Skip to content
Snippets Groups Projects
CS411_BackEnd.ipynb 176 KiB
Newer Older
CherylYang97's avatar
CherylYang97 committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import pandas as pd\n",
    "import pymysql\n",
    "import calendar\n",
    "from pymongo import MongoClient\n",
    "import matplotlib.pyplot as plt\n",
    "from sklearn.preprocessing import PolynomialFeatures\n",
    "from sklearn.linear_model import LinearRegression\n",
    "from operator import itemgetter"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [],
   "source": [
    "#User can insert their comments and ratings into our database, the avgrating in Player_Bio will also update\n",
    "def user_comments(PlayerName, UserName, ratings, Comments):\n",
    "    #insert new entry in User_ratings\n",
    "    conn = pymysql.connect(\n",
    "    port=int(3306),\n",
    "    user=\"root\",\n",
    "    passwd= \"12345678\",\n",
    "    database = \"NBA_DB\")\n",
    "    #Get correct ratingID\n",
    "    my_cursor = conn.cursor()\n",
    "    my_cursor.execute(\"SELECT MAX(ratingID) FROM User_ratings\")\n",
    "    my_result = my_cursor.fetchall()\n",
    "    if not my_result[0][0]:\n",
    "        new_ID = 1\n",
    "    else:\n",
    "        new_ID = int(my_result[0][0]) + 1\n",
    "    \n",
    "    my_cursor = conn.cursor()\n",
    "    sqlFormula = \"INSERT INTO User_ratings (ratings, PlayerName, UserName, UserComments, ratingID) VALUES (%s, %s, %s, %s, %s)\"\n",
    "    records = (ratings, PlayerName, UserName, Comments, new_ID)\n",
    "    my_cursor.execute(sqlFormula, records)\n",
    "    conn.commit()\n",
    "    \n",
    "    #update in Player_Bio\n",
    "    myplayer = PlayerName\n",
    "    formula_1 = \"SELECT Avg(ratings) as AvgRating FROM User_ratings WHERE PlayerName = %s\"\n",
    "    my_cursor.execute(formula_1, myplayer)\n",
    "    my_result = my_cursor.fetchall()\n",
    "    new_avgRatings = float(my_result[0][0])\n",
    "    my_cursor = conn.cursor()\n",
    "    formula_2 = \"UPDATE Player_Bio SET AvgRating = %s WHERE PlayerName = %s\"\n",
    "    my_cursor.execute(formula_2, (new_avgRatings, myplayer))\n",
    "    conn.commit()\n",
    "    conn.close()\n",
    "    print(\"Successfully commented, your commentID is %d.\" % new_ID)\n",
    "\n",
    "#query Player_Bio table by PlayerName\n",
    "def return_playerBio(PlayerName):\n",
    "    conn = pymysql.connect(\n",
    "    port=int(3306),\n",
    "    user=\"root\",\n",
    "    passwd= \"12345678\",\n",
    "    database = \"NBA_DB\")\n",
    "    my_cursor = conn.cursor()\n",
    "    formula_1 = \"SELECT * FROM Player_Bio WHERE PlayerName = '%s'\"\n",
    "    sqlformula = formula_1 % PlayerName\n",
    "    df = pd.read_sql(sqlformula, conn)\n",
    "    print(df.to_string())\n",
    "    conn.close()\n",
    "\n",
    "#新加的\n",
    "#query Player_Bio table by PlayerName and Season\n",
    "def return_playerBio_season(PlayerName, season):\n",
    "    conn = pymysql.connect(\n",
    "    port=int(3306),\n",
    "    user=\"root\",\n",
    "    passwd= \"12345678\",\n",
    "    database = \"NBA_DB\")\n",
    "    my_cursor = conn.cursor()\n",
    "    formula_1 = \"SELECT * FROM Player_Bio WHERE PlayerName = '%s' and Season = '%s'\"\n",
    "    sqlformula = formula_1 % (PlayerName,season)\n",
    "    df = pd.read_sql(sqlformula, conn)\n",
    "    print(df.to_string())\n",
    "    conn.close()\n",
    "\n",
    "#delete user rating and comments, then update average rating\n",
    "def delete_ratings(deleteID):\n",
    "    conn = pymysql.connect(\n",
    "    port=int(3306),\n",
    "    user=\"root\",\n",
    "    passwd= \"12345678\",\n",
    "    database = \"NBA_DB\")\n",
    "    \n",
    "    #get playerName before deleting\n",
    "    my_cursor = conn.cursor()\n",
    "    formula_1 = \"SELECT PlayerName FROM User_ratings WHERE ratingID = %s\"\n",
    "    my_cursor.execute(formula_1, deleteID)\n",
    "    my_result = my_cursor.fetchall()\n",
    "    Player_name = my_result[0][0]\n",
    "    \n",
    "    #delete record\n",
    "    my_cursor = conn.cursor()\n",
    "    sqlformula = \"DELETE FROM User_ratings WHERE ratingID = %s\"\n",
    "    my_cursor.execute(sqlformula, deleteID)\n",
    "    \n",
    "    #update avgrating of the player in Player_Bio\n",
    "    myplayer = Player_name\n",
    "    formula_1 = \"SELECT Avg(ratings) as AvgRating FROM User_ratings WHERE PlayerName = %s\"\n",
    "    my_cursor.execute(formula_1, myplayer)\n",
    "    my_result = my_cursor.fetchall()\n",
    "    new_avgRatings = 0\n",
    "    if my_result[0][0]:\n",
    "        new_avgRatings = float(my_result[0][0])\n",
    "    my_cursor = conn.cursor()\n",
    "    formula_2 = \"UPDATE Player_Bio SET AvgRating = %s WHERE PlayerName = %s\"\n",
    "    my_cursor.execute(formula_2, (new_avgRatings, myplayer))\n",
    "    conn.commit()\n",
    "    print(\"Successfully deleted, the average rating of %s has been adjusted.\" % myplayer)\n",
    "    conn.close()\n",
    "    \n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Successfully commented, your commentID is 3.\n"
     ]
    }
   ],
   "source": [
    "user_comments(\"James Harden\", \"Xiao Ming\", 3, \"I hate seeing him scoring 40 while is 2/16\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Successfully commented, your commentID is 4.\n"
     ]
    }
   ],
   "source": [
    "user_comments(\"James Harden\", \"Xiao Ming\", 4, \"I hate seeing him scoring 50 while shooting 3/16\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "     PlayerName TeamName  AvgPoints  AvgRebounds  AvgAssists  AvgSteals  AvgRating   Season      SeasonType\n",
      "0  James Harden      HOU       36.1          6.6         7.5        2.0        3.5  2018-19  Regular_Season\n",
      "1  James Harden      HOU       31.6          6.8         6.6        2.2        3.5  2018-19         Playoff\n"
     ]
    }
   ],
   "source": [
    "return_playerBio_season('James Harden', '2018-19')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Successfully deleted, the average rating of James Harden has been adjusted.\n",
      "     PlayerName TeamName  AvgPoints  AvgRebounds  AvgAssists  AvgSteals  AvgRating   Season      SeasonType\n",
      "0  James Harden      HOU       36.1          6.6         7.5        2.0        0.0  2018-19  Regular_Season\n",
      "1  James Harden      HOU       31.6          6.8         6.6        2.2        0.0  2018-19         Playoff\n"
     ]
    }
   ],
   "source": [
    "delete_ratings(4)\n",
    "return_playerBio_season('James Harden', '2018-19')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Successfully commented, your commentID is 1.\n"
     ]
    }
   ],
   "source": [
    "user_comments(\"James Harden\", \"Xiao Ming\", 3, \"I hate seeing him scoring 40 while is 2/16\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "# query player stats by playerName and Month, show results in past five years\n",
    "def query_stats_by_month(PlayerName, Month):\n",
    "    conn = pymysql.connect(\n",
    "    port=int(3306),\n",
    "    user=\"root\",\n",
    "    passwd= \"12345678\",\n",
    "    database = \"NBA_DB\")\n",
    "    \n",
    "    Months = {}\n",
    "    Months[\"Jan\"] = \"01\"\n",
    "    Months[\"Feb\"] = \"02\"\n",
    "    Months[\"Mar\"] = \"03\"\n",
    "    Months[\"Apr\"] = \"04\"\n",
    "    Months[\"May\"] = \"05\"\n",
    "    Months[\"Jun\"] = \"06\"\n",
    "    Months[\"Jul\"] = \"07\"\n",
    "    Months[\"Aug\"] = \"08\"\n",
    "    Months[\"Sep\"] = \"09\"\n",
    "    Months[\"Oct\"] = \"10\"\n",
    "    Months[\"Nov\"] = \"11\"\n",
    "    Months[\"Dec\"] = \"12\"\n",
    "\n",
    "    my_cursor = conn.cursor()\n",
    "    my_month = Months[Month]\n",
    "    # “有改动”\n",
    "    formula_1 = \"SELECT PlayerName, Avg(Points) as Points, Avg(Rebounds) as Rebounds, Avg(Assists) as Assists, Avg(Steals) as Steals, count(*) as Game_Played, Season FROM Game_Stats WHERE PlayerName = '%s' and CAST(Date AS CHAR) LIKE '____%s__' group by Season\"\n",
    "    sqlformula = formula_1 % (PlayerName, my_month)\n",
    "    df = pd.read_sql(sqlformula, conn)\n",
    "    print(df.to_string())\n",
    "    conn.close()\n",
    "\n",
    "def query_stats_by_opponent(PlayerName, Opponent):\n",
    "    conn = pymysql.connect(\n",
    "    port=int(3306),\n",
    "    user=\"root\",\n",
    "    passwd= \"12345678\",\n",
    "    database = \"NBA_DB\")\n",
    "\n",
    "    my_cursor = conn.cursor()\n",
    "    #有改动\n",
    "    formula_1 = \"SELECT PlayerName, OpponentTeam, Avg(Points) as Points, Avg(Rebounds) as Rebounds, Avg(Assists) as Assists, Avg(Steals) as Steals, count(*) as Game_Played, Season FROM Game_Stats WHERE PlayerName = '%s' and OpponentTeam = '%s' group by Season\"\n",
    "    sqlformula = formula_1 % (PlayerName, Opponent)\n",
    "    df = pd.read_sql(sqlformula, conn)\n",
    "    print(df.to_string())\n",
    "    conn.close()\n",
    "    \n",
    "#return a player's performance against each opponent team in a given season\n",
    "#有改动\n",
    "def query_all_results_groupby_opponent(PlayerName, season):\n",
    "    conn = pymysql.connect(\n",
    "    port=int(3306),\n",
    "    user=\"root\",\n",
    "    passwd= \"12345678\",\n",
    "    database = \"NBA_DB\")\n",
    "\n",
    "    my_cursor = conn.cursor()\n",
    "    formula_1 = \"SELECT PlayerName, OpponentTeam, Avg(Points) as Points, Avg(Rebounds) as Rebounds, Avg(Assists) as Assists, Avg(Steals) as Steals, count(*) as Game_Played, Season FROM Game_Stats WHERE PlayerName = '%s' and Season = '%s' Group By OpponentTeam\"\n",
    "    sqlformula = formula_1 % (PlayerName,season)\n",
    "    df = pd.read_sql(sqlformula, conn)\n",
    "    print(df.to_string())\n",
    "    conn.close()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "     PlayerName OpponentTeam   Points  Rebounds  Assists  Steals  Game_Played   Season\n",
      "0  LeBron James          GSW  17.0000   13.0000   5.0000  1.0000            1  2018-19\n",
      "1  LeBron James          GSW  31.3333    8.0000   8.6667  1.3333            6  2017-18\n",
      "2  LeBron James          GSW  31.2857   11.5714   8.0000  1.4286            7  2016-17\n",
      "3  LeBron James          GSW  27.6667   10.3333   7.6667  2.2222            9  2015-16\n",
      "4  LeBron James          GSW  36.7143   13.0000   8.2857  1.5714            7  2014-15\n"
     ]
    }
   ],
   "source": [
    "query_stats_by_opponent('LeBron James','GSW')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "      PlayerName OpponentTeam   Points  Rebounds  Assists  Steals  Game_Played   Season\n",
      "0   LeBron James          CHA  25.5000    7.5000  10.0000  0.5000            2  2018-19\n",
