+pNDx47h5FA+DdAQLv1jXyf6T8ws8cEwkZ9r3rxpnLSTZfHixfTp0yfVxWhyKvpezWyeuw8uv65q/EnWvHlI/XTrVvk6hYUhbVTZieHf/w5pp/KX/M2aleZKEykjI74A17Jl6JpWXwG1+GdGhgKrSF0o8DcAGRlwwAFhiq4y91JUFHoUxJ4cvv66NEgnqmZbHFhFpOlS4G8kmjUL9yN06gRHHJHq0ohIY9ak79wVEZG9KfCLiKQZBX4RkTSjwC8iaScjI4O8vDz69evH6aefzqZNm6pcf9myZfTr16+eShdMnDiRO++8MynbVuAXkbRTPCzzokWLaN++Pffee2+qi1SvFPhFJK0NGzaMlStXlry/4447GDJkCAMGDGDChAkl8wsKCrj44osZMGAA55xzDtu3bwdg1qxZDBw4kP79+3PppZeyKxoLvnv37qyPBv2aO3cuI0aMAEJN/tJLL2XEiBH06NGDu+++u2QfN910E4cddhgnnXQSS5cuLZl/991307dvXwYMGMB5551X52NWd04RSZ36Gpe5EoWFhcyaNYvLLrsMgJkzZ/LJJ5/w7rvv4u6cccYZzJkzhwMPPJClS5fy4IMPMnz4cC699FL+8pe/8NOf/pSxY8cya9YsevXqxUUXXcR9993HuHHjqtzvkiVLmD17Nlu3buWwww7jJz/5CQsXLmT69Om8//77FBQUMGjQII6I+m7feuutfPHFF2RlZVWbloqHavwiknZ27NhBXl4eHTp0YOPGjZx88slACPwzZ85k4MCBDBo0iCVLlvDJJ58A0K1bN4YPHw7ABRdcwL///W+WLl3KwQcfTK9oxMeLL76YOXPmVLv/0047jaysLHJzc9lvv/1Ys2YNr7/+OmeddRatWrWibdu2nHHGGSXrDxgwgPPPP5/HHnuMzMy619dV4xeR1ImzZp5oxTn+zZs3M3r0aO69916uueYa3J1f/vKXXHnllWXWX7ZsGVZunBAzo6qxzjIzM0sGadu5c2eZZVkxD9HNyMigoKCgZJsVeemll5gzZw4vvPACv//97/nwww/rdAJQjV9E0tY+++zD3XffzZ133smePXv49re/zZQpU8jPzwdg5cqVrF27FoAvv/ySt956C4Bp06ZxzDHH0Lt3b5YtW1by6MZHH32U448/Hgg5/nnz5gHw9NNPV1uW4447jmeffZYdO3awdetW/u///g+AoqIivvrqK0aOHMntt9/Opk2bSspXW6rxi0haGzhwIIcffjjTp0/nwgsvZPHixQwbNgwIz9p97LHHyMjIoE+fPkydOpUrr7ySQw89lJ/85CdkZ2fz0EMPce6551JQUMCQIUP48Y9/DMCECRO47LLLuPnmmznqqKOqLcegQYMYM2YMeXl5HHTQQRx77LFAaIe44IIL2Lx5M+7OtddeS7t27ep0zEkbltnMugGPAPsDRcBkd/+TmU0ELgfWRav+yt3/XtW2GvOwzCJSloZlTo6GMixzAXC9u883szbAPDN7JVp2l7sn584EERGpUtICv7uvBlZHr7ea2WKgS7L2JyIi8amXxl0z6w4MBN6JZv3UzBaa2RQz27eSz1xhZnPNbO66desqWkVERGoh6YHfzFoDTwPj3H0LcB/QE8gjXBH8oaLPuftkdx/s7oM7duyY7GKKiKSNpAZ+M2tOCPqPu/szAO6+xt0L3b0I+CtQyTOnREQkGZIW+C3cifAgsNjd/xgzv3PMamcBi5JVBhER2Vsya/zDgQuBE