      "1   LeBron James          WAS  18.0000    6.5000   8.5000  0.5000            2  2018-19\n",
      "2   LeBron James          SAC  27.0000    9.0000   6.5000  1.5000            2  2018-19\n",
      "3   LeBron James          BKN  30.5000   11.0000  11.0000  1.0000            2  2018-19\n",
      "4   LeBron James          NYK  33.0000    6.0000   8.0000  0.0000            1  2018-19\n",
      "5   LeBron James          TOR  23.5000    3.0000   6.0000  0.5000            2  2018-19\n",
      "6   LeBron James          CHI  36.0000   10.0000   4.0000  2.0000            1  2018-19\n",
      "7   LeBron James          BOS  29.0000   11.0000  12.0000  1.5000            2  2018-19\n",
      "8   LeBron James          DEN  24.3333    8.3333   6.6667  2.0000            3  2018-19\n",
      "9   LeBron James          LAC  25.5000   11.0000   7.5000  1.0000            2  2018-19\n",
      "10  LeBron James          PHX  22.6667    7.3333  11.3333  1.0000            3  2018-19\n",
      "11  LeBron James          MIL  31.0000    7.0000  10.0000  1.0000            1  2018-19\n",
      "12  LeBron James          NOP  27.3333    8.3333  12.0000  2.6667            3  2018-19\n",
      "13  LeBron James          MEM  22.0000   11.3333   9.0000  2.0000            3  2018-19\n",
      "14  LeBron James          HOU  27.3333    7.3333   5.0000  1.6667            3  2018-19\n",
      "15  LeBron James          ATL  27.0000    9.0000  10.0000  2.5000            2  2018-19\n",
      "16  LeBron James          PHI  18.0000   10.0000   9.0000  0.0000            1  2018-19\n",
      "17  LeBron James          IND  28.0000    8.0000   8.0000  1.5000            2  2018-19\n",
      "18  LeBron James          GSW  17.0000   13.0000   5.0000  1.0000            1  2018-19\n",
      "19  LeBron James          MIA  39.5000    8.5000   7.5000  1.5000            2  2018-19\n",
      "20  LeBron James          SAS  36.0000    8.0000   8.7500  1.7500            4  2018-19\n",
      "21  LeBron James          DAL  28.5000    5.0000   5.0000  1.5000            2  2018-19\n",
      "22  LeBron James          ORL  23.0000    4.0000   7.0000  0.0000            2  2018-19\n",
      "23  LeBron James          UTA  22.0000   10.0000   7.0000  2.0000            1  2018-19\n",
      "24  LeBron James          CLE  32.0000   14.0000   7.0000  0.0000            1  2018-19\n",
      "25  LeBron James          POR  32.6667    9.0000   7.3333  0.6667            3  2018-19\n",
      "26  LeBron James          MIN  26.5000   10.5000   8.5000  1.0000            2  2018-19\n"
     ]
    }
   ],
   "source": [
    "query_all_results_groupby_opponent(\"LeBron James\", \"2018-19\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "     PlayerName   Points  Rebounds  Assists  Steals  Game_Played   Season\n",
      "0  James Harden  43.5714    8.7143   7.5714  2.0714           14  2018-19\n",
      "1  James Harden  27.8571    5.1429   9.0000  2.1429            7  2017-18\n",
      "2  James Harden  28.2941    8.1765  10.4118  1.5294           17  2016-17\n",
      "3  James Harden  26.8125    6.7500   7.2500  1.1875           16  2015-16\n",
      "4  James Harden  25.8235    4.7059   6.7059  2.1765           17  2014-15\n"
     ]
    }
   ],
   "source": [
    "query_stats_by_month(\"James Harden\", 'Jan')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Who is the best clutch free throw shooter in team?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "# More complicated query functions\n",
    "# Find best free throw shooter, who has played more than 10 min in clutch moments\n",
    "# for selected team and SeasonType, decision made by previous season:\n",
    "def find_best_clutch_FT_Shooter(TeamName, SeasonType):\n",
    "    conn = pymysql.connect(\n",
    "    port=int(3306),\n",
    "    user=\"root\",\n",
    "    passwd= \"12345678\",\n",
    "    database = \"NBA_DB\")\n",
    "    my_cursor = conn.cursor()\n",
    "\n",
    "    my_cursor.execute('''Create view Jointed_Table as \n",
    "     select * from (select * from Player_Clutch_Stats where Season = '2018-19') as short_clutch \n",
    "     natural join (select distinct PlayerName, TeamName from Player_Bio where Season = '2018-19') as short_bio;''')\n",
    "\n",
    "    my_cursor.execute('''Create view BestFT_Shooters as\n",
    "    Select distinct PlayerName, Free_Throw_P, J.TeamName, J.Minutes_Played, J.SeasonType from Jointed_Table J, \n",
    "    (Select max(Free_Throw_P) as maxFT, TeamName, SeasonType from Jointed_Table where Minutes_Played > 10 group by TeamName, SeasonType) as bestFT\n",
    "    where J.Free_Throw_P = bestFT.maxFT and J.TeamName = bestFT.TeamName and J.Minutes_Played > 10;''')\n",
    "\n",
    "    formula_1 = \"select PlayerName, Free_Throw_P, TeamName, Minutes_Played, SeasonType from BestFT_Shooters where TeamName = '%s' and SeasonType = '%s'\"\n",
    "    sqlformula = formula_1 % (TeamName, SeasonType)\n",
    "    df = pd.read_sql(sqlformula, conn)\n",
    "    print(df.to_string())\n",
    "    my_cursor.execute(\"Drop view Jointed_Table;\")\n",
    "    my_cursor.execute(\"Drop view BestFT_Shooters;\")\n",
    "    conn.close()\n",
    "\n",
    "# More complicated query functions\n",
    "# Find best Three Pointer shooter, who has played more than 10 min in clutch moments\n",
    "# for selected team and SeasonType, decision made by previous season:\n",
    "def find_best_clutch_3pointer_Shooter(TeamName, SeasonType):\n",
    "    conn = pymysql.connect(\n",
    "    port=int(3306),\n",
    "    user=\"root\",\n",
    "    passwd= \"12345678\",\n",
    "    database = \"NBA_DB\")\n",
    "    my_cursor = conn.cursor()\n",
    "\n",
    "    my_cursor.execute('''Create view Jointed_Table as \n",
    "     select * from (select * from Player_Clutch_Stats where Season = '2018-19') as short_clutch \n",
    "     natural join (select distinct PlayerName, TeamName from Player_Bio where Season = '2018-19') as short_bio;''')\n",
    "\n",
    "    my_cursor.execute('''Create view BestFT_Shooters as\n",
    "    Select distinct PlayerName, 3pointer_P, J.TeamName, J.Minutes_Played, J.SeasonType from Jointed_Table J, \n",
    "    (Select max(3pointer_P) as maxFT, TeamName, SeasonType from Jointed_Table where Minutes_Played > 10 group by TeamName, SeasonType) as bestFT\n",
    "    where J.3pointer_P = bestFT.maxFT and J.TeamName = bestFT.TeamName and J.Minutes_Played > 10;''')\n",
    "\n",
    "    formula_1 = \"select PlayerName, 3pointer_P, TeamName, Minutes_Played, SeasonType from BestFT_Shooters where TeamName = '%s' and SeasonType = '%s'\"\n",
    "    sqlformula = formula_1 % (TeamName, SeasonType)\n",
    "    df = pd.read_sql(sqlformula, conn)\n",
    "    print(df.to_string())\n",
    "    my_cursor.execute(\"Drop view Jointed_Table;\")\n",
    "    my_cursor.execute(\"Drop view BestFT_Shooters;\")\n",
    "    conn.close()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "       PlayerName  3pointer_P TeamName  Minutes_Played      SeasonType\n",
      "0  Draymond Green        50.0      GSW             101  Regular_Season\n"
     ]
    }
   ],
   "source": [
    "find_best_clutch_3pointer_Shooter('GSW','Regular_Season')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Just WoW! So suprising!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "      PlayerName  Free_Throw_P TeamName  Minutes_Played      SeasonType\n",
      "0  Klay Thompson         100.0      GSW             125  Regular_Season\n"
     ]
    }
   ],
   "source": [
    "find_best_clutch_FT_Shooter('GSW','Regular_Season')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "     PlayerName  Free_Throw_P TeamName  Minutes_Played SeasonType\n",
      "0  Jamal Murray         100.0      DEN              43    Playoff\n",
      "1   Gary Harris         100.0      DEN              38    Playoff\n",
      "2  Paul Millsap         100.0      DEN              43    Playoff\n"
     ]
    }
   ],
   "source": [
    "find_best_clutch_FT_Shooter('DEN','Playoff')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Which team likes 3 pointer most?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 53,
   "metadata": {},
   "outputs": [],
   "source": [
    "def find_team_3PTA_ranking(TeamName, Season):\n",
    "    conn = pymysql.connect(\n",
    "    port=int(3306),\n",
    "    user=\"root\",\n",
    "    passwd= \"12345678\",\n",
    "    database = \"NBA_DB\")\n",
    "    \n",
    "    nbaTeams = {}\n",
    "    nbaTeams['Atlanta Hawks'] = 'ATL'\n",
    "    nbaTeams['Brooklyn Nets'] = 'BKN'\n",
    "    nbaTeams['Boston Celtics'] = 'BOS'\n",
    "    nbaTeams['Charlotte Hornets'] = 'CHA'\n",
    "    nbaTeams['Chicago Bulls'] = 'CHI'\n",
    "    nbaTeams['Cleveland Cavaliers'] = 'CLE'\n",
    "    nbaTeams['Dallas Mavericks'] = 'DAL'\n",
    "    nbaTeams['Denver Nuggets'] = 'DEN'\n",
    "    nbaTeams['Detroit Pistons'] = 'DET'\n",
    "    nbaTeams['Golden State Warriors'] = 'GSW'\n",
    "    nbaTeams['Houston Rockets'] = 'HOU'\n",
    "    nbaTeams['Indiana Pacers'] = 'IND'\n",
    "    nbaTeams['LA Clippers'] = 'LAC'\n",
    "    nbaTeams['Los Angeles Lakers'] = 'LAL'\n",
    "    nbaTeams['Memphis Grizzlies'] = 'MEM'\n",
    "    nbaTeams['Miami Heat'] = 'MIA'\n",
    "    nbaTeams['Milwaukee Bucks'] = 'MIL'\n",
    "    nbaTeams['Minnesota Timberwolves'] = 'MIN'\n",
    "    nbaTeams['New Orleans Pelicans'] = 'NOP'\n",
    "    nbaTeams['New York Knicks'] = 'NYK'\n",
    "    nbaTeams['Oklahoma City Thunder'] = 'OKC'\n",
    "    nbaTeams['Orlando Magic'] = 'ORL'\n",
    "    nbaTeams['Philadelphia 76ers'] = 'PHI'\n",
    "    nbaTeams['Phoenix Suns'] = 'PHX'\n",
    "    nbaTeams['Portland Trail Blazers'] = 'POR'\n",
    "    nbaTeams['Sacramento Kings'] = 'SAC'\n",
    "    nbaTeams['San Antonio Spurs'] = 'SAS'\n",
    "    nbaTeams['Toronto Raptors'] = 'TOR'\n",
    "    nbaTeams['Utah Jazz'] = 'UTA'\n",
    "    nbaTeams['Washington Wizards'] = 'WAS'\n",
    "    nbaTeams_2 = {v: k for k, v in nbaTeams.items()}\n",
    "    \n",
    "    my_cursor = conn.cursor()\n",
    "    sqlformula1 = '''Create view Jointed_Table as \n",
    "    select * from (select * from Shot_Selection where Season = '%s') as \n",
    "    short_shot natural join (select PlayerName, TeamName from Player_Bio where season = '%s') as short_bio;''' % (Season,Season)\n",
    "    \n",
    "    my_cursor.execute(sqlformula1)\n",
    "\n",
    "    my_cursor.execute('''Create view Team_Shooting as\n",
    "    select TeamName, sum(3FGA) as Total_3pt_attempt, sum(2FGA) as Total_2pt_attempt from Jointed_Table group by TeamName;''')\n",
    "\n",
    "    \n",
    "    sqlformula = \"SELECT Total_3pt_attempt FROM Team_Shooting where TeamName = %s\"\n",
    "    my_cursor.execute(sqlformula, TeamName)\n",
    "    my_result = my_cursor.fetchall()\n",
    "    Three_ptA = int(my_result[0][0])\n",
    "    \n",
    "    sqlformula = '''select count(*)+1 from Team_Shooting \n",
    "    where Total_3pt_attempt > %s;'''\n",
    "\n",
    "    my_cursor.execute(sqlformula, Three_ptA)\n",
    "    my_result = my_cursor.fetchall()\n",
    "    ranking = my_result[0][0]\n",
    "    \n",
    "    print(\"The team %s attempted %s three pointers during %s season, which ranked No.%d in the league.\" % (nbaTeams_2[TeamName], Three_ptA, Season, ranking))\n",
    "    \n",
    "    my_cursor.execute(\"drop view Jointed_Table;\")\n",
    "    my_cursor.execute(\"drop view Team_Shooting\")\n",
    "    conn.close()\n",
    "\n",
    "def find_team_2PTA_ranking(TeamName, Season):\n",
    "    conn = pymysql.connect(\n",
    "    port=int(3306),\n",
    "    user=\"root\",\n",
    "    passwd= \"12345678\",\n",
    "    database = \"NBA_DB\")\n",
    "    \n",
    "    nbaTeams = {}\n",
    "    nbaTeams['Atlanta Hawks'] = 'ATL'\n",
    "    nbaTeams['Brooklyn Nets'] = 'BKN'\n",
    "    nbaTeams['Boston Celtics'] = 'BOS'\n",
    "    nbaTeams['Charlotte Hornets'] = 'CHA'\n",
    "    nbaTeams['Chicago Bulls'] = 'CHI'\n",
    "    nbaTeams['Cleveland Cavaliers'] = 'CLE'\n",
    "    nbaTeams['Dallas Mavericks'] = 'DAL'\n",
    "    nbaTeams['Denver Nuggets'] = 'DEN'\n",
    "    nbaTeams['Detroit Pistons'] = 'DET'\n",
    "    nbaTeams['Golden State Warriors'] = 'GSW'\n",
    "    nbaTeams['Houston Rockets'] = 'HOU'\n",
    "    nbaTeams['Indiana Pacers'] = 'IND'\n",
    "    nbaTeams['LA Clippers'] = 'LAC'\n",
    "    nbaTeams['Los Angeles Lakers'] = 'LAL'\n",
    "    nbaTeams['Memphis Grizzlies'] = 'MEM'\n",
    "    nbaTeams['Miami Heat'] = 'MIA'\n",
    "    nbaTeams['Milwaukee Bucks'] = 'MIL'\n",
    "    nbaTeams['Minnesota Timberwolves'] = 'MIN'\n",
    "    nbaTeams['New Orleans Pelicans'] = 'NOP'\n",
    "    nbaTeams['New York Knicks'] = 'NYK'\n",
    "    nbaTeams['Oklahoma City Thunder'] = 'OKC'\n",
    "    nbaTeams['Orlando Magic'] = 'ORL'\n",
    "    nbaTeams['Philadelphia 76ers'] = 'PHI'\n",
    "    nbaTeams['Phoenix Suns'] = 'PHX'\n",
    "    nbaTeams['Portland Trail Blazers'] = 'POR'\n",
    "    nbaTeams['Sacramento Kings'] = 'SAC'\n",
    "    nbaTeams['San Antonio Spurs'] = 'SAS'\n",
    "    nbaTeams['Toronto Raptors'] = 'TOR'\n",
    "    nbaTeams['Utah Jazz'] = 'UTA'\n",
    "    nbaTeams['Washington Wizards'] = 'WAS'\n",
    "    nbaTeams_2 = {v: k for k, v in nbaTeams.items()}\n",
    "    \n",
    "    my_cursor = conn.cursor()\n",
    "    sqlformula1 = '''Create view Jointed_Table as \n",
    "    select * from (select * from Shot_Selection where Season = '%s') as \n",
    "    short_shot natural join (select PlayerName, TeamName from Player_Bio where season = '%s') as short_bio;''' % (Season,Season)\n",
    "    \n",
    "    my_cursor.execute(sqlformula1)\n",
    "\n",
    "    my_cursor.execute('''Create view Team_Shooting as\n",
    "    select TeamName, sum(3FGA) as Total_3pt_attempt, sum(2FGA) as Total_2pt_attempt from Jointed_Table group by TeamName;''')\n",
    "\n",
    "    \n",
    "    sqlformula = \"SELECT Total_2pt_attempt FROM Team_Shooting where TeamName = %s\"\n",
    "    my_cursor.execute(sqlformula, TeamName)\n",
    "    my_result = my_cursor.fetchall()\n",
    "    Two_ptA = int(my_result[0][0])\n",
    "    \n",
    "    sqlformula = '''select count(*)+1 from Team_Shooting \n",
    "    where Total_2pt_attempt > %s;'''\n",
    "\n",
    "    my_cursor.execute(sqlformula, Two_ptA)\n",
    "    my_result = my_cursor.fetchall()\n",
    "    ranking = my_result[0][0]\n",
    "    \n",
    "    print(\"The team %s attempted %s two pointers during %s season, which ranked No.%d in the league.\" % (nbaTeams_2[TeamName], Two_ptA, Season, ranking))\n",
    "    \n",
    "    my_cursor.execute(\"drop view Jointed_Table;\")\n",
    "    my_cursor.execute(\"drop view Team_Shooting\")\n",
    "    conn.close()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 48,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The team Houston Rockets attempted 7617 three pointers during 2018-19 season, which ranked No.1 in the league.\n"
     ]
    }
   ],
   "source": [
    "find_team_3PTA_ranking(\"HOU\",'2018-19')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 54,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The team Houston Rockets attempted 6509 two pointers during 2017-18 season, which ranked No.16 in the league.\n"
     ]
    }
   ],
   "source": [
    "find_team_2PTA_ranking(\"HOU\",'2017-18')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Advance Function:"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## AF1: Predict a player's game stat line based on his past games vs the selected opponent team"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Call Stored procedure in mysql server:\n",
    "'''\n",
    "    DROP PROCEDURE IF EXISTS I_Hate_Your_Team;\n",
    "    DELIMITER //\n",
    "    CREATE PROCEDURE I_Hate_Your_Team(IN player_name varchar(255), In Opponent_Team VARCHAR(255))\n",
    "    BEGIN\n",
    "   declare Done int default 0;\n",
    "   declare temp char(10) default 0;\n",
    "   declare currDate INT;\n",
    "   declare DateCurr cursor for select distinct Date from Game_Stats where PlayerName = player_name and OpponentTeam = Opponent_Team;\n",
    "   declare continue handler for NOT FOUND set Done = 1;\n",
    "   \n",
    "   Drop table if exists new_table;\n",
    "   Create table new_table(\n",
    "      Date    Int primary key,\n",
    "      Month   char(10),\n",
    "      PlayerName VARCHAR(255),\n",
    "      Points  Int,\n",
    "      Rebounds Int,\n",
    "      Assists Int,\n",
    "      Steals Int,\n",
    "      OpponentTeam VARCHAR(255)\n",
    "   );\n",
    "   \n",
    "   open DateCurr;\n",
    "   Repeat \n",
    "       fetch DateCurr into currDate;\n",
    "       Insert ignore into new_table (Date, Month, PlayerName, Points, Rebounds, Assists, Steals, OpponentTeam)\n",
    "       (SELECT Date, Substring(CAST(Date AS CHAR),-4,2), PlayerName, Points, Rebounds, Assists, Steals, OpponentTeam\n",
    "        from Game_Stats where PlayerName = player_name and OpponentTeam = Opponent_Team);\n",
    "\t   set temp = (select Month from new_table where Date = currDate);\n",
    "       if temp = '01' then\n",
    "          Update new_table\n",
    "          Set Month = \"Jan\"\n",
    "          where Date = currDate;\n",
    "\t   elseif temp = '02' then\n",
    "          Update new_table\n",
    "          Set Month = \"Feb\"\n",
    "          where Date = currDate;\n",
    "\t   elseif temp = '03' then\n",
    "          Update new_table\n",
    "          Set Month = \"Mar\"\n",
    "          where Date = currDate;\n",
    "\t   elseif temp = '04' then\n",
    "          Update new_table\n",
    "          Set Month = \"Apr\"\n",
    "          where Date = currDate;\n",
    "\t   elseif temp = '05' then\n",
    "          Update new_table\n",
    "          Set Month = \"May\"\n",
    "          where Date = currDate;\n",
    "\t   elseif temp = '06' then\n",
    "          Update new_table\n",
    "          Set Month = \"Jun\"\n",
    "          where Date = currDate;\n",
    "\t   elseif temp = '07' then\n",
    "          Update new_table\n",
    "          Set Month = \"Jul\"\n",
    "          where Date = currDate;\n",
    "\t   elseif temp = '08' then\n",
    "          Update new_table\n",
    "          Set Month = \"Aug\"\n",
    "          where Date = currDate;\n",
    "\t   elseif temp = '09' then\n",
    "          Update new_table\n",
    "          Set Month = \"Sep\"\n",
    "          where Date = currDate;\n",
    "\t   elseif temp = '10' then\n",
    "          Update new_table\n",
    "          Set Month = \"Oct\"\n",
    "          where Date = currDate;\n",
    "\t   elseif temp = '11' then\n",
    "          Update new_table\n",
    "          Set Month = \"Nov\"\n",
    "          where Date = currDate;\n",
    "\t   else\n",
    "          Update new_table\n",
    "          Set Month = \"Dec\"\n",
    "          where Date = currDate;\n",
    "       end if;\n",
    "       \n",
    "\t   \n",
    "   UNTIL Done\n",
    "   End Repeat;\n",
    "   close DateCurr;\n",
    "   \n",
    "   select Month, PlayerName, OpponentTeam, AVG(Points) as AVG_Points, AVG(Rebounds) as AVG_Rebounds, AVG(Assists) as AVG_Assists, AVG(Steals) as AVG_Steals from new_table group by Month, PlayerName, OpponentTeam;\n",
    "    END//\n",
    "    DELIMITER ;\n",
    "'''\n",
    "    \n",
    "def stat_predictor(Player_Name, Opponent_Team, Month):\n",
    "    conn = pymysql.connect(\n",
    "    port=int(3306),\n",
    "    user=\"root\",\n",
    "    passwd= \"12345678\",\n",
    "    database = \"NBA_DB\")\n",
    "    \n",
    "    Months = {}\n",
    "    Months[\"Jan\"] = 1\n",
    "    Months[\"Feb\"] = 2\n",
    "    Months[\"Mar\"] = 3\n",
    "    Months[\"Apr\"] = 4\n",
    "    Months[\"May\"] = 5\n",
    "    Months[\"Jun\"] = 6\n",
    "    Months[\"Jul\"] = 7\n",
    "    Months[\"Aug\"] = 8\n",
    "    Months[\"Sep\"] = 9\n",
    "    Months[\"Oct\"] = 10\n",
    "    Months[\"Nov\"] = 11\n",
    "    Months[\"Dec\"] = 12\n",
    "    \n",
    "    my_cursor = conn.cursor()\n",
    "    sqlformula = 'call I_Hate_Your_Team(\"%s\", \"%s\")' % (Player_Name, Opponent_Team)\n",
    "    df = pd.read_sql(sqlformula, conn)\n",
    "    conn.close()\n",
    "    \n",
    "    Month_dict = dict((v,k) for k,v in enumerate(calendar.month_abbr))\n",
    "    Month_digit = [Month_dict[key] for key in df.Month.tolist()]\n",
    "    df.Month = Month_digit\n",
    "    df = df.sort_values(by=['Month'])\n",
    "\n",
    "    X = [[value] for value in df.Month.tolist()]\n",
    "    point = [value for value in df.AVG_Points.tolist()]\n",
    "    rebound = [value for value in df.AVG_Rebounds.tolist()]\n",
    "    assist = [value for value in df.AVG_Assists.tolist()]\n",
    "    steals = [value for value in df.AVG_Steals.tolist()]\n",
    "\n",
    "    poly_reg = PolynomialFeatures(degree=2)\n",
    "    X_poly = poly_reg.fit_transform(X)\n",
    "    pol_reg_point = LinearRegression()\n",
    "    pol_reg_point.fit(X_poly, point)\n",
    "    pol_reg_rebound = LinearRegression()\n",
    "    pol_reg_rebound.fit(X_poly, rebound)\n",
    "    pol_reg_assist = LinearRegression()\n",
    "    pol_reg_assist.fit(X_poly, assist)\n",
    "    pol_reg_steal = LinearRegression()\n",
    "    pol_reg_steal.fit(X_poly, steals)\n",
    "\n",
    "    plt.plot(X, pol_reg_point.predict(poly_reg.fit_transform(X)), color='blue',label = \"Points\")\n",