8xsQTSdCtxuZv8xs4XASODaJJZBRKRCzz77LGbGkiVLavzZ3/zmN/zrX/+qdPlzzz3HRx99VJfiJVUye/X8G6jo/uMq++yLiNSH4rtvp0+fzsSJE2v02d/97ndVLn/uuecYPXo0ffv2rUMJk0dDNohI2snPz+eNN97gwQcfZPr06QCsXr2a4447ruQBLa+//jqFhYWMHTuWfv360b9/f+666y4Axo4dy4wZMwAYP358yZDJP//5z3nzzTd54YUXuOGGG8jLy+Ozzz5L+LDKdaUhG0QkZcb9YxwLvk7ssMx5++cx6TtVD/723HPP8Z3vfIdevXrRvn175s+fz+zZs/n2t7/Nf//3f1NYWMj27dtZsGABK1euZNGi0BRZfkjkjRs38uyzz7JkyRLMjE2bNtGuXTvOOOMMRo8ezTnnnAMkfljlulKNX0TSzrRp00pq3ueddx7Tpk1jyJAhPPTQQ0ycOJH//Oc/tGnThh49evD5559z9dVX849//IO2bduW2U7btm3Jzs7mRz/6Ec888wytWrWqcH+JHla5rlJfAhFJW9XVzJNhw4YNvPrqqyxatAgzo7CwEDPj9ttvZ86cObz00ktceOGF3HDDDVx00UV88MEH/POf/+Tee+/lySefZMqUKSXbyszM5N1332XWrFlMnz6de+65h1dffXWvfSZ6WOW6UuAXkbQyY8YMLrroIh544IGSeccffzxz5sxh+PDhXH755Wzbto358+dz6qmn0qJFC84++2x69uzJ2LFjy2wrPz+f7du3c+qppzJ06FAOOeQQANq0acPWrVuBssMqH3PMMTzxxBPk5+fXeYTNulDgF5G0Mm3aNMaPH19m3tlnn83YsWPJycmhefPmtG7dmkceeYSVK1dyySWXlDxQ5ZZbbinzua1bt3LmmWeyc+dO3L2k8fe8887j8ssv5+6772b69OlcdtllCR1Wua6SNixzImlYZpGmQ8MyJ0dNhmVW466ISJpR4BcRSTMK/CIiaUaBX0QkzSjwi4ikGQV+EZE0o8AvImnppptu4lvf+hYDBgwgLy+Pd955h0mTJrF9+/ZabzN28LaGTDdwiUjaeeutt3jxxReZP38+WVlZrF+/nt27dzNmzBguuOCCSsfcaSpU4xeRtLN69Wpyc3PJysoCIDc3lxkzZrBq1SpGjhzJyJEjAZg5cybDhg1j0KBBnHvuueTn5wNhPP4hQ4bQr18/rrjiCiq6Ebb8cM0Nie7cFZF6VfYO03FAYodlhjyg6sHf8vPzOeaYY9i+fTsnnXQSY8aM4fjjj6d79+7MnTuX3Nxc1q9fz/e+9z1efvllcnJyuO2229i1axe/+c1v2LhxI+3btwfgwgsv5Pvf/z6nn346Y8eOZfTo0ZxwwgkMGzZsr+Gak0l37oqIVKF169bMmzePyZMn07FjR8aMGcPDDz9cZp23336bjz76iOHDh5OXl8fUqVNZvnw5ALNnz+aoo46if//+vPrqq3z44YdlPhvvcM2pohy/iKRQ/Q/LXCwjI4MRI0YwYsQI+vfvz9SpU8ssd3dOPvlkpk2bVmb+zp07ueqqq5g7dy7dunVj4sSJ7Ny5s8w68Q7XnCqq8YtI2lm6dCmffPJJyfsFCxZw0EEHlRlOeejQobzxxht8+umnAGzfvp2PP/64JMjn5uaSn59fYS+e/Px8Nm/ezKmnnsqkSZNYsCDR6ay6UY1fRNJOfn4+V199NZs2bSIzM5NDDjmEyZMnM23aNE455RQ6d+7M7Nmzefjhh/nBD37Arl27ALjxxhvp1asXl19+Of3796d79+4MGTJkr+1XNlxzQ6HGXRGpVxqWOTnUuCsiIpVS4BcRSTMK/CJS7xpDirkxqen3qcAvIvUqOzubDRs2KPgniLuzYcMGsrOz4/6MevWISL3q2rUrK1asYN26dakuSpORnZ1N165d414/aYHfzLoBjwD7A0XAZHf/k5m1B/4GdAeWAd9392+SVQ4RaViaN2/OwQcfnOpipLVkpnoKgOvdvQ8wFPgvM+sLjAdmufuhwKzovYiI1JOkBX53X+3u86PXW4HFQBfgTKD43uipwHeTVQYREdlbvTTumll3YCDwDtDJ3VdDODkA+9VHGUREJEh64Dez1sDTwDh331KDz11hZnPNbK4agUREEiepgd/MmhOC/uPu/kw0e42ZdY6WdwbWVvRZd5/s7oPdfXDHjh2TWUwRkbSStMBvZgY8CCx29z/GLHoBuDh6fTHwfLLKICIie0tmP/7hwIXAf8yseEzSXwG3Ak+a2WXAl8C5SSyDiIiUk7TA7+7/BqySxScma78iIlI1DdkgIpJmFPhFRNKMAr+ISJpR4BcRSTMK/CIiaUaBX0QkzSjwi4ikGQV+EZE0o8AvIpJmFPhFRNKMAr+ISJpR4BcRSTMK/CIiaUaBX0QkzSjwi4ikGQV+EZE0o8AvIpJmFPhFRNKMAr+ISJpR4BcRSTMK/CIiaUaBX0QkzcQV+M3sZ2bW1oIHzWy+mY1KduFERCTx4q3xX+ruW4BRQEfgEuDWpJVKRESSJt7Ab9HPU4GH3P2DmHkiItKIxBv455nZTELg/6eZtQGKklcsERFJlsw417sMyAM+d/ftZtaBkO4REZFGJt4a/yvuPt/dNwG4+wbgruQVS0REkqXKwG9m2WbWHsg1s33NrH00dQcOqOazU8xsrZktipk30cxWmtmCaDo1EQchIiLxqy7VcyUwjhDk51HaoLsFuLeazz4M3AM8Um7+Xe5+Z82KKSIiiVJl4Hf3PwF/MrOr3f3PNdmwu8+JrgxERKQBiatx193/bGb9gL5Adsz88rX5ePzUzC4C5gLXu/s3Fa1kZlcAVwAceOCBtdiNiIhUJN47dycAf46mkcDtwBm12N99QE9CD6HVwB8qW9HdJ7v7YHcf3LFjx1rsSkREKhJvr55zgBOBr939EuBwIKumO3P3Ne5e6O5FwF+BI2u6DRERqZt4A/+OKFgXmFlbYC3Qo6Y7M7POMW/PAhZVtq6IiCRHvDdwzTWzdoRa+jwgH3i3qg+Y2TRgBKEr6ApgAjDCzPIAB5YReg2JiEg9Mnev2QdCT5227r4wGQWqyODBg33u3Ln1tTsRkSbBzOa5++Dy8+Nt3J1V/Nrdl7n7wth5IiLSeFSZ6jGzbKAV0Z27lN7A1ZZq7twVEZGGqaZ37hbbSvV37oqISANUXarnTeBo4Ofu3gP4LaEnzv8Dnkhy2UREJAmqC/wPALuiO3ePA24BpgKbgcnJLpyIiCRedameDHffGL0eA0x296eBp81sQXKLJiIiyVBdjT/DzIpPDicCr8Ysi/ceABERaUCqC97TgP9nZuuBHcDrAGZ2CCHdIyIijUx1wzLfFPXX7wzM9NK7vZoBVye7cCIiknjVpmvc/e0K5n2cnOKIiEiyxTtIm4iINBEK/CIiaUaBX0QkzSjwi4ikGQV+EZE0o8AvIpJmFPhFRNKMAr+ISJpR4BcRSTMK/CIiaUaBX0QkzSjwi4ikGQV+EZE0o8AvIpJmFPgbs5LHI4iIxE+PT2yMVq2CG2+EBx+EjAxo0wbati071XReTg6YpfrIRKQeKPA3Jhs3wm23wZ//DHv2wIUXQm4ubNkSpq1bw88vvyw7b9eu6rfdrFnpSSCek0ZV67RokfzvQkRqTYG/Mdi2Df70J7j99hDMf/hD+O1voWfP+D6/a1fpSSH2BBE7VTRvyxZYsaLsOvGkl7Kyan/lETvl5IQTkogkVNICv5lNAUYDa929XzSvPfA3oDuwDPi+u3+TrDI0ert3w+TJIa2zZg2cfnp4PWBAzbaTlRWm3Ny6laeoCLZvj++kUX7eypWwZEnp+507q9+fGbRuXbcUVvGUlVW3YxdpQpJZ438YuAd4JGbeeGCWu99qZuOj979IYhkap8JCePxxmDABli2D44+HZ56Bo49ObbmaNQuBuHVrOOCAum1r9+5wcoj36iN23urVZecVFVW/vxYtan/SiH3funVoVxFpxJIW+N19jpl1Lzf7TGBE9Hoq8BoK/KXc4fnn4X/+Bz78EAYNgvvvh1Gjml7Da4sW0KFDmOrCvexVSE1OJF9/DR9/XDpvx4749tm6dWIa1LOzm97vVRqF+s7xd3L31QDuvtrM9qtsRTO7ArgC4MADD6yn4qXQ7Nnwy1/CO+9Ar17w5JNw9tnKcVfHLLQF5ORA585121ZBwd4niereF89bu7bsvMLC6veXmZmYtpA2bXQVIjXSYBt33X0yMBlg8ODBTbfD+ty58KtfwSuvQNeu8Ne/wtixIShI/crMhH33DVNduIc2jNq0haxbB59/Xvp+27b49tmqVWLaQlq21FVIGqjv6LLGzDpHtf3OwNp63n/DsXgx/PrX8PTTId3xhz/AVVeFy39p3MxCAG3ZEjp1qtu2Cgtr3xbyxRel8zZvDlc01WnWrO4prOLXzZvX7dglaeo78Nqy2E8AABGPSURBVL8AXAzcGv18vp73n3pffgkTJ8LUqaGWNmECXHdd+GcRKS8jA9q1C1NduIduvbVpC/nmG1i+vHRefn58+2zZUjcXNlDJ7M45jdCQm2tmK4AJhID/pJldBnwJnJus/Tc4a9fCzTfDffeFP+Kf/Szk9Dt2THXJJB2YhavJ7GzYr9KmtfgUFYXgX9M0VvmbC7dsCb27qlPTmwurmqebC4Hk9ur5QSWLTkzWPhukzZtDGueuu0Lvk0suCbX8bt1SXTKR2olNB9VV+ZsL4z2JbN5c95sLq+u6W9m8zp0bfacLtSAmy44d8Je/hFr+xo1w7rnw+9/DYYelumQiDUciby7ctq12bSErV4Y2t+J51d1c2K9fuJP+hBPqVuYUUuBPtIICeOihMKTCypWhD/7NN8MRR6S6ZCJNV3E6qE2bxN1cWNFJY80amDQJTjwRzjoL7rwTevRIzDHUIwX+RCkqgqeeCj11PvkEhg6Fxx6DESNSXTIRqYnqbi688kr44x9Dha5PH7j++tBe16ZN/ZazDhp3oqohcIeXX4bBg+G888Jl6/PPw5tvKuiLNEXZ2eHem6VLYcwYuOWWcNPl1KnxDR/SACjw18Ubb4RxdE49FTZtgkcfhQUL4Iwz1P1MpKnr0gUeeQTefhsOPDDceDl0KLz1VqpLVi0F/tr44AMYPRqOOSakde69N4w8ecEFunVeJN0cdVQI9o88EnoaHX10eFbGypWpLlmlFPhr4tNPw1j4AweG2v4tt4R5V12l/sEi6axZsxDsP/44pIGeeiqkf268Mf7B/+qRAn88Vq2Cn/wkNOQ8/zyMHx/GUxk/PtxVKCICYeTWm24K3UNPOSV09ujTB2bMaFDPyFbgr8rGjfCLX8Ahh4Tn2155JXz2WWjNr+tAXiLSdB18cAj2r74K++wT7uMZOTK0ATYACvwVyc8PZ+0ePeCOO8LwyEuWwD33wP77p7p0ItJYjBwJ8+aFoVoWLQrP2LjyyjAKawop8MfatSs8yLxnz/AwlOOPDw25jz7aKG/SEJEGIDMTfvzj0BHkZz+DKVPg0EPDMC7xjFWUBAr8EIa+nToVeveGa66Bvn1DP/znn4f+/VNdOhFpCvbdNwT7hQtDt8/rrgvx5e9/32vVZZuWMXneZM558hw+3fhpwouS3nfuusNzz4Xa/UcfhWEVHngATj5Z/fBFJDn69Ak3ff7973DttXDaaWwZfRKvjTuLmbs+YuZnM/lk4ycAdG3bleWblnNI+0MSWoT0Dfyvvhpus3733TBw2lNPhVy+Ar6IJFmhFzH38Fxm3v9DZr75CG/v/hcF//4XrTyTEQeP5L+G/Bejeo6id25vLAkxKf0C/3vvhX62//pXGBr5wQfhoov0qEMRSaplm5bxymevMPPzmcz6fBbf7PwGwxjUeRA37H86o2Z+xrAHXiKr3ftw49kwpFfSKqLpE+0WLw4pnWeeCUPA3nVXaHDRow5FJAm27NrCa8teY+ZnM/dK35zV+yxG9RzFiT1OJLdVNCT1GcBl78O4cSE23XdfGAk0CWN+Nf3Av3x5eNThI4+Em61++9uQV2tEI+mJSMNXWFTIvNXzSgL9WyveoqCogFbNWzGi+4j40jcDB8Jrr4V7AH7+89Ad9Kmn4JxzElrWJh34l9x8LTvuv4d+65vR/Nprw522dX3gg4hIZPmm5SHQV5S+OfoGRvUcxbCuw8jKzIp/o2bhhq/Ro0Otf/TohJe7SQf+u7IWMPmyArIzssjr/AaD3/0tQ7oMYcgBQ+jVoRcZzTSgmohUz93ZUbCDLbu28N7K90qC/ccbPgagS5sufLf3d0P65uAT6ZiTgGdpt2wZunwmgXkDGj+iMoMHD/a5c+fW+HPLNy3nrRVv8d7K95i7ei7zVs1j255tALRu0ZojOh/B4AMGM+SAIQzpMoSD2x2clBZ0Eak/uwt3s233NvJ355eZtu3Ze17+7vyw7p6955csi147pbGyOH0zqseopPa+qSszm+fug/ea35QDf3mFRYUsWb+Euavm8t6q93hv1Xss+HoBuwvD3XPtW7YvOREU/+zStkud9ysieyvyojKBtcrAHDtvTyXzo2lP0Z64y9AiowWtW7Qmp3kOrVu03msqPz+nRQ7f6vgtju52dM3SNymiwF+J3YW7WbR2UTgZrAwng0VrF1HohQB0bt257Mmgy5DSVniRNODu7CrcVWGQrSoAVxrIo/nb92yPuwyGVRyYW8QE5uaVzK8kkOe0yKFFRtMeTl2BvwZ27NnBgq8XlLkyWLp+acml3kH7HFTSVjD4gMEc0fkI9snep97KJ1KZgqKChATl8lORx/9IwZaZLasOwM3jC8yxU3ZmdoNMpTR0Cvx1tGXXFuavnl/SXvDeyvf4YtMXJcsP63BYmfaCvP3zaNW8VQpLLA1ZkRexY8+OymvRNQzMxQF+V+GuuMuQ2SyTNi3a1CgIV5oSibaR0zxHnSYaEAX+JNiwfUPJVUHxz1VbVwGQYRl8a79vMbjz4JKrg/6d+jf5S8umxt3ZXbi7RsE3Ng9dWa27uJNBPAyrMDjHm5eurPatv8WmT4G/nqzauqqkvaD4ymDDjg1AaEg6vNPhZdoL+uT2UQ0pQQqKCti2e1v8jYRx1q4LigriLkN2ZnbCAnPx1DKzpdIcUisK/Cni7izbtKxMe8G8VfPYunsrELqFDeo8qExPokPaH9Kk/9GL+0THE5RrkvbYWbAz7jJkWEaFQbYkADePPzAXB/KcFjlkNmvSt8ZII9OgAr+ZLQO2AoVAQUUFi9WYA39FiryIjzd8HK4KohPC+1+/XxK42mW344jOR5S5MujWtltKTgbFaY5ENRIWbye2T3R1KupSV76xMN6eHLFpjqZ8chWBhhn4B7v7+njWb2qBvyIFRQV8uPbDMu0FC9csLEkz7JezX2njcXRC6NS6U8nny/eJjjsfvaeS+btr3ic6KyMrob05clrk0Kp5K5qZnhckUhsK/I3QzoKdLFyzsEx7wUfrPiqpLXfK6RQC/p5tNeoT3cyaVZ7mqGVeOqd5Ds0zmifrqxCRWmhogf8L4BvAgQfcfXIF61wBXAFw4IEHHrF8+fL6LWQDlb87n/dXv897q8JJoNo7DyuoYWdlZCnNIZIGGlrgP8DdV5nZfsArwNXuPqey9dO1xi8iUheVBf6UJE/dfVX0cy3wLHBkKsohIpKO6j3wm1mOmbUpfg2MAhbVdzlERNJVKjoddwKejXLMmcAT7v6PFJRDRCQt1Xvgd/fPgcPre78iIhKog7SISJpR4BcRSTNNPPDfC5wL/BXQfQAiItDEH7YOO4C3gBnR+16ETkSjgBFAm9QUS0QkhZp4jf/nwFfAh8BdQE9gCnAG0B44DrgReJcwXpyISNPXxAM/gAF9gXHA34GNwKuEk8I24NfAUUBHlBYSkXTQxFM9FckCRkbTLcA6YBYwM5pi00InU5oWalvfBRURSYo0DPzldQTOiyYHFhOGD5oJPERoIM4EhhFOAicDgwE9NUtEGqc0SPXURHFa6GfAS5RNC20npIWGUjYttCwVBRURqTXV+KtUVVroFUrTQodStreQ0kIi0nAp8NdI+bTQEkrbBmLTQkMpPREoLSQiDYtSPbVmQB/KpoVmAzcQ7h+YQDgB5ALnAJNRWkhEGgLV+BMmi5DmGQHcDKynbG+hp6P1itNCJxNSSEoLiUhF9gALCBXM1gndsgJ/0uQCY6IpNi30CqVpoQxKewspLSSS3r4hjDTwBvAm4cbS7YT7j05J6J4U+OtFcVqoODW0i/ALLr4amAD8BmgHnEjpiaB7CsoqIsnnwGeEIF8c6D+MlmUAA4HLgaNJxgMKFfhToiZpoeKbyJQWEmm8dgHzCQG+ONCviZbtQ7jyPw8YTgj0OUktjQJ/g1A+LbSU0pPAVOAvlE0LFd9Epl+fSMO0ntK0zRvAe4TgD9CD8H88PJr6Ut/9bMzd63WHtTF48GCfO3duqouRIrspmxaaRzg5tAOOJdQWmkVTRszr6qaGsG4qy2HRJFJXDnxMaZB/g1B5A2gODKI0yB8N7F9vJTOzee4+uPx8VRkbvBbA8dF0E6VpoVcIf2C7gKI4psIqlqUro3GdrBrjCbYhlDnRJ/idwFzK5uc3RMvaE4L7xYRAPwRomeD9150Cf6MTmxZKFCf+k0RNTij1sW6q91+bdQsJXfXquwwN/+o+eRJ1QoFwP87u6PWhwOmU1ugPi1mv4VLgF0KNKAN1JW3qPJoaygmwMey/onXPJAT5YcB+NfoNNBQK/CJpo7hdo+HXSCW59BcgIpJmFPhFRNKMAr+ISJpR4BcRSTMK/CIiaUaBX0QkzSjwi4ikGQV+EZE00ygGaTOzdcDyVJcjTrmEAXWaoqZ8bNC0j0/H1njV5fgOcveO5Wc2isDfmJjZ3IpGw2sKmvKxQdM+Ph1b45WM41OqR0QkzSjwi4ikGQX+xJuc6gIkUVM+Nmjax6dja7wSfnzK8YuIpBnV+EVE0owCv4hImlHgTwAz62Zms81ssZl9aGY/S3WZEs3MMszsfTN7MdVlSTQza2dmM8xsSfQ7HJbqMiWKmV0b/U0uMrNpZpad6jLVhZlNMbO1ZrYoZl57M3vFzD6Jfu6byjLWViXHdkf0d7nQzJ41s3aJ2JcCf2IUANe7ex9gKPBfZtY3xWVKtJ8Bi1NdiCT5E/APd+8NHE4TOU4z6wJcAwx2936EZ2uel9pS1dnDwHfKzRsPzHL3Q4FZ0fvG6GH2PrZXgH7uPgD4GPhlInakwJ8A7r7a3edHr7cSAkeX1JYqccysK3Aa8L+pLkuimVlb4DjgQQB33+3um1JbqoTKBFqaWSbQCliV4vLUibvPATaWm30mMDV6PRX4br0WKkEqOjZ3n+nuBdHbt4GuidiXAn+CmVl3YCDwTmpLklCTgP+P8KTppqYHsA54KEpl/a+Z5aS6UIng7iuBO4EvgdXAZnefmdpSJUUnd18NoRJGY30CevUuBV5OxIYU+BPIzFoDTwPj3H1LqsuTCGY2Gljr7vNSXZYkyQQGAfe5+0BgG403VVBGlOs+EzgYOADIMbMLUlsqqQ0z+29CSvnxRGxPgT9BzKw5Ieg/7u7PpLo8CTQcOMPMlgHTgRPM7LHUFimhVgAr3L34Cm0G4UTQFJwEfOHu69x9D/AMcHSKy5QMa8ysM0D0c22Ky5NQZnYxMBo43xN045UCfwKYmRFyxIvd/Y+pLk8iufsv3b2ru3cnNAy+6u5Nptbo7l8DX5nZYdGsE4GPUlikRPoSGGpmraK/0RNpIg3X5bwAXBy9vhh4PoVlSSgz+w7wC+AMd9+eqO0q8CfGcOBCQm14QTSdmupCSdyuBh43s4VAHnBzisuTENFVzAxgPvAfwv97ox7ewMymAW8Bh5nZCjO7DLgVONnMPgFOjt43OpUc2z1AG+CVKK7cn5B9acgGEZH0ohq/iEiaUeAXEUkzCvwiImlGgV9EJM0o8IuIpBkFfhHAzNzMHo15n2lm62o7Gmk04udVMe9HNMWRTaVxUuAXCbYB/cysZfT+ZGBlHbbXDriq2rVEUkCBX6TUy4RRSAF+AEwrXhCN+f5cNC7622Y2IJo/MRpH/TUz+9zMrok+civQM7rp5o5oXuuYcf8fj+6mFal3CvwipaYD50UPKxlA2RFWfwu8H42L/ivgkZhlvYFvA0cCE6Jxm8YDn7l7nrvfEK03EBgH9CWMCjo8mQcjUhkFfpGIuy8EuhNq+38vt/gY4NFovVeBDma2T7TsJXff5e7rCQOEdapkF++6+wp3LwIWRPsSqXeZqS6ASAPzAmEM+xFAh5j5FaVlisc72RUzr5DK/6/iXU8kqVTjFylrCvA7d/9PuflzgPMh9NAB1lfzzIWthMG1RBoc1ThEYrj7CsIzeMubSHhK10JgO6XDAFe2nQ1m9kb04OyXgZcSXVaR2tLonCIiaUapHhGRNKPALyKSZhT4RUTSjAK/iEiaUeAXEUkzCvwiImlGgV9EJM38/7gPKongVuCjAAAAAElFTkSuQmCC\n",
"text/plain": [