    "    plt.plot(X, pol_reg_rebound.predict(poly_reg.fit_transform(X)), color='red',label = \"Rebounds\")\n",
    "    plt.plot(X, pol_reg_assist.predict(poly_reg.fit_transform(X)), color='green',label = \"Assists\")\n",
    "    plt.plot(X, pol_reg_steal.predict(poly_reg.fit_transform(X)), color='yellow',label = \"Steals\")\n",
    "    plt.title('Stat_Prediction: %s vs %s' %(Player_Name, Opponent_Team))\n",
    "    plt.xlabel('Month')\n",
    "    plt.ylabel('Stats')\n",
    "    plt.legend(loc=\"upper right\")\n",
    "    plt.show()\n",
    "    \n",
    "    predicted_point = pol_reg_point.predict(poly_reg.fit_transform([[Months[Month]]]))\n",
    "    predicted_rebound = pol_reg_rebound.predict(poly_reg.fit_transform([[Months[Month]]]))\n",
    "    predicted_assist = pol_reg_assist.predict(poly_reg.fit_transform([[Months[Month]]]))\n",
    "    predicted_steal = pol_reg_steal.predict(poly_reg.fit_transform([[Months[Month]]]))\n",
    "    \n",
    "    predicted_stat_line = \"%s will have %d points, %d rebounds, %d assists, %d steals against %s.\" %(Player_Name, int(predicted_point[0]), int(predicted_rebound[0]), int(predicted_assist[0]), int(predicted_steal[0]),Opponent_Team)\n",
    "    print(predicted_stat_line)\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXxU5bnA8d+TAAmBsCZsCQmgglpAwAAiiKCiuO/bLSiCYuutW6tVr/cq1VqtWku9tVpuXSgo1uJeq6KA4goCIrKjyJIQIIBAQiAhyXP/eE+SyWRPZnKSzPP9fOYzM+ecmfOcLM+8877veY6oKsYYYyJHlN8BGGOMaViW+I0xJsJY4jfGmAhjid8YYyKMJX5jjIkwlviNMSbCWOI3YSMiL4jIb73Hp4jI+jq+zzMi8j+hjc7UlohME5HZfsdh6s8SfyMgIqNE5HMR2S8ie0XkMxEZ6q2bJCKf1uK9eomIikiLGmw7SUQKRSRHRA6IyAoROa8+x1IZVf1EVfvVMKYyx6uqP1PVB8MRV3X7bgqaatw1JSIni8gCEcn2/kfeFpHjA9aPEZH0gOetROQ17/+onbesr4j8U0R2e++xUkR+KSLRfhyT3yzx+8z7w/wX8L9AJyAJ+A2Q10AhfKGqbYEOwLPAKyLSqYI4q/0giWT28wkPERkBzAPeBHoAvYFvgM9EpE8F28cAr+H+ns9U1QMichSwGNgGDFDV9sDlQBoQ3yAH0shY4vdfXwBVnaOqhap6SFXnqepKETkOeAYY4bXK9wGIyLki8rXXSt8mItMC3m+Rd7/Pe82ImgShqkXAc0BroE9xK0pE7hKRHcDz3r7P874Z7PO+pQwsfg8RGSwiy72W2T+A2IB1wa2ynl6rLEtE9ojIn6s43pIuI+/5DSLynfft6C0R6RGwTkXkZyKyUUR+FJGnRERq8jMIJiI9RORVL8YfROSWgHXTRGSuiMwWkQPAJBGJEpG7ReR775hKPkQDvold5/3OfvTiHOq1PveJyJ+9bWO8YxsQsL8uInJIRBJreQzXicha73eySURuDFhX/Dv+tYjsEpFMEblIRM4RkQ1eDP8V9JaxIvIP7/2Wi8gJlez3GRF5PGjZmyLyS+/xXSKS4b3PehE5vZJDeBT4u6r+SVWzVXWvqv438CUwLej944C3gZbAuap60Fv1G+BzVf2lqmYCqOp6Vf0PVd1Xgx9j86OqdvPxBrQD9gAzgbOBjkHrJwGfBi0bAwzAfXAPBHYCF3nregEKtKjBvkveG2gB3ApkA+29fRQAvwdicB8IQ4BdwHAgGrgW2OytbwVsAW7H/eNdBhwBfhsQc7r3OBrXavsj0Ab3ATGqiuN9IeB9TgN2e7HE4L4pLQrYVnHfoDoAKUAWMN5blwLsA1Jq8POIApYB93nH1gfYBJzlrZ/mHd9F3ratgdtwCSnZi+2vwJyg38sz3vGeCRwG3gC64L7p7QJO9bb/C/D7gNhuBd6uLu4K1p0LHAUIcCqQCwwJ+J0UeMfYErjB+3m9hGsJ/8SLsU/QMV/mbX8H8APQsoL9jsa1sMV73hE4hGu19/PW9Qj42RxVwXvEAYXA2ArWXQdkBhxHFvAx8BYQE7TtDuA6v//XG9PN9wDspgDH4ZJbuveP+BbQ1VtX6T91wOunA3/0HhcnmJom/gJcMtztJa0zvHVjgHwgNmD7p4EHg95jvZdQRgPbi//RvXWfU3HiH+H9o5aLsaLjpWzifxZ4NGBdWy8Z9fKeK96HiPf8FeDuGv4eSvaN+3DbGrT+HuB57/E0Aj5wvGVrgdMDnnf3YmsR8HtJCli/B7gy4PmrwG0B+98GRHnPlwJXVBd3DY7xDeDWgN/JISDaex7vxTg8YPtllDYqpgFfBqyLAjKBUyrYjwBbgdHe8xuABd7jo3EfcmdQwYdGwHske/EcW8G68cCRgOM4jPt7vbSCbY/gffjbzd2sq6cRUNW1qjpJVZOB/rhW0fTKtheR4SKy0OuC2A/8DEio4+6/VNUOqpqgqiep6ocB67JU9XDA81TgV163xD6vK6anF28PIEO9/zTPlkr22RPYoqoFdYi3R+D7qmoOLoEmBWyzI+BxLu7DobZSgR5Bx/pfQNeAbbZV8JrXA7Zfi2uxBr5mZ8DjQxU8bwugqouBg8CpInIsLlm+VduDEJGzReRLr9tmH3AOZf9W9qhqYcD+K4ox8OdXcszqugfTcb+TMry/g5eBq71F/wG86K37DvftaBqwS0ReDuyuC/AjUIT7AA3WHddYKbYbuAqYKSJnBW27p5L3iFiW+BsZVV2Ha+H2L15UwWYv4ZJAT3UDVc/gWliVbV/ncIKebwMe8j4oim9xqjoH1/JLCupPT6nkfbcBKVLxgGh18W/HJVgARKQN0BnIqOZ1tbUN+CHoWONV9ZwqYt0GnB30mlhVrWtsM4EJwERgbtCHcLXEDXS+CjyO+wbZAfg3pX8rddEz4P2jcK3y7ZVsOwe4TERScd9gXi1eoaovqeoo3O9ScV2KZajro/8CNxAb7ApgftD2r+G+WcwVkbEBqz4ELq32yCKIJX6ficixIvIrEUn2nvfEtZK+9DbZCSSLSKuAl8UDe1X1sIgMw7WmimXhWknlZjyEwP8BP/O+cYiItBE30ByP+wctAG4RkRYicgkwrJL3WYL7oHjEe49YERnpravoeAO9BFwnIoO8xPY7YLGqbg7RMQbGeMAbhGwtItEi0l+8abaVeAZ4yEt0iEiiiFxYjxhmARfjkv/fq9lWvJ9jyQ03NhGD+5soEJGzcWML9XGiiFzifWjfhpt99mVFG6rq196+/wa8r95Aqoj0E5HTvN/fYdy3isKK3gO4G7hWRG4RkXgR6ShuoH8EbtA2eJ9zgF8Abwb8Td0PnCwij4lINy+Go8UNzHeo00+hibPE779sXGtosYgcxP0TrQJ+5a1fAKwGdohI8Vfbm4AHRCQbNzD3SvGbqWou8BBuuts+ETkpVIGq6lJci+rPuK/h3+H6l1HVfOAS7/mPwJW4aXUVvU8hcD6u+2IrrrvgSm91Rccb+Nr5wP/gWo+ZuIHLq2oSv4ikiJstVNk3EfBa8QExDsINYO7GJbD2Vbz2T7hvYvO8382XuN9tnahqOrDci+mTajY/GZdAg2+34P4+fsQ1EGrdXRTkTdzv6kfcN5FLVPVIFdvPwfXlvxSwLAZ4BPcz3YEb3A6ePQSAqn4KnIX728rEdfMNxo3jbKzkNTNx/z/viMgwVf0e90HRC1jtdY++ihs3ya7+kJuf4hF3YyKeuOmap6nqRX7HUkxEngO2q5vCaExI2EknxgBe18iFwEK/YykmIr1wLd3B/kZimhvr6mnmvBNpciq4PeN3bI2FuBOldgAHcN1YvhORB3Fdfo+p6g9+x2OaF+vqMcaYCGMtfmOMiTBNoo8/ISFBe/Xq5XcYxhjTpCxbtmy3qpar79QkEn+vXr1YunSp32EYY0yTIiIVnj1vXT3GGBNhLPEbY0yEscRvjDERpkn08Rtjmo8jR46Qnp7O4cO1qjlnqhAbG0tycjItW7as0faW+I0xDSo9PZ34+Hh69eqF1O3iaCaAqrJnzx7S09Pp3bt3jV5jXT3GmAZ1+PBhOnfubEk/RESEzp071+oblCV+Y0yDs6QfWrX9eYatq8erKngesEtV+wetuwN4DEhU1XKld40xpiGoQlFR5bfCwvLL2reHNm38jrx+wtnH/wKu4FWZC0h4FxoZh6vDbowxlaoqMVeUlKtaHrhu8OBojj56AAUFBfTufRzTps0kNjau0jgmTz6Z5577HIDMTOjZExITIbChPX36dKZOnUpcXOXv01iELfGr6iKvrGywPwK/xl3QwRjThBUWQm4uHDxYeh/4uKJl48fDli01S9RFRbWPKSqq4luLFtCqlXscG9uaDz9cQVQU3HzzT1mw4BluuumX5V4THe3uly37nKgo90H0ww+wdas7ltRUtx5c4p8wYUJkJ/6KiMgFuAtyf1Ndn5SITAWmAqSkVHXBJGNMZQoKapaMa5u8i+/z8moXjwiMHAk//lg2sUZFQcuWFSfdypJxZbeadHeLuFY7wJlnnsLKlStJSIAnnniC5557DoDrr7+e2267DYC2bduSk5PDRx99xLRp02jTJoHVq1fRv/+JzJ07mxkz/pft27czduxYEhIS+PDDD5kyZQpLly5FRJg8eTK333577X5YYdRgiV9E4oB7qeE1P1V1BjADIC0tzWpHm2YpP79+ibe6ZUequihiBaKiXP91XJy7D3zcoUP5ZcH31S2LjYV16+C449z+brsNVqwI7c900CCYPr1m2xYUFPDuu+8yfvx4li1bxvPPP8/ixYtRVYYPH86pp57K4MFlr4Pz9ddfs3r1auLiejBmzEjmzPmMSZNu4YknnmDhwoUkJCSwbNkyMjIyWLVqFQD79u0L7UHWU0O2+I8CegPFrf1kYLl3TcwdDRiHMTWi6lq0oU7GgfcFBbWLKTq6NJkGJ9mEhLol48BlrVrVrMXc1B06dIhBgwYBcMoppzBlyhSefvppLr74Ytp4I7eXXHIJn3zySbnEP2zYMJKTkwE46aRB7NixmQ0bRlFY6P5mAPr06cOmTZu4+eabOffccznzzPpe4z60Gizxq+q3uIsqAyAim4E0m9Vj6koVDh2qX+Ktbvva9jG3alVxQo2Ph27d6peU4+Lc+zcnNW2Zh1rr1q1ZEfRVo6YXpYqJiSl53KpVNF27FtCxoxur2LwZOnWCjh078s033/D+++/z1FNP8corr5R0ITUG4ZzOOQcYAySISDpwv6o+G679mcanqMgl5nB0YeTmulttLyAXE1NxQu3QAXr0qFsyLr6Pi3P91KZpGj16NJMmTeLuu+9GVXn99deZNWtWta+LioI+faB9+3i2b88mLi6B9u13065dKy699FKOOuooJk2aFP4DqIVwzuq5upr1vcK1bxN669bBnDnlE3BVCfrQodrvp3XripNsQgKkpNSvKyMuznWVGFORIUOGMGnSJIYNGwa4wd3gbp7KiMBNN03lzjvPpn377txxx3R+97vrEHFfGR9++OGwxV0XTeKau2lpaWoXYvHP+vUwahTs3l3/PuSqlrVuXTo1zjRfa9eu5bji0d1mKC8Pvv/eNX569IDu3Rtm3KSin6uILFPVtOBtrUibqdK2bTBunEvIGzbAMcf4HZExjVtMDBx7rDtXYft29wHQq5c7j6CxsPaVqdTu3XDmmbB/P7z/viV9Y2oqKsol+5493f/PunV16/oMF0v8pkLZ2XDOOW6Wwttvu7nRxpiaE4GuXaFvXzfjZ+1a2LvX76gcS/ymnLw8uPhiWL4cXnkFRo/2OyJjmq74eHfCWuvWsGkTpKfXfjZaqFniN2UUFsJPfwrz58Pzz8P55/sdkTFNX6tW0K+fK+y2Ywds3Fj7k/dCyRK/KaEKP/85vPqqO7Fm4kS/IzKm+YiKckXdUlNdV+qaNW7g15dY/NmtaYzuvRf+7//gv/8bbr3V72iMCZ/o6GgGDRpE//79Of/886utpbN582b69+9f5TY1lZjoZv2A6/ffs6fi7aZNm8bjjz8ekn0Gs8RvAPjDH+Dhh+FnP4MHHvA7GmPCq7hkw6pVq+jUqRNPPfVUg+6/TRvX79+2bWmZ57qUoK4rS/yG55+HO+6AK66AP/85Mop0GVNsxIgRZGRklDx/7LHHGDp0KAMHDuT+++8vWV5QUMC1117LwIEDueyyy8j1+mnmz5/P4MGDGTBgAJMnTybPq1Xdq1cvdu92pciWLl3KmDFjANeSnzx5MuPGjeHss/vwzjtPsmuXO0/mgQceol+/fpxxxhmsX7++ZN9PPvkkxx9/PAMHDuSqq66q9zE3olMKjB/eeAOuv97N1581y0oamAbmc13mwsJC5s+fz5QpUwCYN28eGzduZMmSJagqF1xwAYsWLSIlJYX169fz7LPPMnLkSCZPnsxf/vIXfvGLXzBp0iTmz59P3759ueaaa3j66adL6vhXZt26dSxcuJDs7Gz69evHjTf+nPnzVzJr1st89tnXxMYWMGTIEE488UQAHnnkEX744QdiYmJCUuLZWvwR7KOP4KqrYNgweO215lf50ZjKFJdl7ty5M3v37mXcuHGAS/zz5s1j8ODBDBkyhHXr1rFx40YAevbsyciRIwGYMGECn376KevXr6d379707dsXgGuvvZZFixZVu/9zzz2XmJgYEhIS6NKlCwUFO8nI+ITTT7+YbdviyMtrxwUXXFCy/cCBA/npT3/K7NmzaRGCU4CtxR+hli2DCy6Ao4+Gd95p+hePNk2UT3WZi/v49+/fz3nnncdTTz3FLbfcgqpyzz33cOONN5bZfvPmzQRfNVBEqizl3KJFC4q8jvvDhw+XWRdY2jk6OpqCggJatYLERCE+3pV7OHDA1fkBeOedd1i0aBFvvfUWDz74IKtXr67XB4C1+CPQ+vXuuqedOrlSDJ06+R2RMf5o3749Tz75JI8//jhHjhzhrLPO4rnnniMnJweAjIwMdu3aBcDWrVv54osvAJgzZw6jRo3i2GOPZfPmzXz33XcAzJo1i1NPPRVwffzLli0D4NVXX602ltGjR/Pmm6+TnHyI+Phs5s17m1274PDhIrZt28bYsWN59NFH2bdvX0l8dWUt/giTnu7680Xggw8gKcnviIzx1+DBgznhhBN4+eWXmThxImvXrmXEiBGAu9bu7NmziY6O5rjjjmPmzJnceOONHHPMMfz85z8nNjaW559/nssvv5yCggKGDh3Kz372MwDuv/9+pkyZwu9+9zuGDx9ebRxDhgzhyiuvZPDgQaSmpnLKKadQUAC5uYVMmDCB/fv3o6rcfvvtdOjQoV7HbGWZI8iePXDKKZCR4fr3a1hq3JiQau5lmUOpsLDmEy6sLLMpp7jo2g8/uO4dS/rGNH7hmmVniT8C5OXBJZe4Ad3XXrOia8ZEOkv8zVxhIUyYAB9+CDNnupk8xpjIFrZZPSLynIjsEpFVAcseE5F1IrJSRF4XkfqNUJgqqcJNN8HcufDEE3DNNX5HZIxpDMI5nfMFYHzQsg+A/qo6ENgA3BPG/Ue8e++FGTPc/e23+x2NMaaxCFviV9VFwN6gZfNUtbgK9ZdAcrj2H+mKi67deCM8+KDf0RhjGhM/T+CaDLxb2UoRmSoiS0VkaVZWVgOG1fS98IIrunb55fDUU1Z0zZiKvP7664gI69atq/Vr77vvPj788MNK17/xxhusWbOmPuGFlS+JX0TuBQqAFyvbRlVnqGqaqqYlJiY2XHBN3JtvuqJr48ZZ0TVjqlJ89u3LL79c69c+8MADnHHGGZWut8QfRESuBc4DfqpN4eyxJuTjj+HKKyEtzU3bDCgHYowJkJOTw2effcazzz5bkvgzMzMZPXp0yQVaPvnkEwoLC5k0aRL9+/dnwIAB/PGPfwRg0qRJzJ07F4C77767pGTyHXfcweeff85bb73FnXfeyaBBg/j+++9DXla5vhp0OqeIjAfuAk5VVZ8uOtY8LV/uro971FGu6Frbtn5HZEz1bnvvNlbsCG1Z5kHdBjF9fNXF39544w3Gjx9P37596dSpE8uXL2fhwoWcddZZ3HvvvRQWFpKbm8uKFSvIyMhg1So3OTG4JPLevXt5/fXXWbduHSLCvn376NChAxdccAHnnXcel112GRD6ssr1Fc7pnHOAL4B+IpIuIlOAPwPxwAciskJEngnX/iPJhg2lRdfmzYPOnf2OyJjGbc6cOSUt76uuuoo5c+YwdOhQnn/+eaZNm8a3335LfHw8ffr0YdOmTdx888289957tGvXrsz7tGvXjtjYWK6//npee+014uLiKtxfqMsq11fYIlDVqytY/Gy49hep0tNdfz64pG9F10xTUl3LPBz27NnDggULWLVqFSJCYWEhIsKjjz7KokWLeOedd5g4cSJ33nkn11xzDd988w3vv/8+Tz31FK+88grPPfdcyXu1aNGCJUuWMH/+fF5++WX+/Oc/s2DBgnL7DHVZ5fry/6PH1NmePXDWWfDjj67omnctCGNMFebOncs111zDX//615Jlp556KosWLWLkyJHccMMNHDx4kOXLl3POOefQqlUrLr30Uo466igmTZpU5r1ycnLIzc3lnHPO4aSTTuLoo48GID4+nuzsbACKikrLKo8aNYqXXnqJnJycelfYrA9L/E1UTg6cey58/70rujZkiN8RGdM0zJkzh7vvvrvMsksvvZRJkybRpk0bWrZsSdu2bfn73/9ORkYG1113XckFVR5++OEyr8vOzubCCy/k8OHDqGrJ4O9VV13FDTfcwJNPPsnLL7/MlClTQlpWub6sLHMTlJfnBnIXLHCzd6z+jmlKrCxzeFhZ5massBAmTnQXUXnhBUv6xpjas0svNiGq8J//Cf/8pyvJcO21fkdkjGmKLPE3If/93/DXv8I998Avf+l3NMaYpsoSfxPxxBPwu9/B1Knw0EN+R2OMacos8TcBM2fCr34Fl10Gf/mLFV0zxtSPJf5G7q23YMoUOOMMmD3biq4ZY+rPEn8j9vHHcMUVcOKJ8PrrVnTNmFB66KGH+MlPfsLAgQMZNGgQixcvZvr06eTm1r2MWGDxtsbMpnM2Ul9/7aZq9ukD//63FV0zJpS++OIL/vWvf7F8+XJiYmLYvXs3+fn5XHnllUyYMKHSmjvNhbX4G6ENG1wphg4drOiaMeGQmZlJQkICMd7X6ISEBObOncv27dsZO3YsY8eOBWDevHmMGDGCIUOGcPnll5OTkwO4evxDhw6lf//+TJ06lYpOhA0u19yY2Jm7jUxGBowcCbm58OmnVn/HND9lzzC9DQhtWWYYBFRd/C0nJ4dRo0aRm5vLGWecwZVXXsmpp55Kr169WLp0KQkJCezevZtLLrmEd999lzZt2vD73/+evLw87rvvPvbu3UunTp0AmDhxIldccQXnn38+kyZN4rzzzuO0005jxIgR5co1h1Ntzty1Fn8jsncvnHmmu3/3XUv6xoRL27ZtWbZsGTNmzCAxMZErr7ySF154ocw2X375JWvWrGHkyJEMGjSImTNnsmXLFgAWLlzI8OHDGTBgAAsWLGD16tVlXlvTcs1+sT7+RiInB845xxVde+89N6BrTPPX8GWZi0VHRzNmzBjGjBnDgAEDmDlzZpn1qsq4ceOYM2dOmeWHDx/mpptuYunSpfTs2ZNp06Zx+PDhMtvUtFyzX6zF3wjk5cEll8BXX8E//gFjxvgdkTHN2/r169m4cWPJ8xUrVpCamlqmnPJJJ53EZ599xnfffQdAbm4uGzZsKEnyCQkJ5OTkVDiLJycnh/3793POOecwffp0VqwIdXdW/ViL32eFhXDNNa7o2nPPwYUX+h2RMc1fTk4ON998M/v27aNFixYcffTRzJgxgzlz5nD22WfTvXt3Fi5cyAsvvMDVV19NXl4eAL/97W/p27cvN9xwAwMGDKBXr14MHTq03PtXVq65sbDBXR+pws9/7urvPP64OzvXmObOyjKHhw3uNhH/8z8u6d99tyV9Y0zDscTvkz/+0RVbu+EGV3zNGGMaStgSv4g8JyK7RGRVwLJOIvKBiGz07juGa/+N2d//7soqX3opPP20FV0zkacpdDE3JbX9eYazxf8CMD5o2d3AfFU9BpjvPY8ob78NkyfD6afDiy9a0TUTeWJjY9mzZ48l/xBRVfbs2UNsbGyNXxO2WT2qukhEegUtvhAY4z2eCXwE3BWuGBqbRYtc0bUhQ6zomolcycnJpKenk5WV5XcozUZsbCzJyck13r6hp3N2VdVMAFXNFJEulW0oIlOBqQApKSkNFF74fP21u0B6796u6Fp8vN8RGeOPli1b0rt3b7/DiGiNdnBXVWeoapqqpiUmJvodTr1s3Ajjx5cWXUtI8DsiY0wka+jEv1NEugN497saeP8NLiMDxo2DoiKX9GvxbcwYY8KioRP/W8C13uNrgTcbeP8Nau9eV155zx5Xf6dfP78jMsaY8E7nnAN8AfQTkXQRmQI8AowTkY3AOO95s3TwIJx7ruvmeestK7pmjGk8wjmr5+pKVp0ern02Fvn5rujakiXw6qvgXdPBGGMaBSvSFmLFRdfmzXNF1y66yO+IjDGmrEY7q6cpUoVf/MKVVn7sMbjuOr8jMsaY8izxh9B998Ezz8Bdd0Eju8SmMcaUsMQfItOnw29/C1OmwMMP+x2NMcZUzhJ/CMyaBbff7gZ0n3nGiq4ZYxo3S/z19Pbbri//9NPhpZeghQ2XG2MaOUv89VBcdG3wYCu6ZoxpOizx19GKFa7oWmoqvPuuFV0zxjQdlvjrYONGV4qhfXt3kXQrumaMaUos8dfS9u1w5pmlRdd69vQ7ImOMqR0biqyF4qJru3fDwoVw7LF+R2SMMbVnib+GDh6E886DDRtcn35amt8RGWNM3Vjir4H8fHdh9MWL4Z//hNNO8zsiY4ypO0v81Sguuvb++/C3v7mTtIwxpimzwd0qqMItt7iia48+6soxGGNMU2eJvwr33w9/+Qv8+tdw551+R2OMMaFhib8Sf/oTPPiga+U/0myvE2aMiUSW+CswezbcdhtcfLEVXTPGND+W+IO88w5MmuRm7ljRNWNMc+RL4heR20VktYisEpE5IhLrRxzBPvkELrvMFV174w2IbRRRGWNMaDV44heRJOAWIE1V+wPRwFUNHUewFSvcCVqpqfDvf1vRNWNM8+VXV08LoLWItADigO0+xQHAd9/B+PHQrp2rv5OY6Gc0xhgTXg2e+FU1A3gc2ApkAvtVdV7wdiIyVUSWisjSrKyssMWzfTuMGwcFBS7pp6SEbVfGGNMo+NHV0xG4EOgN9ADaiMiE4O1UdYaqpqlqWmKYmuCBRdfefReOOy4suzHGmEbFj66eM4AfVDVLVY8ArwEnN3QQgUXX3ngDhg5t6AiMMcYfNUr8InKriLQT51kRWS4iZ9Zxn1uBk0QkTkQEOB1YW8f3qpP8fDd7Z/FimDPHXS/XGGMiRU1b/JNV9QBwJpAIXAfU6XxWVV0MzAWWA996Mcyoy3vVRVERXHstvPce/PWvVnTNGBN5anp6UvG5q+cAz6vqN15rvU5U9X7g/rq+vu77dRImFKoAABkxSURBVEXXXn7ZlWG4/vqGjsAYY/xX0xb/MhGZh0v874tIPFAUvrDCY9o0eOopV3Dtrrv8jsYYY/xR0xb/FGAQsElVc0WkM667p8l48kl44AGYPBl+/3u/ozHGGP/UtMX/gaouV9V9AKq6B/hj+MIKrRdfhFtvhYsucv36VnTNGBPJqmzxezV04oAEb/59ccpsh5uD3+gVF10bO9bN4LGia8aYSFddGrwRuA2X5JdRmvgPAE+FMa6Q+PRTN23zhBOs6JoxxhSrMvGr6p+AP4nIzar6vw0UU8j885+uBMO777o6PMYYY2o4uKuq/ysi/YHjgdiA5X8PV2ChMH26K8vQubPfkRhjTONRo8QvIvcDY3CJ/9/A2cCnQKNO/CKW9I0xJlhNZ/VchiutsENVrwNOAGLCFpUxxpiwqWniP6SqRUCBiLQDdgF9wheWMcaYcKnp5MalItIB+D/c7J4cYEnYojLGGBM2NR3cvcl7+IyIvAe0U9WV4QvLGGNMuNS0LPP84sequllVVwYuM8YY03Q0+zN3jTHGlFXbM3eLZdMEztw1xhhTXnVdPZ/jLot4h6r2AX4DrAI+Bl4Kc2zGGGPCoLrE/1cgzztzdzTwMDAT2E8DXjXLGGNM6FTX1ROtqnu9x1cCM1T1VeBVEVkR3tCMMcaEQ3Ut/mgRKf5wOB1YELDOChwbY0wTVF3inwN8LCJvAoeATwBE5Ghcd0+diEgHEZkrIutEZK2IjKjrexljjKmd6soyP+TN1+8OzFNV9VZFATfXY79/At5T1ctEpBVuyqgxxpgGUG13jap+WcGyDXXdoVfrZzQwyXuvfCC/ru9njDGmdmpapC2U+gBZwPMi8rWI/E1E2gRvJCJTRWSpiCzNyspq+CiNMaaZ8iPxtwCGAE+r6mDgIHB38EaqOkNV01Q1LTExsaFjNMaYZsuPxJ8OpKvqYu/5XNwHgTHGmAbQ4IlfVXcA20Skn7fodGBNQ8dhjDGRyq+5+DcDL3ozejYB1/kUhzHGRBxfEr+qrgDS/Ni3McZEOj/6+I0xxvjIEr8xxkQYS/zGGBNhrNCaMcYEOnIE0tNh61bYsqXs/datkJsLqu4G4X/82mswblxID9ESvzEmsuzfX5rEgxP7li2wfXtp0i3WpQukpMDxx0O7dm6ZiLuF+3HPniH/EVjiN8Y0H0VFkJlZeVLfutUl/kAtW7rkmpoKZ5zh7lNSSu979oTWrf05njCxxG+MaTpyc2Hbtoq7YLZscV00R46UfU2HDi6J9+oFp55aNqmnpEC3bhAVWcOdlviNMY2DKuzeXXVrPbhgY1QUJCW5BH7SSeVb6ykppV0zpoQlfmNMw8jPh4yMypP61q1w6FDZ18TFlSbxE08sm9RTU6FHD9dVY2rFEr8xJjT276+8C2br1ooHTbt2dUl8wAA499yyLfXUVOjUqXSw04SMJX5jTPUKC2HHjspb61u2wIEDZV/TqpUbGE1JcdMRg1vrycnNbtC0qbDEb4xxg6ZVTXFMT4eCgrKv6djRJfHevd2gaXD/eteuETdo2lRY4jemuVN1g6KVdcFs2eIGVQMVD5qmpsLJJ5dvraekQHy8P8dj6s0SvzFNXX5+5WeaFt8fPlz2NcWDpqmpbtA0OKknJUELSw/Nlf1mjWns9u2rOqlnZlY8aJqaCgMHwvnnl5/iaIOmEc0SvzF+Kix0ibuyLpitWyseNC1O4GedVXYWTPGZprGx/hyPaRIs8RsTTgcPVnymafF9ZYOmqanQpw+MHVu+f71LFxs0NfViid+YuioeNK3qhKTgQdPo6NIzTUeOLJ/Ue/a0QVMTdpb4jalMfr5rrVfWBVPRoGmbNqWDpkOHVnymqQ2aGp/59hcoItHAUiBDVc/zKw4ToVQrPtM08H7HjvKDpt26uSR+wglu0DR4NkzHjjZoaho9P5setwJrAaugZEKvsNCVCKhqNkx2dtnXFA+apqbC+PHlk3pysg2ammbBl8QvIsnAucBDwC/9iME0cQcPVn1CUnq6S/6BOnVySfzoo+G008ondhs0NRHCrxb/dODXgI1imfJUYdeuqlvre/aUfU3xoGlqKowaVXF53rZt/TkeYxqZBk/8InIesEtVl4nImCq2mwpMBUhJSWmg6EyDyMtzLfKqKjnm5ZV9Tdu2pUl8+PDySd0GTY2pMdHgwatw71DkYWAiUADE4vr4X1PVCZW9Ji0tTZcuXdpAEZp6Ua3+TNPKBk2DW+mB9x062KCpMbUkIstUNS14eYM3kVT1HuAeL6gxwB1VJX3TyBQUlD3TtKL7nJyyr4mJKW2Zn312xeV5Y2L8OR5jIpB9NzaVU4WNG+HDD91t+fKKB007d3ZJ/Jhj4PTTy19MIzHRBk2NaUR8Tfyq+hHwkZ8xmCA7dsD8+aXJPj3dLS8+07R37/JnmtqgqTFNirX4I112Nnz8cWmiX73aLe/UyU15POMM14o/6ijrYzemmbDEH2ny82Hx4tJEv3ix67qJjYVTToFrrnHJftAg654xppmyxN/cFRXBqlWliX7RInfyU1QUpKXBXXe5Fv3JJ9tZqcZECEv8zdGWLaWJfv58V0ESoF8/mDTJtejHjHFTJI0xEccSf3OwZw8sXFia7L//3i3v1s1dqKO4nz452d84jTGNgiX+pujQIfj009JE//XXbuplfLxryd9yi0v2xx1nA7LGmHIs8TcFhYWwbFlpov/8c1fSoGVLGDECfvMbl+jT0twyY4ypgiX+xkgVNmwoTfQLF7ra8eDqwP/iFy7Rn3KKu/CHMcbUgiX+xiIzs+yJUxkZbnlqKlx+uUv0Y8e60sHGGFMPlvj9cuBA2ROn1qxxyzt1cgOxxQOyffpYP70xJqQs8TeU/Hz48svSRL9kieu7b93addkUT7M84QQ7ccoYE1aW+MOlqAi+/bbsiVO5uS6pDx0Kd9/tEv2IEVaZ0hjToCzxh9LmzaWJfsGC0hOnjj0WJk92if7UU+3EKWOMryzx18fu3WVPnNq0yS3v3t1drLu4nz4pyd84jTEmgCX+2sjNLXvi1IoVpSdOjR0Lt93mkv2xx9qArDGm0bLEX5WCgvInTuXnu5OkTj4ZHnjAteiHDrXrvRpjmgzLVoFUYf360kT/0UelJ04NGlRaCmHUKDtxyhjTZFni37697IlT27e75b17wxVXlJ44lZjob5zGmIhSUFTAgh8WMDp1NLEtQlsyPfIS//79ZU+cWrvWLe/cufyJU8YY04BUlRU7VjBr5SzmrJrDjpwdzL18Lpcef2lI99P8E39eXtkTp776qvTEqdGjS6dZDhxoJ04ZY3yxdf9WXvr2JWatnMWarDW0jGrJuX3PZeLAiZxzzDkh31+DJ34R6Qn8HegGFAEzVPVPYdnZfffBH/7gZuNER7tB2HvucYn+pJPsxCljjG/2Hd7Hq2teZdbKWXy85WMARqWM4plzn+Hyn1xOp9adwrZvP1r8BcCvVHW5iMQDy0TkA1VdE/I99e0LU6aUnjjVvn3Id2GMMTWVX5jPuxvfZfa3s3l7/dvkFebRt3NfHhz7IP8x4D/o07FhupgbPPGraiaQ6T3OFpG1QBIQ+sQ/YYK7GWOMT1SVL9O/ZNbKWfxj9T/Ye2gviXGJ3HjijUwYOIG0HmlIA5/342sfv4j0AgYDiytYNxWYCpCSktKgcRljTH1t3LOR2StnM/vb2Wz6cROtW7TmomMvYsLACYzrM46W0f5dNMm3xC8ibYFXgdtU9UDwelWdAcwASEtL0wYOzxhjai3rYBb/WP0PZq+czeKMxQjC6X1O577R93HxcRfTLqad3yECPiV+EWmJS/ovquprfsRgjDGhcOjIId5a/xazv53Ne9+9R0FRASd0PYHHxj3G1f2vJqld46vV5cesHgGeBdaq6hMNvX9jjKmvwqJCPt7yMbNXzmbumrlk52eTFJ/EL0/6JRMGTmBA1wF+h1glP1r8I4GJwLcissJb9l+q+m8fYjHGmGrlF+aTmZ3J1v1b+deGf/Hity+SkZ1BfKt4Ljv+MiYOnMjo1NFER0X7HWqN+DGr51PASlcaY3ynquw7vI+M7AwyDmSUvQ94vOvgrpLXtIhqwfijx/OHM//ABf0uoHXL1j4eQd00/zN3jTER6UjhETJzMqtM6BkHMjhUcKjcaxPiEkiKTyKpXRJpPdJKHifFu+eJbZp27a5mnfjnrpnLNzu+YXjycIYlDaNLmy5+h2SMqSdVZX/e/vIJPSix7zq4C6XshMCY6Bh6xPcgqV0SJ3Y/kQv6XlCS0Ivve8T3IKZF8z6rv1kn/i+2fcH0xdMp0iIAenXoxfAk9yEwPGk4Q7oPaZJf04xpro4UHmFHzo5qu15yj+SWe23n1p1LkveQbkPKJfSkdkl0bt25wU+WaoxEtfFPkU9LS9OlS5fW6bUH8w+yLHMZSzKWsDhjMYvTF7PtwDbA9dUN6DKA4UnDS74VHJtwLFFixdqMCSVV5UDegWoT+s6cneVa6a2iW7lWemASD0roPeJ7hLx0cXMgIstUNa3c8uae+CuSmZ3JkowlJR8GX23/igN57hyydjHtGNpjaMm3guHJw+nWtlvI9t00FeGqbGQBUWG8CTbu3/QUFBW4Vno1fekHjxws99pOrTtVmdCT4pNIiEuwVnodWeKvQpEWsX73+pJvBEu2L2HlzpUUFBUAkNI+pfSDwOsiatOquV2Baz+wCfihgvvNQF4DxSGU/SAI5wdNOD64/I4htDEfzD/EroO7ycrdw86c3ew6mMXOnCx2Hsxix8FdZGbvJCt3DwVFSpFScouWFiTGdaVr2+50beNu3eJ70K1ND7rHJ9G9bRLd45No3bJNJTGZULDEX0uHjhxieeby0i6ijMVs3rcZgGiJpn+X/qXjBcnDOS7huEY+hzcf2ErlyX1v0PYdgd5AH+/WGygeHC8K800bYB+NNfbG///YMBrzh2tnIAVIDbjvCTS+riZL/CGw6+Au90GQ7j4IlmQsYX+euyZv21ZtSeuRVmbwuGFP1VZgJxUn9U1AOi6xFGsF9KI0qQffd2iguE1ZSn0/PLLz9rMzJ5NduTvYmZNJVu5OduXsICt3J7tzd7E7dxc/Ht4DKFECUQIi0DIqmi5tOtOlTQKJbTqTGOduCXGdSIjrROe4jnRu3ZGYFi3rFV/j+qCt7a0Q1+W5nfIf0l0o/TAI/mBIwX1gNOy3GUv8YVCkRWzcs7HkQ2BxxmK+2fENR4qOAJAUn1RmrCCtRxptW7Wtxx5zcIk8OKlvwnXHBM906EHFSb2Pty6qHrGYhlZYVFijGS85+TnlXtshtkO1femJbRJtYkONHQEygC24b9IV3QefHxBH6YdCRR8MSbgGWehY4m8ghwsOs2LHijLfCr7/8XsAoiSK4xOPLxkrGJY0jJ90+Qktoopn1RbgWubFyTw4wWcF7S2eipN6H9wfk01VbSqy87KrTeg7cnaUTE0u1iKqBd3bdq8yoSe1SyKuZZxPRxapFNhD2Q+D4A+GXUGvEVyDLPiD4XzvvvYs8ftod+5uvsr4isUZX7J296fszV1Kp7gD9OkIx3SKZmDXeHp3UDq2ziZKAv+xW+B+4YH97IH3nbCBsMatsKiQnQd3VjvjJTs/u9xr28e0L5/EgxJ6lzZdrJXeZB0CtlHxh8JWb10+8AFwRp32YIm/wRzCdbtU1GL/ASj7D56d15rN+6JZnZXLd3uL+GEf7Dvckc6t0+jTYTRDk0YwNGloo6njbUrl5OdUe/bojpwdFGphmddFSzTd47tX2/XS/GaOmdopwo3bdaCu394t8YdMEa5vr7JB1Myg7eOovJ+9F+D6/PMK8li5c2XJDKIlGUvYsGcDAIJwXOJxZaaU9u/S39cr+DRnhUWF7Dq4q9qul+JzPwK1j2lfUhKgsoTepU2XRj4DzDQXlvhrZR8VJ/VNuK9h+QHbRuGmclXUz148BbJu3TF7D+31uohKB4935+4GoHWL1gzpPqTMlNLU9ql2oks1DuYfrDahZ2ZnVthK79a2W6UJPbldMj3ie9Rz8N6Y0LLEX0Y+LoFXNoi6L2j7TlTez96TUI/EV0ZV+WHfD2WmlC7PXE5eoTu5qkubLmW+FQxNGkqH2MiYllmkRa6VXk1fevH020DtYtpV2u1S3Hrv2qartdJNkxOhiX818DXlk3s6ZefgxuASeUVdMr2B9nWOPdyOFB4p6SIq/lawbve6kvX9OvdzdYh6uG8FA7sOpFV0w3xQhUrukdxq+9IzczJLzrQuFiVR1c546RHfg/iYeJ+OzJjwitDE/5/AX7zHSVQ+9bEbzWlO+/7D+/lq+1cl5ScWpy9m58GdgCtLO7j74DJTSvt07ONLF1FNWunbs7ez73DwNzCIbxVf7YwXa6WbSBehiX8zrsZMKo3xdOqGoqps3b+1TPmJZduXlVyAIiEugWFJw0q+FQxLGkan1p3qtc/6tNK7te1W7YwXa6UbU70ITfymMgVFBazatarMiWZrstaUlMQ9utPRJd8KhicP54SuJxDTIoYiLSLrYFa1A6QVtdLbtmpbbULv2rZrwAltxpj6aFSJX0TGA38CooG/qeojVW1vib9hHMg7wNLtS8tcuyAzx01PbRXdiq5turIjZ0dJSYpiglQ546X43s5FMKZhNZrELyLRwAZgHG6U9SvgalVdU9lrLPH7Q1XJyM5wYwUZS8jMySx/QYx2SXRr281a6cY0QpUlfj/+W4cB36nqJgAReRm4EKg08Rt/iAjJ7ZJJPj6ZS4+/1O9wjDEh4sdUliRcEYpi6d6yMkRkqogsFZGlWVnBxcmMMcbUlR+Jv6J5g+X6m1R1hqqmqWpaYmJiA4RljDGRwY/En4473bVYMu6qBsYYYxqAH4n/K+AYEektIq2Aq4C3fIjDGGMiUoMP7qpqgYj8AngfN53zOVVd3dBxGGNMpPJlDp6q/hv4tx/7NsaYSNd8CtQYY4ypEUv8xhgTYZpErR4RycIV0G8KEoDdfgcRJs352KB5H58dW9NVn+NLVdVy8+GbROJvSkRkaUWnSDcHzfnYoHkfnx1b0xWO47OuHmOMiTCW+I0xJsJY4g+9GX4HEEbN+digeR+fHVvTFfLjsz5+Y4yJMNbiN8aYCGOJ3xhjIowl/hAQkZ4islBE1orIahG51e+YQk1EokXkaxH5l9+xhJqIdBCRuSKyzvsdjvA7plARkdu9v8lVIjJHRGL9jqk+ROQ5EdklIqsClnUSkQ9EZKN339HPGOuqkmN7zPu7XCkir4tIh1DsyxJ/aBQAv1LV44CTgP8UkeN9jinUbgXW+h1EmPwJeE9VjwVOoJkcp4gkAbcAaaraH1cU8Sp/o6q3F4DxQcvuBuar6jHAfO95U/QC5Y/tA6C/qg7EXbL2nlDsyBJ/CKhqpqou9x5n4xJHuauKNVUikgycC/zN71hCTUTaAaOBZwFUNV9V9/kbVUi1AFqLSAsgjiZ+7QtVXQTsDVp8ITDTezwTuKhBgwqRio5NVeepaoH39Evc9UvqzRJ/iIlIL2AwsNjfSEJqOvBroMjvQMKgD5AFPO91Zf1NRNr4HVQoqGoG8DiwFcgE9qvqPH+jCouuqpoJrhEGdPE5nnCZDLwbijeyxB9CItIWeBW4TVUP+B1PKIjIecAuVV3mdyxh0gIYAjytqoOBgzTdroIyvL7uC4HeQA+gjYhM8DcqUxcici+uS/nFULyfJf4QEZGWuKT/oqq+5nc8ITQSuEBENgMvA6eJyGx/QwqpdCBdVYu/oc3FfRA0B2cAP6hqlqoeAV4DTvY5pnDYKSLdAbz7XT7HE1Iici1wHvBTDdGJV5b4Q0BEBNdHvFZVn/A7nlBS1XtUNVlVe+EGBheoarNpNarqDmCbiPTzFp0OrPExpFDaCpwkInHe3+jpNJOB6yBvAdd6j68F3vQxlpASkfHAXcAFqpobqve1xB8aI4GJuNbwCu92jt9BmRq7GXhRRFYCg4Df+RxPSHjfYuYCy4Fvcf/vTbq8gYjMAb4A+olIuohMAR4BxonIRmCc97zJqeTY/gzEAx94eeWZkOzLSjYYY0xksRa/McZEGEv8xhgTYSzxG2NMhLHEb4wxEcYSvzHGRBhL/MYAIqIiMivgeQsRyaprNVKv4udNAc/HNMfKpqZpssRvjHMQ6C8irb3n44CMerxfB+CmarcyxgeW+I0p9S6uCinA1cCc4hVezfc3vLroX4rIQG/5NK+O+kcisklEbvFe8ghwlHfSzWPesrYBdf9f9M6mNabBWeI3ptTLwFXexUoGUrbC6m+Ar7266P8F/D1g3bHAWcAw4H6vbtPdwPeqOkhV7/S2GwzcBhyPqwo6MpwHY0xlLPEb41HVlUAvXGv/30GrRwGzvO0WAJ1FpL237h1VzVPV3bgCYV0r2cUSVU1X1SJghbcvYxpcC78DMKaReQtXw34M0DlgeUXdMsX1TvIClhVS+f9VTbczJqysxW9MWc8BD6jqt0HLFwE/BTdDB9hdzTUXsnHFtYxpdKzFYUwAVU3HXYM32DTcVbpWArmUlgGu7H32iMhn3oWz3wXeCXWsxtSVVec0xpgIY109xhgTYSzxG2NMhLHEb4wxEcYSvzHGRBhL/MYYE2Es8RtjTISxxG+MMRHm/wExLh/KZgtKMgAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Jeremy Lamb will have 12 points, 5 rebounds, 2 assists, 0 steals against OKC.\n"
     ]
    }
   ],
   "source": [
    "stat_predictor(\"Jeremy Lamb\", \"OKC\",\"Dec\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXhV1bn48e+bGZIQhgAyB0RAZAgUEQplcBbB2YJVFEVxqhav9Ve997mKU7XWOtByHVpBnKBWxeKMAha0DgVkFChqUcOYEIYMJCHJ+/tj7SQn80lyTk6S836eZz9nz3vt5Jx3rb3W3muLqmKMMSZ8RIQ6AcYYYxqXBX5jjAkzFviNMSbMWOA3xpgwY4HfGGPCjAV+Y4wJMxb4TVCJyPMi8oA3/jMR2V7P/TwtIv8b2NT5ddwtIjKhsY/b2ERkhoh8Eup0mMZhgb+JEJGxIvJPETksIpki8qmInOwtq9OPUkRSRERFJMqPdWeISJGIZIvIERFZLyKTG3Iu1VHV1ara3880lTtfVb1BVe8PRrpqOraqnqSqHwf7uHXl/X9zvP9bhogsEpG2fm7r9/cjlCp8N7NF5DsRubHCOrEi8pCI/CAiR0Vkh4jcISLis85JIrJMRA6KyCERWSsikxr/jJoOC/xNgIi0Ad4G/gi0B7oB9wL5jZSEz1Q1AWgLPAe8KiLtq0hnkw4UYWio93/rA7QD5oQiESISGcTdf6aqCd55XgI8IiLDfJb/DTgNmAQkAtOBWcCTPuu8BXwIdAY6AbcCR4KY5ibPAn/T0A9AVRepapGqHlXVZaq6UUROBJ4GRnulnkMAInKuiHzlldJ/FJE5Pvtb5X0e8rYZ7U8iVLUYmA+0AvqIyAQRSROR34jIXmCBd+zJ3pXBIe8qZUjJPkRkmIisE5EsEfkrEOezbIKIpPlM9xCRN0QkXUQOiMifajjf0iojb/o6EfnGuzpaKiJdfZapiNzglf4Oisg83xJgXYjIThE53RufIyJ/E5GXvPPbJCL9ROQuEdnv/R/O9Nn2YxF5wPsbZYvIWyLSQURe9v5v/xKRFG/deSLyhwrHfktEZteWRlU9AiwFBlaVbp+0v+RN1vr9EJEBIvKh9/fdLiI/91n2vIg8JSLvikgOMLHCttNEZE2FebeJyFJvfJKIfO39DXeJyK9rO0fvPNcBW4ETvf2cBpwJXKyqm1W1UFU/B64AbhaRviKSDPQG/qyqBd7wqaqGdbWWBf6m4d9AkYgsFJFzRKRdyQJV3QrcQFnJp+RyPge4EldKPxe4UUQu8JaN8z7bett85k8ivBL9tUA2sMObfRzuKqQXMEtEhuMyh+uBDsAzwFLvkjsGeBN40dvmb8DF1RwrEneV8z2QgrvKWVzD+fpueyrwEPBzoIu3j8UVVpsMnAwM9dY7y9u2p5dh9fTnb1KFKd75tQO+Aj7A/Y66Affh/h6+puFKod2A44HPcBloe1wQu8dbbyFwmYhEeOlMxpVkF9WWIO/7cgHwuZ/nUOP3Q0TicSXkV3Al5MuA/xORk3xW+wXwIK6UXTGILgX6i8gJFdZ/xRt/DrheVROBQcAKfxItruqzH1CSqZwBfKGqP/qup6pfAGm4v98B4BvgJRG5QEQ6+3Osls4CfxPgldjGAgr8GUj3SrHVfklV9WNV3aSqxaq6ERcgxtczCaO8kvVe3I/8QlU97C0rBu5R1XxVPQpcBzyjql94VycLcVVSo7whGnhCVY+p6mvAv6o55kigK3CHquaoal4dSmGXA/NVdZ2q5gN34a4QUnzWeVhVD6nqD8BKIBVAVX9Q1bbe/PpYraofqGohLmPr6B3rGC7zSZHyde0LVPVb7+/5HvCtqn7ks/0wL11fAodxwQpchvGxqu6rIS3rvP9bBtCTyplOfU0GdqrqAq8UvQ54HVfVUuLvXsm5WFXzfDdW1Vzg77jvEl4GMACXIQAcAwaKSBtVPejtvzqjvIw6G/gSl+mWFEqSgT3VbLcHSFbXGdlEYCfwB2CPiKyqkCmFHQv8TYSqblXVGaraHVcK6go8Ud36InKKiKz0qkkO40rJyfU8/OdeMExW1VGq+pHPsvQKP+xewO3ej/GQF3h6eOntCuzS8j3/fV/NMXsA33sBsK66+u5XVbNxJbtuPuvs9RnPBRLqcZyq+Abio0CGqhb5TFPhWBXXrzjtu+5CXDUF3ueLtaRluHdFFAc8BawWkbhatvFHL+CUCv/jy3FXfyV+rHrTUq/gBX5caf9NL0MAdxU4CfheRP5RVVWTj5LvZoJ3/JOA33rLMnBXfFXp4i1HVdNU9Zeqerx3bjnAC7Wkv0WzwN8Eqeo24HlcBgDuSqCiV3AlqB6qmoSrF5ca1q93cipM/wg86P0YS4bWqroIV8rqVqE+vboqlR+BnlJ1g3Ft6d+N+wEDpVUTHYBdtWzX1L0EnC8iQ3H12G/6s5F3tfEXXF12yXcmB2jts5pv0K7t7/sj8I8K/+MEVfW9o6a2fSwDkkUkFZcBlFTzoKr/UtXzcdVIbwKv1rKvku324a48pnizPsJlUD181xORkbiCRaUqJK9aaB5lf6ewZIG/CfAa0m4Xke7edA/cj6WkznYf0N2rQy+RCGSqap73Rf+Fz7J0XBVNnyAk98/ADd4Vh4hIvLiG5kRc/XUhcKuIRInIRbgqnap8icsoHvb2ESciY7xlVZ2vr1eAq0UkVURicSXAL1R1Z4DOMSRUNQ1XNfYi8LpXtVYrr73katwVxHfe7PXANBGJFpERlK+mqe378TbQT0Sme9tHi8jJ4hre/T2XQuA14Pe49owPvbTGiMjlIpLkZVhHgKLq91TuPDsAFwJbvGN8BCwHXhd3y2akiIwCXgaeUtUdItJORO71GnojvLaTa/C/PaRFssDfNGQBpwBfeHdJfA5sBm73lq/Afdn3ikiGN+8m4D4RyQLuxqfU5F1SPwh86l2qjwpUQlV1Da6e/0/AQVzD2QxvWQFwkTd9EJgKvFHNfopwJbe+wA+4xrip3uKqztd32+XA/+JKf3twjabT/Em/17ibXUvjbihfUrEQGEzt1TwAG7y674PAVbi2mUxv2f/i/i4HcbcG+5a4a/x+qGoW7m6Zabirq73A74DYOp7LK8DpwN8qVOlNB3aKyBFcFeUVVW3sKbm7KxvXGJ4O3OKz/GJcG877uJsSXsI1HpesU4C7eeAjXCazGdcmNaOO59KiiNqLWIwpJSK3Aqeq6gW1rhyc44/DBa8U7/ZaYwLOSvzGeLyG0fMpu12wsY8fDfwK+IsFfRNMFvjDgLh+brKrGJ4OddqaChEZjKvSOIKrxmrs458IHMLdjVLt3VzGBIJV9RhjTJixEr8xxoSZZtHpVnJysqakpIQ6GcYY06ysXbs2Q1U7VpzfLAJ/SkoKa9aEpL3NGGOaLRGp8sl5q+oxxpgwY4HfGGPCjAV+Y4wJM82ijt8Y03IcO3aMtLQ08vLyal/Z+CUuLo7u3bsTHR3t1/oW+I0xjSotLY3ExERSUlKQ+r0YzfhQVQ4cOEBaWhq9e/f2axur6jHGNKq8vDw6dOhgQT9ARIQOHTrU6QrKAr8xptFZ0A+suv49LfAbY0wTVFgIP/wARX69raBuLPAbY8JOZGQkqampDBo0iEsvvZTc3Nwa1//pT39a6z6feOKJWvfjr5wc2LoV9u+HrKyA7LIcC/zGmLDTqlUr1q9fz+bNm4mJieHpp2vuqPaf//xnrfsMROBXdcF+2zY3PmAAtG3boF1WyQK/MSas/exnP+Obb74B4LHHHmPQoEEMGjSIJ54o6x07ISEBgI8//pgJEyZwySWXMGDAAC6//HJUlblz57J7924mTpzIxIkTKSoqYsaMGQwaNIjBgwfz+OOP15qOoiL47jtXvdOmDQwcCN5hA85u5zTGhMzs2bB+fWD3mZoKT/j5RoPCwkLee+89zj77bNauXcuCBQv44osvUFVOOeUUxo8fz7Bhw8pt89VXX7Flyxa6du3KmDFj+PTTT7n11lt57LHHWLlyJcnJyaxdu5Zdu3axefNmAA4dOlRjOnJz4dtvIT8funWD446DYLZ/W4nfGBN2jh49SmpqKiNGjKBnz57MnDmTTz75hAsvvJD4+HgSEhK46KKLWL16daVtR44cSffu3YmIiCA1NZWdO3dWWqdPnz5899133HLLLbz//vu0adOmynSoQnq6q88vLob+/aFLl+AGfbASvzEmhPwtmQdaSR2/L39fShUbW/bO+cjISAoLCyut065dOzZs2MAHH3zAvHnzePXVV5k/f365dYqK4PvvITPTVe307g1+PnjbYFbiN8YYYNy4cbz55pvk5uaSk5PDkiVL+NnPfub39omJiWR5t+BkZGRQXFzMxRdfzP3338+6devKrZub60r5mZmuaueEExov6IOV+I0xBoDhw4czY8YMRo4cCcC1115bqX6/JrNmzeKcc86hS5cuPPHEE1x99dUUFxcD8NBDDwGuaicjwzXgRkW5qp3ExMCfS22axTt3R4wYofYiFmNahq1bt3LiiSeGOhmNrqjIBfwDB1yw79MnsKX8qv6uIrJWVUdUXNdK/MYYE2RHj7q7dvLyoGvXxmnArYkFfmOMCaKSqp2ICOjXzzXkhpoFfmOMCYKKVTu9e0NMTKhT5VjgN8aYADt61D2Fe/Soq9bp2jW0VTsVWeA3xpgAOnDA3Z8fEeFu00xKCnWKKrPAb4wxAVBc7Kp2MjJcHzt9+jSdqp2K7AEuY0zY8e2WecqUKbX2pbNz504GDRpU7fK8PPdAVkaG62enf/+GB/05c+bw6KOPNmwn1Qha4BeRHiKyUkS2isgWEfmVN3+OiOwSkfXeMClYaTDGmKr4dsvcvn175s2bV+99ZWbC11/DsWOuaqd796ZVn1+VYJb4C4HbVfVEYBRws4gM9JY9rqqp3vBuENNgjDE1Gj16NLt27Sqd/v3vf8/JJ5/MkCFDuOeee0rnFxYWctVVVzFkyBAuueQSsrNz+f57WLx4OVdcMYwrrhjMbbddQ35+PgApKSlkZGQAsGbNGiZMmAC4kvw111zDhAkT6NOnD3Pnzi09xoMPPkj//v05/fTT2b59e+n8uXPnMnDgQIYMGcK0adMafM5Bq+NX1T3AHm88S0S2At2CdTxjTDMU4n6Zi4qKWL58OTNnzgRg2bJl7Nixgy+//BJV5bzzzmPVqlX07NmT7du389xzzzFmzBiuuuoa7r33/7jggl/ywAMzWLFiOQMG9OPKK6/kqaeeYvbs2TUed9u2baxcuZKsrCz69+/PjTfeyMaNG1m8eDFfffUVhYWFDB8+nJ/85CcAPPzww/znP/8hNja21mopfzRKHb+IpADDgC+8Wb8UkY0iMl9E2lWzzSwRWSMia9LT0xsjmcaYMFHSLXOHDh3IzMzkjDPOAFzgX7ZsGcOGDWP48OFs27aNHTt2ANCjRw/GjBlDZiaMHn0Fa9Z8QnHxdvr27c2AAf0AuOqqq1i1alWtxz/33HOJjY0lOTmZTp06sW/fPlavXs2FF15I69atadOmDeedd17p+kOGDOHyyy/npZdeIiqq4eX1oN/VIyIJwOvAbFU9IiJPAfcD6n3+Abim4naq+izwLLi+eoKdTmNMCISoX+aSOv7Dhw8zefJk5s2bx6233oqqctddd3H99deXW3/nzp2ICN9/7/rPj42FNm2ExMTqQ1NUVFRpJ215eXnlllXXtbNU0zjwzjvvsGrVKpYuXcr999/Pli1bGpQBBLXELyLRuKD/sqq+AaCq+1S1SFWLgT8DI4OZBmOMqU5SUhJz587l0Ucf5dixY5x11lnMnz+f7OxsAHbt2sX+/fs5fBh++OEHli//jM6d4dNPFzFu3FgGDBjAzp07S1/d+OKLLzJ+/HjA1fGvXbsWgNdff73WtIwbN44lS5Zw9OhRsrKyeOuttwAoLi7mxx9/ZOLEiTzyyCMcOnSoNH31FbQSv7is6zlgq6o+5jO/i1f/D3AhsDlYaTDGmNoMGzaMoUOHsnjxYqZPn87WrVsZPXo0APHxCTz44Evk5ETSp8+JfPrpQp544npOOOEEbrzxRuLi4liwYAGXXnophYWFnHzyydxwww0A3HPPPcycOZPf/va3nHLKKbWmY/jw4UydOpXU1FR69epV+i6AoqIirrjiCg4fPoyqctttt9G2gW9gD1q3zCIyFlgNbAKKvdn/DVwGpOKqenYC1/tkBFWybpmNaTmaQ7fMqrB/P5Tc7NO1K3Tq5J7GbaqaRLfMqvoJUFWFld2+aYxpsnJzXZcLOTmuJ81evVydfktiXTYYYwyuN83du2HfPvd2rD59oF27pv8wVn1Y4DfGhL3Dh10pv6AAkpPd07cBuGuyyWrBp2aMMTUrKIAff4SDByEuLnTvwG1sFviNMWFH1d2Pv2uX61Wza1fXuVpTbrwNJAv8xpiwcvQo7NzpGm8TE13jbVxcqFPVuMIkfzPGhLviYkhLcz1p5ufDli1LGDBA2LlzW533dffdd/PRRx9Vu/zNN9/k66+/bkhyg8oCvzGmxTtyBLZsgb17oX17OOkkeOedRYwdO5bFixfXeX/33Xcfp59+erXLLfAbY0yIHDvm3n3773+76X793EvP8/Oz+fTTT3nuuedKA/+ePXsYN25c6QtaVq9eTVFRETNmzGDQoEEMHjyYxx9/HIAZM2bw2muvAXDnnXeWdpn861//mn/+858sXbqUO+64g9TUVL799tuAd6vcUFbHb4wJmdnvz2b93sB2y5x6XCqPn/UEGRmuaqe42L3wvEuXssbbN998k7PPPpt+/frRvn171q1bx8qVKznrrLP4n//5H4qKisjNzWX9+vXs2rWLzZtdzzIVu0TOzMxkyZIlbNu2DRHh0KFDtG3blvPOO4/JkydzySWXAIHvVrmhrMRvjGlRCgth+3Z3X36rVjBwIHTrVv6OnUWLFpWWvKdNm8aiRYs4+eSTWbBgAXPmzGHTpk0kJibSp08fvvvuO2655Rbef/992rRpU+5Ybdq0IS4ujmuvvZY33niD1q1bV5mmQHer3FChT4ExJmw9cXbgumUuLnZ1+Hv2uDt3evVyD2NVfPL2wIEDrFixgs2bNyMiFBUVISI88sgjrFq1infeeYfp06dzxx13cOWVV7JhwwY++OAD5s2bx6uvvsr8+fNL9xUVFcWXX37J8uXLWbx4MX/6059YsWJFpbQFulvlhmrRgb+gwD19Fy735hoTrrKyXAk/L8813vboAdHRVa/72muvceWVV/LMM8+Uzhs/fjyrVq1izJgxXHfddeTk5LBu3TomTZpETEwMF198MccffzwzZswot6/s7Gxyc3OZNGkSo0aNom/fvgAkJiaSlZUFlO9WeezYsbzyyitkZ2c3uIfNhmjRgf/hh2HJErj3XpgypWX2uWFMuCoudrdl7tsHGRmuI7UTToCkpJq3W7RoEXfeeWe5eRdffDEzZswgPj6e6OhoEhISeOGFF9i1axdXX3116QtVHnrooXLbZWVlcf7555OXl4eqljb+Tps2jeuuu465c+eyePFiZs6cGdBulRsqaN0yB1J9u2X+29/grrvg22/hJz9xGcCkSZYBGBNK9emWubDQVd/k5pb/VHW/586d3dO34Xx13yS6ZW4KLr0ULrwQXnoJ7rsPJk+GkSNdBnDWWZYBGNPUqLoq2pLgXhLg8/PL1omKgtatXbBv1QoSElpet8nB1qIDP7gvyYwZcPnl8MILcP/9cM45MHq0ywBOP90yAGNCobjY1cn7luJzc133yCXi4lyQT052n61aubp7+802TIsP/CWio2HmTJg+HRYsgAcfhDPPhLFj3dXAxImhTqExLVdmJmzYAOvXw4gR7inavDxXwgdXRdOqlWuYbdWqLMhHRoY23S1V2AT+EjExcP317irguedcBnDqqTBhgrsCGDcu1Ck0pvkqLnYdoK1fXzZs2AA//FC2zrJl7neYlOQCfOvWrqrGSvGNJ+wCf4nYWLjpJrjmGnj2WXjoIRg/Hk47zWUAY8aEOoXGNG15ea7k7hvkN250/eKAK8UPGOCuqlNT3TB0KBw44O6+MaETtoG/RFwc3HorXHcdPP20uwV07FhXDXTvvTBqVKhTaEzopaeXVdWUDNu2ldXHJyS4oD59elmQP+kkV11T0YEDjZt2U1nYB/4SrVrBbbfBrFnw1FPwu9+5BuBzznEZwMknhzqFxgRfcTF8801ZFU1JkN+9u2ydHj1ckL/wwrIg37t387uV8sEHH+SVV14hMjKSiIgInnnmGT777DNmzZpVbdcLtZkxY0a5PnqaKgv8FcTHw69/DTfcAPPmwSOPuFtAp0yBOXNg+PBQp9CYwMjNhU2bygf5jRvdC0rA3RE3cKC7823o0LKqmg4dQpvuQPjss894++23WbduHbGxsWRkZFBQUMDUqVO54oor6h34mwsL/NVISIDf/AZuvBH++Ef4wx/cQ2AXXOAygKFDQ51CY/y3d2/lBtd//9uV8ME1tKamwrXXlgX4gQNb7v3xe/bsITk5mVjvBJOTk5k7dy67d+9m4sSJJCcns3LlSpYtW8Y999xDfn4+xx9/PAsWLCAhIYH77ruPt956i6NHj/LTn/6UZ555BqnQOn3nnXeydOlSoqKiOPPMM3n00UdDcapVatFP7gbS4cPw5JPw2GNu/OKLXQYwaFBIk2VMOYWFsGNH+SC/fj3s31+2TkpKWRVNSZDv1avx7qop/4TpbCCw3TJDKlBz52/Z2dmMHTuW3NxcTj/9dKZOncr48eNJSUlhzZo1JCcnk5GRwUUXXcR7771HfHw8v/vd78jPz+fuu+8mMzOT9u3bAzB9+nR+/vOfM2XKlNKqnlNPPZXRo0dX6q45mOzJ3SBISoK773YNwY8/7oY33oCf/xzuuQfq+AS6MQ2WleWqZnzr4jdtcnfbgLtlctAgOPfcsiA/ZAiEuJuYJiEhIYG1a9eyevVqVq5cydSpU3n44YfLrfP555/z9ddfM8a7xa+goIDRo0cDsHLlSh555BFyc3PJzMzkpJNOYsqUKaXb+nbXfO655zJ58uTGOzk/WOCvo7ZtXWPvr37lSv9PPgmvvgqXXeYyhv79Q51C09Kowq5d5atp1q93jbAlOnRwgf3mm8vq4wcMqL6HyqYjcN0y11VkZCQTJkxgwoQJDB48mIULF5ZbrqqcccYZLFq0qNz8vLw8brrpJtasWUOPHj2YM2cOeSW5rcff7ppDxQJ/PbVvDw88ALNnw6OPunaAxYvh/PPdswFnn+0ax4ypi2PH3G2SFevjfW+B7NvXBfYZM8qCfLdu9gBUXWzfvp2IiAhO8B4oWL9+Pb169WLnzp1kZWWRnJzMqFGjuPnmm/nmm2/o27cvubm5pKWl0alTJ8C1C2RnZ/Paa69Vuounuu6amwoLTQ2UnOzu/f+v/3JXAAsWuK6gjzsOrrwSrr7albyMqejQIVdV4xvkt2xxnZSBe8Zk8GC46KKyuvghQyAxMbTpbgmys7O55ZZbOHToEFFRUfTt25dnn32WRYsWcc4559ClSxdWrlzJ888/z2WXXUa+10vcAw88QL9+/bjuuusYPHgwKSkpnFzFvd7VddfcVAStcVdEegAvAMcBxcCzqvqkiLQH/gqkADuBn6vqwZr21RQad/117Bi8+67LAN5+2z3gMmqUuwqYOhUqvLnNhAFV95KQivfG79xZtk6nTuUbXFNT3dOtLfGqsT7dMpva1aVxN5iBvwvQRVXXiUgisBa4AJgBZKrqwyJyJ9BOVX9T076aU+D3tW+f6xJ6/nz4+mv3kNgll7irgPHjm98DL6Z2+fnuf10xyB8+7JaLuHagkiqakuG440Kb7sZkgT84msRdPaq6B9jjjWeJyFagG3A+MMFbbSHwMVBj4G+uOneG22931UD/+pe7Cli0CF580T3pOGMGXHWVu5XOND8HDpQP7hs2uKBfWOiWt27tAvwvflEW6AcNcg8JGhNKjXIhKSIpwDDgC6CzlymgqntEpFNjpCGURNzTvyNHunaAJUtcJjBnjhtOO81dBVx4YdV9m5jQKi6G//yncoPrjz+WrdO1qwvskyeX1ccff7x1K1wdVa30wJOpv7rW3AQ98ItIAvA6MFtVj/j7zxaRWcAsgJ49ewYvgY2sVStXAvzFL1y978KF8Pzz7kUxSUnuttCrr3Z9A9nvovEdPVq5x8kNGyA72y2PjHSN9ePGlX8AqmPH0Ka7OYmLi+PAgQN06NDBgn8AqCoHDhwgLi7O722C+uSuiEQDbwMfqOpj3rztwASvtN8F+FhVa7z7vbnW8furuBj+8Q93FfDaay74nHSSywCuuMJVGZnA27+/cl38tm1l3RgkJlauiz/pJHe3jam/Y8eOkZaWVuned1N/cXFxdO/enegKD26EonFXcHX4mao622f+74EDPo277VX1/9W0r5Ye+H0dPuweCJs/Hz7/3N3Vce657q6gc85pDg/kND1FRWU9TvoG+j17ytbp2bOs9F4S5FNSrAHeNG+hCPxjgdXAJtztnAD/javnfxXoCfwAXKqqmTXtK5wCv6+tW91VwIsvuk62OnVy/Z1ffbUreZrKcnLKepz07cYgN9ctj4pyfzvfID90qHsgz5iWptEDfyCFa+AvUVgI77/vrgLeestNjxzp7gqaNCk87wpSdSX2ii8H2bGj7D2ubdtW7ozsxBNbbo+TxlRkgb+FSE+Hl192mcCmTW5e797uZfElQ7duoU1joBUWwvbtlevj09PL1unTp3J9fI8e1kBuwpsF/hZG1d19smIFrFzpGocPes8/9+tXlglMmNC8GoePHCnrxqAkyG/a5B6MAldaHzSofJAfMsTdEWWMKc8CfwtXVOQC5sqVZRlBVpZbNnBg+YygKbxBSRXS0irfNvntt2XrJCeXr6ZJTXVPvVoDtzH+scAfZgoLYd26sozgk0/KXqk3dGhZRjBuXPD7Zy8ocA3VFevjS65QRMp6nPQN9F27WlWNMQ1hgT/MHTvmuo0oyQg+/dS9sCMiAoYNc5nAqafC2LEN6/3x4EEX4H2D/JYt7vjgHmAbPLh8kB882L3q0hgTWBb4TTn5+e45gZKM4PPPXck8MtI9NVxyRTBmjOtzpiJV1403wacAABMgSURBVLtkxQbX778vW+e44yo3uJ5wgnVjYExjscBvapSbC599VpYRfPmlqy6KjoZTTnGZQM+eZa/627ChrMfJiAhX917x3vhw6nHSmKbIAr+pk+xs1y5QkhGsXeu6MoiPL1+KHzrU3WVT1VWBMSa07GXrpk4SEtzrI88+200fPgwZGe6ZAevGwJjmzQK/8UtSkt0rb0xLYWU3Y4wJMxb4jTEmzFjgN8aYMGOB3xhjwowFfmOMCTMW+I0xJsxY4DfGmDBjgd8YY8KMBX5jjAkzFviNMSbMWOA3xpgwY4HfGGPCjAV+Y4wJMxb4jTEmzFjgN8aYMGOB3xhjwowFfmOMCTMW+I0xJsz4FfhF5Fci0kac50RknYicGezEGWOMCTx/S/zXqOoR4EygI3A18HBNG4jIfBHZLyKbfebNEZFdIrLeGybVO+XGGGPqxd/AL97nJGCBqm7wmVed54Gzq5j/uKqmesO7fh7fGGNMgPgb+NeKyDJc4P9ARBKB4po2UNVVQGYD02eMMSbA/A38M4E7gZNVNReIwVX31McvRWSjVxXUrrqVRGSWiKwRkTXp6en1PJQxxpiK/A38H6rqOlU9BKCqB4DH63G8p4DjgVRgD/CH6lZU1WdVdYSqjujYsWM9DmWMMaYqUTUtFJE4oDWQ7JXOS+r12wBd63owVd3ns+8/A2/XdR/GGGMapsbAD1wPzMYF+bWUBf4jwLy6HkxEuqjqHm/yQmBzTesbY4wJvBoDv6o+CTwpIreo6h/rsmMRWQRMwF0tpAH3ABNEJBVQYCcuYzHGGNOIaivxA6CqfxSRQcBAIM5n/gs1bHNZFbOfq3MKjTHGBJRfgV9E7sGV3gcC7wLnAJ8A1QZ+Y4wxTZO/d/VcApwG7FXVq4GhQGzQUmWMMSZo/A38R1W1GCgUkTbAfqBP8JJljDEmWPyq6gHWiEhb4M+4u3uygS+DlipjjDFB42/j7k3e6NMi8j7QRlU3Bi9ZxhhjgsXfbpmXl4yr6k5V3eg7zxhjTPPRqE/uGmOMCb26PrlbIot6PLlrjDEm9Gqr6vkn8FPg16raB7gX183CP4BXgpw2Y4wxQVBb4H8GyPee3B0HPAQsBA4DzwY7ccYYYwKvtqqeSFUteZnKVOBZVX0deF1E1gc3acYYY4KhthJ/pIiUZA6nASt8lvn7DIAxxpgmpLbgvQj4h4hkAEeB1QAi0hdX3WOMMaaZqa1b5ge9+/W7AMtUVb1FEcAtwU6cMcaYwKu1ukZVP69i3r+DkxxjjDHB5m8nbcYYY1oIC/zGGBNmLPAbY0yYscBvjDFhxgK/McaEGQv8xhgTZizwG2NMmLHAb4wxYcYCvzHGhBkL/MYYE2Ys8BtjTJixwG+MMWHGAr8xxoQZC/zGGBNmghb4RWS+iOwXkc0+89qLyIcissP7bBes4xtjjKlaMEv8zwNnV5h3J7BcVU8AlnvTxhhjGlHQAr+qrgIyK8w+H1jojS8ELgjW8Y0xxlStsev4O6vqHgDvs1N1K4rILBFZIyJr0tPTGy2BxhjT0jXZxl1VfVZVR6jqiI4dO4Y6OcYY02I0duDfJyJdALzP/Y18fGOMCXuNHfiXAld541cBf2/k4xtjTNgL5u2ci4DPgP4ikiYiM4GHgTNEZAdwhjdtjDGmEUUFa8eqelk1i04L1jGNMcbUrsk27hpjjAkOC/zGGBNmLPAbY0yYscBvjDFhxgK/McaEGQv8xhgTZizwG2NMmLHAb4wxYcYCvzHGhBkL/MYYE2Ys8BtjTJixwG+MMWHGAr8xxoQZC/zGGBNmLPAbY0yYscBvjDFhxgK/McaEGQv8xhgTZoL26kVjjGnSVKGoCIqLyz59x6tb5ju/McanTIFevQJ66hb4TdOl6obi4sqf1Y37O6+lbdPc0hvobWoL1lV9Nhd9+1rgr5MXXoCPPnLjqmXzS8armlfX8Zrm+X76O6+uy6qbDtb8xvzxm4aLiAAR9+k7XtW82pYHepvIyMDsp2RfkZFuXsVPf+fVZZnv/GCPJyUF/GvRsgP/N9/AJ5+UTYtUHq9qXl3Ha5rn++nvvLouq2ra90dRcb2GzC/58jf0x98UAk9T3CaQ+/H9XhrjQ9S3xNpEjRgxQtesWRPqZBhjTLMiImtVdUTF+XZXjzHGhBkL/MYYE2Ys8BtjTJixwG+MMWHGAr8xxoSZkNzOKSI7gSygCCisqtXZGGNMcITyPv6JqpoRwuMbY0xYsqoeY4wJM6EK/AosE5G1IjKrqhVEZJaIrBGRNenp6Y2cPGOMablCFfjHqOpw4BzgZhEZV3EFVX1WVUeo6oiOHTs2fgqNMaaFCkkdv6ru9j73i8gSYCSwKtDH+evmv/Llri/pktiFrold6ZLgfSZ2ITEmEbG+TIwxYajRA7+IxAMRqprljZ8J3BeMY63ds5an1jzF0cKjlZbFR8dXzhB8MoaS6TaxbSyDMMa0KI3eSZuI9AGWeJNRwCuq+mBN2zSkkzZV5Uj+EfZk72F31m72ZHmf2eU/d2ftJvdYbqXtW0e3Lp8hJLjPiplEUmySZRDGmCaluk7aGr3Er6rfAUMb63giQlJcEklxSQxIHlBTusgqyKqcMWTtYXe2+/xqz1e8k/UOOcdyKm0fFxVH18SuHJdwHJ3jO5f/TCib7pzQmdbRrYN5ysYYU6OW3R9/HYgIbWLb0Ca2Df2T+9e4blZ+VrVXEHuz97L9wHb+8f0/yDyaWeX2iTGJ5TID30yhYoYRFxUXjNM1xoQxC/z1kBibSGJsIv069KtxvYKiAvbn7Gdf9j72Zu9lX86+cuN7s/eyJX0LK/6zgoN5B6vcR1JsEp0TOld5FdE5vjOd4jvRMb4jneI7ER8db9VNxphaWeAPopjIGLq36U73Nt1rXTe/MJ/9OfurzSD25exjw74N7Mvex+H8w1XuIy4qjo6tO5ZmBqXjrTuWZg6+45ZRGBOeLPA3EbFRsfRI6kGPpB61rptXmMe+7H3sy9lHek46+3P2k56b7sZz95Oek056bjpfp39Nek56lXc1gWUUxoQrC/zNUFxUHL3a9qJX215+rZ9TkFMuc0jP9TIL3/HcdLamb2V/zv5qM4qYyJjSdpCk2KTS8boOraJaWQZiTAhZ4A8D8THx9I7pTe92vf1aP6cgp8rM4UDuAbIKsjiSf6R0SDuSVm46vyi/1v1HRURVnzHE1JxpJMWVZTh2BWJM/VjgN5XEx8QTHxNPStuUOm+bX5hPVkEWh/MOl8sQqhwKysb35+znm8xvSqereqaiIkHqdKVR3VVKQkwCkRGR9fhLGdM8WeA3ARUbFUtsVCzJrZMbtJ9jRccqXV34MxzKO8QPh3/gcL7LeLILsv06XkJMQo1XIb5XGtUNiTGJREdGN+i8jWkMFvhNkxQdGU37Vu1p36p9g/ZTVFxEdkG2/5mHdxVyOO8we7L2lFum1P6Ue6uoVtVXT9VSjeU7xEbFNui8jamJBX7TokVGRJY+ud0QqkrOsRy/M5CSK44j+Uf47uB3ZfPzDlOkRbUer6QhvSGN6EmxScRFxVk7iKnEAr8xfhAREmISSIhJoGti13rvR1XJK8yrU8YRiob0ilVb1pDesljgN6YRiQitolvRKroVnRM6N2hfJQ3plTKNqhrWG7EhvaarFGtIbxos8BvTTAWqIb2wuJCs/KwarzZqakgvmc4qyPLreDU1pPtbtWUN6Q1jgd+YMBcVEUW7Vu1o16pdg/ZTrMVkF2T7dytvhauQvdl7yy0r1uJaj1fSkJ4Qk+AywchYYiJjSsdjo7xpb7x0ecXpGtaval50ZDTREdFER0YTFRFVbjxSIptFlZgFfmNMQERIRGmJvCHq2pCeXZBNflE++YX55BflU1BUQHZBNgeOHig3r2Q8v9BN+9PIXh/VZQol49ER3nQV41Vtd/vo2xnSeUhA02iB3xjTpASqIb02RcVFlTIM38yhunnHio5xrPgYhcWFpePHirzpKsZL161hWX5hPtnF2VXu85rUawJ+7hb4jTFhKTIiktYRrcPyxUgtPPB/CHwNtAPae0M7n8+Y0CXNGGNCpIUH/r8Bf65heTxlGYJvplBxvOJ0AtD0G3CMMU2FAlnAQeCQ93nQz+m/AuMDmpoWHvifAh7G/fEyfYaD1Yxv9xmv6eGYKMpfOfhmDm2BNkCS99mmiulEwO5lNqZ5KQCOAIepW+A+5A01NSYLLna08xm6URZfAquFB/5IyoLy8XXc9ij+ZRYHgX3AVm/6CPjRp4u7aqguY/B3OgHLQIypjgJ5uJJ2Fu636e94VfMKajleNGWFv3ZAMnBChXntqplOBCIafMb+auGBvyFa4XLcbnXcrhjIwX1ZSkoHR/yc3u0znYV/GUgcrsqq4tC6AfNK5sfRNKu01BuKfcYbOh3IfdmxGvdYx6g+kBfin3jKrsYTvfEUn/FEn8E3aPuOt6Zp/l4qs8AfcBGUfUHqmmn48s1AasoscioMud5nOrCzwvyq36xV87n4ZgwxlP8hhiKQmKZNvCHCZzzY09GUBejjqBysaxuPJ9yunC3wN1mBykB8FVOWMVTMKKrLQHyHAoL3423MQBHKY7fk82wepV1jgT/MRODaBRJCnRBjTAg1XmuCMcaYJsECvzHGhBkL/MYYE2Ys8BtjTJgJSeAXkbNFZLuIfCMid4YiDcYYE64aPfCLSCQwDzgHGAhcJiIDGzsdxhgTrkJR4h8JfKOq36lqAbAYOD8E6TDGmLAUisDfDfjRZzqNKp5QEpFZIrJGRNakp6c3WuKMMaalC8UDXFU93lepUxpVfRZ4FkBE0kXk+2AnLECSgYxQJyJIWvK5Qcs+Pzu35qsh59erqpmhCPxpQA+f6e643smqpaodg5qiABKRNao6ItTpCIaWfG7Qss/Pzq35Csb5haKq51/ACSLSW0RigGnA0hCkwxhjwlKjl/hVtVBEfgl8gOsSb76qbmnsdBhjTLgKSSdtqvou8G4ojt0Ing11AoKoJZ8btOzzs3NrvgJ+fqLqz8s+jDHGtBTWZYMxxoQZC/zGGBNmLPAHgIj0EJGVIrJVRLaIyK9CnaZAE5FIEflKRN4OdVoCTUTaishrIrLN+x+ODnWaAkVEbvO+k5tFZJGIxIU6TQ0hIvNFZL+IbPaZ115EPhSRHd5nu1Cmsb6qObffe9/LjSKyRETaBuJYFvgDoxC4XVVPBEYBN7fA/od+BWwNdSKC5EngfVUdAAylhZyniHQDbgVGqOog3F1000KbqgZ7Hji7wrw7geWqegKw3Jtujp6n8rl9CAxS1SHAv4G7AnEgC/wBoKp7VHWdN56FCxyBelFuyIlId+Bc4C+hTkugiUgbYBzwHICqFqjqodCmKqCigFYiEgW0ppaHJZs6VV0FZFaYfT6w0BtfCFzQqIkKkKrOTVWXqWqhN/k57oHXBrPAH2AikgIMA74IbUoC6gng/+He1t7S9AHSgQVeVdZfRCQ+1IkKBFXdBTwK/ADsAQ6r6rLQpiooOqvqHnCFMKBTiNMTLNcA7wViRxb4A0hEEoDXgdmqeiTU6QkEEZkM7FfVtaFOS5BEAcOBp1R1GJBD860qKMer6z4f6A10BeJF5IrQpsrUh4j8D65K+eVA7M8Cf4CISDQu6L+sqm+EOj0BNAY4T0R24rrQPlVEXgptkgIqDUhT1ZIrtNdwGUFLcDrwH1VNV9VjwBvAT0OcpmDYJyJdALzP/SFOT0CJyFXAZOByDdCDVxb4A0BEBFdHvFVVHwt1egJJVe9S1e6qmoJrGFyhqi2m1Kiqe4EfRaS/N+s04OsQJimQfgBGiUhr7zt6Gi2k4bqCpcBV3vhVwN9DmJaAEpGzgd8A56lqbqD2a4E/MMYA03Gl4fXeMCnUiTJ+uwV4WUQ2AqnAb0OcnoDwrmJeA9YBm3C/92bdvYGILAI+A/qLSJqIzAQeBs4QkR3AGd50s1PNuf0JSAQ+9OLK0wE5lnXZYIwx4cVK/MYYE2Ys8BtjTJixwG+MMWHGAr8xxoQZC/zGGBNmLPAbA4iIisiLPtNRIpJe395IvR4/b/KZntASezY1zZMFfmOcHGCQiLTyps8AdjVgf22Bm2pdy5gQsMBvTJn3cL2QAlwGLCpZ4PX5/qbXL/rnIjLEmz/H60f9YxH5TkRu9TZ5GDjee+jm9968BJ9+/1/2nqY1ptFZ4DemzGJgmveykiGU72H1XuArr1/0/wZe8Fk2ADgLGAnc4/XbdCfwraqmquod3nrDgNnAQFyvoGOCeTLGVMcCvzEeVd0IpOBK++9WWDwWeNFbbwXQQUSSvGXvqGq+qmbgOgjrXM0hvlTVNFUtBtZ7xzKm0UWFOgHGNDFLcX3YTwA6+MyvqlqmpL+TfJ95RVT/u/J3PWOCykr8xpQ3H7hPVTdVmL8KuBzcHTpARi3vXMjCda5lTJNjJQ5jfKhqGu4dvBXNwb2layOQS1k3wNXt54CIfOq9OPs94J1Ap9WY+rLeOY0xJsxYVY8xxoQZC/zGGBNmLPAbY0yYscBvjDFhxgK/McaEGQv8xhgTZizwG2NMmPn/OzRVRWAs/6oAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Jimmy Butler will have 27 points, 6 rebounds, 2 assists, 1 steals against BOS.\n"
     ]
    }
   ],
   "source": [
    "# Predict Player's game stat by Opponent Team and game month.\n",
    "stat_predictor(\"Jimmy Butler\", \"BOS\", \"Dec\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXxU5dXA8d+ZmSyQAAGCirIEVFQEBIoK4oaKG7gvuIEIikvdaKnFt5+3pbZWaxfjggtVFDfQF8VabeuCWK1rwyIFQXFhFWQNZE8mc94/nhsyCQGSMDM3yZzv5zMfMnfu3HtmQs7z3Oc+91xRVYwxxiSPgN8BGGOMSSxL/MYYk2Qs8RtjTJKxxG+MMUnGEr8xxiQZS/zGGJNkLPGbuBKRp0Xkt97PJ4jIl43czmMi8r+xjS4+RCRHRFREQn7HYkxdLPE3ESJyvIh8JCLbRWSriHwoIkd7r40VkX83YFv1TjzetitFpFBEdojIIhEZuS+fZXdU9QNVPayeMdX4vKp6g6r+Jh5x1dr3FO+7u7XW8tu95VPiHUMdMZ3g/X4KRaTIi6Mw6tEt0TElkoiMF5ElIlIsIutFZKqItIt6/bci8nTU864iskJE7o9adpaIfCAiBSKyUUTeE5ERCf4oTYYl/iZARNoCrwMPAR2Ag4BfA2UJCuFjVc0EsoAngZdEpEMdcSZLD/Yr4Opay8Z4yxPOazAzvd/Rkd7irKplqrq6IduL9e8xnv8vROTnwN3AT4B2wFDgEOBNEUmpY/0ewPvA/6nqRG/ZZcCLwHTc31Zn3N/XufGKu8lTVXv4/AAGAfm7ee0IoBSoBAqr1gNGAAuBHcAaYErUe1YD6q1fCAzZw77HAv+Oep7hvXcQcDKwFvg5sAF41ltnJLAIyAc+AvpFvX8AsAAowP2xzQJ+6712MrA2at2uwCvAJmAL8PAePu/TVdvxnl8HfA1sBV4DDox6TYEbgBXANmAqIPX8XUwBngOWAUd6y470nj9X9T0DS4Bzot6XAmwG+gM5Xgwh77V2uAZ1PbAO+C0Q9F47BPgXsN17/4t7ia/GtqOWrwVOjnr+W+DpqH0ocI33f+PdqGVjvPduAiZHvT8A/A/wjRfXLKD97rZXR5wrgDOjnqd6v6t+QGvgBe93ng98BmTXsY32QDFwYa3lbbz3jon+rMChuL+FX9X6HOuAiX7/nTelh/X4m4avgEoRmeEdkravekFVl+GS2MfqendZ3ktFuD/aLFwjcKOInO+9dqL3b1Wv8OP6BOH13K7FJdwV3uIDcEch3YEJIjIQ13O6HugIPA68JiJpIpIKvAo8673n/4CLdrOvIO4oZxUumR0EzNrD541+7ynAPcCluN7bKlxiijYSOBo4ylvvDO+93UQkvx7DI8/ivl9wvf9nar3+DHBV1POzgfWquqiObc0AwriEOQA4Hfc9A/wGeAuX5Lrgjvri5UTgcNz/lyrHeXGdAfxaRA71lv/EW+9EL64i4MF6bK/KTODyqOdnAd+r6mJcg9Ha225H4CZcY1/bUCAE/DV6oaoWAP8EhkctrmpAH1LVX0ct7w0cCMyuY/tJyxJ/E6CqO4Djcb2ovwCbROQ1Edl/D+95T1X/q6oR749pJnBSI0MYLCL5uF795cAFqrrdey2C60GVqWoJrqf9uKp+qqqVqjoDNyQ12HukALmqWqGqs4H/7Gafx+D+IH+mqkWqWqqq9T2PcSUwXVUXqGoZcCcwRERyota5V1Xz1Q2DzMP1xFHV1aqapXsfHnkOuNwbTrjMe1779bO9YTqA0bjGogbvd3gWcLv3OTcC93vbBKjANaoHNvA7aIxfqWqx93usMsXb7wJgKa6hBNew/4+qrlPVUtyR0KUiEtjL9qq8AJwvIune8yu8ZeA+czZwiPd/KE9VC+vYRjawUVUr63htvfd6lX5AOq6zEa1j1PrGY4m/iVDVZao6VlW7AH1wSTF3d+uLyLEiMk9ENonIdlwvOXt36+/FJ14yzFbVwar6TtRrm7w//CrdgZ96veZ8r8Ho6sV7ILBOVaMr/63azT67AqtUNdyIeA+M3q6XNLbgjhqqbIj6uRjIbMgOvIbha+B3wApVXVPr9e+BD4GLRCQLl9yfr2NT3XGN4fqo7+txYD/v9TsAAT4TkaUiMq4hcTbQmtoLVHV331M34G9RMf8X1zHZL2r9XbYXtd3luGGiESKSiTsCq0r8TwPv4M4lrRORe3dznmAzsF+txqZKZ+/1Kq/gGt53RaRr1PItUesbjyX+Jsj7o3ka1wCA+4Or7QXc2HZXVW0HPIZLILtbv9Hh1Hq+BrjbayiqHq1VdSauV3WQiEjU+rsbUlkDdNvNH/ze4v8el1ABEJEMXM9u3V7e11DPAD9l12GeKjNwwz2X4Iam6tr/GtwRUXbU99VWVY8El3hV9TpVPRDXy35ERA5pRKxFuOGTKgfUXqFWg7w3a4HhtX7P6dENRT22VzXccwGwSFVXeu8rV9UpqnoE7kj3AtxRXG0f4s71nB+9UETa4Iam5tb6fLfhhs3eFZGqRP8F7v9LnUOOycoSfxMgIoeLyE9FpIv3vCvuD+YTb5UfgC7eGHqVNsBWVS0VkWNwh9JVNuGGaHrGIdy/ADd4RxwiIhkiMsL7Y/wYN5Z9q4iERORC3JBOXT7DNRT3ettIF5Gh3mt1fd5oLwDXiEh/EUnD9co/rUosMfQibjz+pd28/iowELiN3TQOqroel4z+JCJtRSQgIgeLyEkAInJJ1e8ddyJaccmuoRYBl3nf+zHAhY3YRrTHgN9VnQsRkf1EpKGzYGbijoQmUN3bR0ROEZE+Xk9+B27oZ5fPrKrbcOdAporI6SKS4s3a+T/gu+htRrkB+DcwV0Q6qWoE13hPEZGro34HJ4jIYw38PC2GJf6moQA4FvhURIpwCX8J7j8suFkYS4ENIlJ1eHsTcJeIFAC/JCo5qWoxbgrch96h+uBYBaqqebhx/odxiepr3MwgVLUcl3DGeq+Nwh2C17WdSuAc3Em51bge5ijv5bo+b/R75wL/C7yMazwOpnrMfI+8k7v1mvuuqiWq+s5uxrDxlr8M9GA3n9MzBjer5Qvc9zKb6qGHo3G/90LcEdxtqvpdfT5LLb/AnWjNx303dSXFhvgz7gTqXO//2EderPWmqmuBPNy5n+jG80Dc97UD93t+B9dI1LWN3wG/wp0X2YHrXHyHOxopr2N9BcbjZry9IyIdVHUWrmN0Ha73vwG4i1onjZOJNOzozxgTTUR+CfRS1av2urIxTUSyXJBjTMx5F7mNx83oMabZsKGeJCCuzk1hHY+kHePcVyJyHe7E7T9U9X2/4zGmIWyoxxhjkoz1+I0xJsk0izH+7OxszcnJ8TsMY4xpVubPn79ZVTvVXt4sEn9OTg55eXl+h2GMMc2KiNR55bwN9RhjTJKxxG+MMUnGEr8xxiSZZjHGb4xpOSoqKli7di2lpXWV4DeNkZ6eTpcuXUhJ2eWmZHWyxG+MSai1a9fSpk0bcnJyqFnI1TSGqrJlyxbWrl1Ljx496vUeG+oxxiRUaWkpHTt2tKQfIyJCx44dG3QEZYnfGJNwlvRjq6Hfpw31GGNMHSoqoLQUSkogGIQOHaCltFfW4zfGJJ1gMEj//v3p06cPF198CT/8UMzGjbB6NXz5JSxaBJ9/7n5evRqGDTuOL76AHTt2v83c3FyKi4sT9yH2QdwSv4hMF5GNIrKkjtcmiYiKSGPvEWuMMQ0SDkNhIWzaBOnprXjxxUU8//wSCgtTuffex1i9GjZvhkgEsrKga1c49FDo1w/ee+8jKivhq69gxQp3JFCbJX7naeDM2gu92woOx911yRhjYqqy0iX4zZthzRqXrD//3PXily+HVatA1a3Xti0MG3YCBQVf07cvzJv3Zy65pA8jR/Zh5sxc2rWD1FTo1i2TPn1g1ar3uPzykxkx4mIOOeRwLr/8SlSVBx98kO+//55hw4YxbNgwKisrGTt2LH369KFv377cf//9fn8tNcRtjF9V3xeRnDpeuh+4gyS+7Zkxxrn9dpeQG0PV9c5rPw45BH7q3bRUBFq1cgk+Pd393KoVBALQuzeEw2E++ugfnHnmmSxZMp+nn36KTz/9FFXl2GOP5aSTTmLAgAGAe0/HjrBixULefHMpgcCBXHvtUP72tw+5+eZb+fOf/8y8efPIzs5m/vz5rFu3jiVL3IBHfn5+LL6umEnoyV3vZs3rVPXzvZ2FFpEJuJs0063bXm+PaoxpwSIR10OvneSjBQLuJGxmpkv+6emQllb3CdmSkhL69+8PwAknnMD48eN59NFHueCCC8jIyADgwgsv5IMPPtiZ+Kscc8wxDB7cheJiOPLI/ixatJKePY8nEnGNEUDPnj359ttvueWWWxgxYgSnn356zL+TfZGwxC8irXE3hK7XN6Cq04BpAIMGDbK7xRjTAuXmVv8ciVTPoqn6t6QEysqq1xFxCT26996q1e4T/O60atWKRbUONep7U6q0tDQAWreGDh2CZGeHAXcO4ZtvICMD2rdvz+eff86bb77J1KlTeemll5g+fXr9A4yzRPb4DwZ6AFW9/S7AAhE5RlU3JDAOY4yPVKuTenSSr33CND29KrnWTPCBOJ2ZPPHEExk7diyTJ09GVZkzZw7PPvvsHt8j4mLs3RvatWvDli0FfPFFNoHAZrp3T+Wiiy7i4IMPZuzYsfEJupESlvhV9b/AflXPRWQlMEhVNycqBmNM4lT1gJcuhSVL3L9Ll8If/wjRk1/S0lxSb9++uiefnh6/BL87AwcOZOzYsRxzzDEAXHvttbsM8+xOIAA33TSBn/70LDp06Mwtt+RyxRXXEAxGSEmBe+65J56hN1jc7rkrIjOBk4Fs4AfgV6r6ZNTrK6ln4h80aJDajViMaZoqK+G773ZN8MuXQ3l59Xo9ekCfPjB58jIOO+wI3xJ8IpSWwtq1kJ/vZgV16eIatnheALZs2TKOOOKIGstEZL6qDqq9bjxn9Vy+l9dz4rVvY0zsRSJuKmRVYq9K8suW1Rym6dbNJfgzzoAjj3SPI45wY9/g1u/Y0Z/PkCjp6e4E844dbkrpt9+6z9+1qzv57Dcr2WCMqUHVJauqBF+V5Jctg6Ki6vUOOsgl9WHDqhN8797Qpo1/sTc1bdu672TLFli3zh0FdejgvjvvHLEvLPEbk6RU4fvvayb4qkdBQfV6Bxzgkvr48a4nX5Xgs7L8i705EYHsbDfUs2GDe2zb5r7XAw5wU1ATzRK/MS2cKvzwQ90JPvq6ok6dXFIfM8b926ePS/AtfVgmUYJB19PPzna9//Xr3dXFBx3kvuNEFoCzxG9MC7J5c80TrFWPLVuq1+nQwSX2yy6rHqI58kjYb7/db9fETloa9Ozpvu81a2DlSti40Y3/J2qYzBK/Mc3Qtm27zqJZutQlkCpt27pe+4UX1kzwBxzQcsoLN2eZmXD44e53uXatqwSaleVmAKWnx3fflviNacK2b4cvvtg1ya9fX71OZqYbkhk5smaCP+ggS/C7EwwG6du3L+FwmB49evDss8+StYeTFitXrmTkyJE7a+/Eiog7AsvKcsNx69e73+9++8Ff/jKFtm0zmTRpUkz3CZb4jWkSCgurE3x0kl+7tnqdVq1cgh8+vPok65FHuumTluAbJrpkw9VXX83UqVP5xS9+4Vs8gQB07lw9/v/DD+7oLRBw02hjfa2DJX5jEqi42E2LrD1VctWq6nXS0ty895NOqj7JeuSRkJPTMi928tuQIUNYvHjxzud/+MMfeOmllygrK+OCCy7g17/+NeAqeV599dUsXLiQXr168cwzz9C6dWvmzp3LpEmTCIfDHH300Tz66KOkpaWRk5NDXl4e2dnZ5OXlMWnSJN577z2mTJnC6tWr+fbbb1m9ejW33347t956KwD33Xc3zzzzDAce2JXWrTuRlvYj8vPhuece5LHHHiMUCtG7d29mzZq1T5/ZEr8xcVBa6uZs1z7J+u231RUcU1PhsMNgyBC49trqJN+zpz9T/HyxL3WZd6d//5rV3/agsrKSuXPnMn78eADeeustVqxYwWeffYaqcu655/L+++/TrVs3vvzyS5588kmGDh3KuHHjeOSRR7j55psZO3Ysc+fOpVevXowZM4ZHH32U22+/fY/7Xb58OfPmzaOgoIDDDjuMG2+8kcWLFzNr1iwWLlxIOBxm4MCBDBnyI9q3h3vvvZfvvvuOtLS0mJR4tsRvzD4oL3cn5Won+K+/ri4bHApBr14wcCCMHl2d4A85xL1mEq+qLPPKlSv50Y9+xPDhwwGX+N96662dNXoKCwtZsWIF3bp1o2vXrgwdOhSAq666igcffJDhw4fTo0cPevXqBVQPG+0t8Y8YMYK0tDTS0tLYb7/9+OGHH/jggw+44IILaN26NQDnnnsu6eluGK9fv35ceeWVnH/++Zx//vn7/Pntv50x9VBR4ZJ57Vk0K1a4YmTghmEOPdQl9VGjqsfge/VyvXtTh3r2zGOtaox/+/btjBw5kqlTp3Lrrbeiqtx5551cf/31NdZfuXIlte8hIiJ7LOUcCoWIeK1/aa3So2lRl+0Gg0HC3n+i3d2n5I033uD999/ntdde4ze/+Q1Lly4ltA+9BhsxNCZK1X1V58yB3/zGzXXv29fVWendGy69FO66CxYudAn9jjvg+efdaEVRkRveefllt86oUa4RsKTfdLVr144HH3yQP/7xj1RUVHDGGWcwffp0CgsLAVi3bh0bvTmyq1ev5uOPPwZg5syZHH/88Rx++OGsXLmSr7/+GoBnn32Wk046CYCcnBzmz58PwMsvv7zXWE488UTmzJlDSUkJBQUF/O1vfwMgEomwZs0ahg0bxn333Ud+fv7O+BrLevwmKUUi1RUlo2fRLF9e88YfOTmu1z5iRHUP/vDDXQ120zIMGDCAo446ilmzZjF69GiWLVvGkCFDAMjMzOS5554jGAxyxBFHMGPGDK6//noOPfRQbrzxRtLT03nqqae45JJLdp7cveGGGwD41a9+xfjx4/nd737Hscceu9c4Bg4cyKhRo+jfvz/du3fnhBNOANx5iKuuuort27ejqkycOHGPU0/rI25lmWPJyjKbxopEYPXquitKlpRUr9e1a3Vir5pFc8QRTaOSYktTV/lgs++aRFlmYxJJ1c15rz1N8osvalaUPPBAl9Svv75mwbG2bf2L3ZhEs8RvmhXV6qsbaz927Kheb//9XVIfN65mwbH27f2L3ZimwhK/abI2bqy74Ni2bdXrdOzokvpVV9UsV5Cd7V/cxjR1lviN77Zsqbvg2Oaom3JmZbkEf+mlu1aUtHIFxjSMJX6TMPn5u55kXbrU1SWp0qaNS+jnn18zwXfubAnemFiJW+IXkenASGCjqvbxlv0BOAcoB74BrlHVfb/+2DQpO3bUXVHy+++r16maF3/WWTULjnXpYgnemHiLZ4//aeBh4JmoZW8Dd6pqWER+D9wJ/DyOMZg4Kiqqu6LkmjXV67Rq5aZFnnpqzamS3bpZwTHjrzlz5nDhhReybNkyDj/88Aa995e//CUnnngip512Wp2vv/rqq/Tq1YvevXvHItSYi1viV9X3RSSn1rK3op5+Alwcr/2b2Ckpqbui5MqV1eukpbkLm044oeZ8+JycJCo4ZpqVqqtvZ82axZQpUxr03rvuumuPr7/66quMHDky+RJ/PYwDXvRx/6aWsrK6K0p+8011RcmUFFdR8thjq6dKHnkkHHywFRwzzUdhYSEffvgh8+bN49xzz2XKlCmsX7+eUaNGsWPHDsLhMI8++ijHHXcc48ePJy8vDxFh3LhxTJw4kbFjxzJy5EguvvhiJk+ezGuvvUYoFOL000/nwgsv5LXXXuNf//oXv/3tb3n55Zd54403YlpWeV/58qcqIr8AwsDze1hnAjABoFu3bgmKLDmUl7t6NHVVlKysdOsEg64WTf/+cOWV1Qn+0ENd8jcmFm7/5+0s2hDbssz9D+hP7pl7Lv726quvcuaZZ9KrVy86dOjAggULmDdvHmeccQa/+MUvqKyspLi4mEWLFrFu3bqdd96qXRJ569atzJkzh+XLlyMi5Ofnk5WVxbnnnruzYYDYl1XeVwlP/CJyNe6k76m6h3oRqjoNmAauZEOCwmtRwuG6K0p+9VXNipIHH+yGZS65pGZFyagCgsa0KDNnztxZOvmyyy5j5syZnHPOOYwbN46KigrOP/98+vfvT8+ePfn222+55ZZbGDFiBKeffnqN7bRt25b09HSuvfZaRowYwciRI+vcX6zLKu+rhCZ+ETkTdzL3JFUtTuS+W7LKSneDj9qzaL780vXuwc2U6dHDJfXzzqtZcCzeN3Y2Znf21jOPhy1btvDuu++yZMkSRITKykpEhPvuu4/333+fN954g9GjR/Ozn/2MMWPG8Pnnn/Pmm28ydepUXnrpJaZPn75zW6FQiM8++4y5c+cya9YsHn74Yd59991d9hnrssr7Kp7TOWcCJwPZIrIW+BVuFk8a8LZXd/oTVb0hXjG0NJGIO6FaV0XJ6HLf3bu7pH7mmTULjllFSWNg9uzZjBkzhscff3znspNOOon333+foUOHct1111FUVMSCBQs4++yzSU1N5aKLLuLggw9m7NixNbZVWFhIcXExZ599NoMHD+aQQw4BoE2bNhQUFAA1yyoff/zxvPDCCxQWFu5zhc19Ec9ZPZfXsfjJeO2vJVHdfUXJ4qjjpC5dXFI/5ZTqWTRHHOEugjLG1G3mzJlMnjy5xrKLLrqIsWPHkpGRQUpKCpmZmTzzzDOsW7eOa665ZucNVe65554a7ysoKOC8886jtLQUVeX+++8H3PDRddddx4MPPsisWbMYP358TMsq7ysry+wjVVi3ru6KktH3WejcueZVrFUVJX3+v2NMo1hZ5viwssxNjCps2FB3Rcnt26vX228/l9THjq2Z5Dt08C10Y0wLZIk/DiorYcYM+M9/qhP81q3Vr3fo4IZlrriiZoLv1Mm/mI0xycMSf4yVlrqEPmcOtGvnEvrFF9dM8Pvvb/VojDH+scQfQ/n5cO658MEHkJsLt95qCd4Y0/RY4o+Rdevc9Mkvv4SZM+Gyy/yOyBhj6maJPwaWL4czznDj+H//O+ymYJ8xxjQJVhh3H33yCQwd6sb2//UvS/rGNBd33303Rx55JP369aN///58+umn5ObmUlzc+KICY8eOZfbs2TGMMj6sx78P3njD1bc58EB4801X88YY0/R9/PHHvP766yxYsIC0tDQ2b95MeXk5o0aN4qqrrqJ1C7/M3Xr8jfT0067mzRFHwIcfWtI3pjlZv3492dnZpHmVCLOzs5k9ezbff/89w4YNY9iwYQC89dZbDBkyhIEDB3LJJZdQ6F1Zedddd3H00UfTp08fJkyYQF0Xwk6ePJnevXvTr18/Jk2alLgPVw925W4DqcLvfw933umGdV55xUokGNMQNa8wvR2IbVlm6A/sufhbYWEhxx9/PMXFxZx22mmMGjWKk046iZycHPLy8sjOzmbz5s1ceOGF/OMf/yAjI4Pf//73lJWV8ctf/pKtW7fSwbuycvTo0Vx66aWcc845O+v0n3LKKQwZMmSXcs3x1JArd63H3wCRCNx+u0v6l1/uhnos6RvT/GRmZjJ//nymTZtGp06dGDVqFE8//XSNdT755BO++OILhg4dSv/+/ZkxYwarVq0CYN68eRx77LH07duXd999l6VLl9Z4b3S55ldeeaXJDR3ZGH89lZXB1VfDiy+65P+nP9k9Y43Zd4kvy1wlGAxy8sknc/LJJ9O3b19mzJhR43VVZfjw4cycObPG8tLSUm666Sby8vLo2rUrU6ZMoTS6PC71L9fsF0td9bBjB4wY4ZL+738Pf/6zJX1jmrMvv/ySFStW7Hy+aNEiunfvXqOc8uDBg/nwww/5+uuvASguLuarr77ameSzs7MpLCyscxZPYWEh27dv5+yzzyY3N5dFi2I9nLVvrMe/Fz/8AGedBYsXu/o7Y8b4HZExZl8VFhZyyy23kJ+fTygU4pBDDmHatGnMnDmTs846i86dOzNv3jyefvppLr/8csrKygD47W9/S69evbjuuuvo27cvOTk5HH300btsf3flmpsKO7m7B19/7S7M2rABZs92DYAxZt9YWeb4sLLMMbBggUv0lZXw7rtw7LF+R2SMMbFhI9V1eOcdOOkkaNXKzdG3pG+MaUks8dcyaxacfba7MflHH8Fhh/kdkTEtT3MYYm5OGvp9WuKPkpvr5ucPGQLvv+9KMRhjYis9PZ0tW7ZY8o8RVWXLli2kp6fX+z1xG+MXkenASGCjqvbxlnUAXgRygJXApaq6LV4x1Jequyjr97+HCy+E55+HBnyHxpgG6NKlC2vXrmXTpk1+h9JipKen06VLl3qvH8+Tu08DDwPPRC2bDMxV1XtFZLL3/OdxjGGvKirg2mvhmWfghhvg4YchGPQzImNatpSUFHr06OF3GEktbkM9qvo+sLXW4vOAqsvjZgDnx2v/9VFU5AqtPfMM3HUXPPKIJX1jTMuX6Omc+6vqegBVXS8i++1uRRGZAEwA6NatW8wD2bwZRo50N0R//HGYMCHmuzDGmCapyZ7cVdVpqjpIVQd16tQppttetQqOPx4+/xxeftmSvjEmuSS6x/+DiHT2evudgY0J3j+LF7t745aUwNtvuwbAGGOSSaIT/2vA1cC93r9/TeTO//UvN6afmQkffAB9+sRxZ99/76q7Valr6lrtZbF+btu0bdo2Y7PNo46CgQN3Xd5MxXM650zgZCBbRNYCv8Il/JdEZDywGrgkXvuv7ZVX4Ior3IVZb74JcThtUG3JEujf39V7MMY0f+3bw5o1kJHhdyQxEbfEr6qX7+alU+O1z9157DG46SYYPBj+9jfo2DHOO7z/fkhLc2eNQ7W+YpHYPm8u27S4E7tNizt221y8GM49103/u/HGXbfVDLXo6pyqMGWKm6o5cqSrpx/3G+Fs3OgOJ8aNc/NDjTHNmyoccwwUFMAXXzSrm3Ek5a0XJ01ySX/cOJgzJwFJH1wvv6wMbr01ATszxsSdCEycCF9+6caJW4AWnfhHjoT//V944oldR1ziouk/Pr4AABzoSURBVKzM9fLPOgsOPzwBOzTGJMTFF7viXU3shiqN1aIT/7Bhrsdf1xBfXLz4ortry+23J2iHxpiESE2FH//YzQGvdWP15qhFJ/6EUnXlPXv3huHD/Y7GGBNrEya46o0PPOB3JPvMEn+sfPABLFzoevsJO8QwxiRMdra76fazz7qaL82YJf5Yyc1180SvusrvSIwx8XLbbVBa6iZxNGOW+GPh22/h1Vfh+uvd/RqNMS1T795w+ukwdSqUl/sdTaNZ4o+Fhx5y9ZxvusnvSIwx8TZxIqxfDy+95HckjWaJf1/t2AFPPgmjRsFBB/kdjTEm3k4/3U3Xvv/+uuv6NAOW+PfVU0+5K/psCqcxySEQcGP9CxbAhx/6HU2jWOLfF5WV8OCDMHQoDNrlqmhjTEs1Zowr3NZML+iyxL8v/vY3d2LXevvGJJfWrd1kjldfhe++8zuaBrPEvy9yc6F7dzjf11sHG2P88OMfu2Gfhx/2O5IGs8TfWAsXuju73HJLggoBGWOalC5d4JJLXDGwggK/o2kQS/yN9cAD7qYM48f7HYkxxi+33+5m9j31lN+RNIgl/sbYsAFmzoRrroGsLL+jMcb45ZhjYMgQN8mjGd1xzxJ/Yzz6KFRUWM19Y4y7oOubb+CNN/yOpN4s8TdUaalL/CNHwqGH+h2NMcZvF1wAXbs2q6mdviR+EZkoIktFZImIzBSRdD/iaJSZM2HTJpvCaYxxQiE3yeO992DRIr+jqZeEJ34ROQi4FRikqn2AIHBZouNolKqa+337uru8GGMMwLXXurn9zaRWv19DPSGglYiEgNbA9z7F0TDz5sHixVZz3xhTU/v2brLHCy+4yR9NXMITv6quA/4IrAbWA9tV9a3a64nIBBHJE5G8TZs2JTrMuuXmQqdOcMUVfkdijGlqbr3VlWp+7DG/I9mreiV+EblNRNqK86SILBCR0xuzQxFpD5wH9AAOBDJEZJe7l6jqNFUdpKqDOnXq1JhdxdaKFfD663Djje72a8YYE61XLxgxwk3+KC31O5o9qm+Pf5yq7gBOBzoB1wD3NnKfpwHfqeomVa0AXgGOa+S2Euehh9xJnBtv9DsSY0xTNXEibNzoJoE0YfVN/FUD2mcDT6nq51HLGmo1MFhEWouIAKcCyxq5rcTIz4fp0+Hyy+GAA/yOxhjTVJ1yCvTp44aFm3Ct/vom/vki8hYu8b8pIm2ASGN2qKqfArOBBcB/vRimNWZbCfPkk1BUZFM4jTF7JuLyxOLFbnpnEyVaj1ZJRAJAf+BbVc0XkY7AQaq6ON4BAgwaNEjz8vISsatdhcNwyCGQk9Okf5HGmCaitNRd0DVkCLz2mq+hiMh8Vd3lZiH17fG/raoLVDUfQFW3AM3nMrV98de/wqpV1ts3xtRPero7F/j6625SSBO0x8QvIuki0gHIFpH2ItLBe+TgZuS0fLm50KMHnHOO35EYY5qLG290k0EeesjvSOq0tx7/9cB84HDv36rHX4Gp8Q2tCcjLg3//283PDQb9jsYY01x07uwmg0yf7iaHNDF7TPyq+oCq9gAmqWpPVe3hPY5S1eZ325mGys2FNm1g3Di/IzHGNDe33eYmhTz5pN+R7KJeY/yq+pCI9BGRS0VkTNUj3sH56vvv4cUX3Y1W2rb1OxpjTHMzcCCceKIb7gmH/Y6mhvpeufsr4CHvMQy4Dzg3jnH575FH3I0VbrnF70iMMc3VxIlucsirr/odSQ31ndVzMe5Cqw2qeg1wFJAWt6j8VlLi6m2cdx707Ol3NMaY5uqcc9zkkNxcvyOpob6Jv0RVI0BYRNoCG4GWmxGfew62bLEpnMaYfRMMuskhH34I//mP39HsVN/EnyciWcBfcLN6FgCfxS0qP1XV3B8wwI3PGWPMvhg3zk0SaUK9/vqe3L1JVfNV9TFgOHC1N+TT8rzzDnzxhdXcN8bERtu2bpLISy/BunV+RwPU/+Tu3KqfVXWlqi6OXtai5ObC/vvDqFF+R2KMaSluucVNFnnkEb8jAezK3ZqWL4e//x1uugnSWu65a2NMgvXs6SaLPP44FBf7HU2Dr9zN8x4t88rdBx90Cf+GG/yOxBjT0kyc6CaNPPec35HsNfF/hLtJyiRV7Qn8GlgC/At4Ic6xJdbWrTBjBlx5Jey3n9/RGGNamhNOcJNGmkCt/r0l/seBMu/K3ROBe4AZwHaaeg39hnriCXcIdtttfkdijGmJqmr1L1sGb7/tayh7S/xBVd3q/TwKmKaqL6vq/wKHxDe0BKqocJdVn3IK9OvndzTGmJZq1Ch3F7/7/a1qv9fELyIh7+dTgXejXgvVsX7z9MorsHatXbBljImvtDQ3eeSf/3Q9f5/sLfHPBP4lIn8FSoAPAETkENxwT8uQm+vusjVihN+RGGNauuuvdw3Agw/6FsLeyjLfDfwUeBo4Xqvv0xgAWkb1sk8+cY/bboNAfS9kNsaYRtpvP7jqKjeZZMsWX0LYa6ZT1U9UdY6qFkUt+0pVFzR2pyKSJSKzRWS5iCwTkSGN3dY+y82Fdu1g7FjfQjDGJJnbbnPFIP/yF19271cX9wHgn6p6OK7Spz+DXWvWwOzZcO21kJnpSwjGmCTUty+ceio8/LCbXJJgCU/8XnXPE4EnAVS1vOom7gk3daqbT3vzzb7s3hiTxCZOdLV7Zs9O+K796PH3BDYBT4nIQhF5QkQyaq8kIhNEJE9E8jZt2hT7KIqKYNo0uPBCyMmJ/faNMWZPzjoLDj3UTe1M8AVdfiT+EDAQeFRVBwBFwOTaK6nqNFUdpKqDOnXqFPsonn0Wtm2zKZzGGH8EAm6s/z//cRNMErnrhO7NWQusVdVPveezcQ1B4kQi7qTuoEFw3HEJ3bUxxux09dWQlZXwC7oSnvhVdQOwRkQO8xadCnyR0CDefBO+/NJq7htj/JWZCdddBy+/7O7NmyB+zeq5BXheRBYD/YHfJXTvubnQuTNccklCd2uMMbu4+WbXAZ2auILHviR+VV3kjd/3U9XzVXVbwna+dCm89Zb7slNTE7ZbY4ypU7dubpLJtGlQWJiQXSbfpaoPPADp6TBhgt+RGGOMM3EibN/uruZNgORK/Js3u9k8o0dDdrbf0RhjjDN4MBxzjOuYRiJx311yJf5p06C01GruG2Oalqpa/StWuNu/xlnyJP7ycnfy5PTT4cgj/Y7GGGNquvhiOOggN/kkzpIn8c+eDd9/bxdsGWOappQUN+lk7lz473/juqvkSPyq7gKJww6DM87wOxpjjKnbhAnQqlXce/3Jkfg/+gjy8qzmvjGmaevQwV3N+/zzsHFj3HaTHFkwNxfat4cxY/yOxBhj9uzWW6GsDB5/PG67aPmJf9Uqd0/dCRMgY5cioMYY07QccQSceSY88ohrAOKg5Sf+hx5yU6V+/GO/IzHGmPqZOBE2bIAXX4zL5lt24i8ogCeecNOkunb1OxpjjKmf4cNdzz83Ny61+lt24p8xw10GbVM4jTHNSdUFXQsXwgcfxHzzoZhvsSkpLXUXbA0e7HckxhjTMFddBV99Bd27x3zTogm+5VdjDBo0SPPy8hr3ZlWruW+MSUoiMl9VB9Ve3rKHesCSvjHG1NLyE78xxpgaLPEbY0ySscRvjDFJxhK/McYkGd8Sv4gERWShiLzuVwzGGJOM/Ozx3wYs83H/xhiTlHxJ/CLSBRgBPOHH/o0xJpn51ePPBe4AdntXYRGZICJ5IpK3adOmxEVmjDEtXMITv4iMBDaq6vw9raeq01R1kKoO6tSpU4KiM8aYls+PHv9Q4FwRWQnMAk4Rked8iMMYY5JSwhO/qt6pql1UNQe4DHhXVa9KdBzGGJOsbB6/McYkGV/LMqvqe8B7fsZgjDHJxnr8xhiTZCzxG2NMkrHEb4wxScYSvzHGJBlL/MYYk2Qs8RtjTJKxxG+MMUnGEr8xxiQZS/zGGJNkLPEbY0ySscRvjDFJxhK/McYkGUv8xhiTZCzxG2NMkrHEb4wxScYSvzHGJBlL/MYYk2Qs8RtjTJJp0Yl/xZYVLFy/0O8wjDGmSWnRiX/Kv6YwcNpARs8Zzar8VX6HY4wxTULCE7+IdBWReSKyTESWisht8drX1LOnMnnoZGZ/MZteD/fiZ2/9jG0l2+K1O2OMaRb86PGHgZ+q6hHAYODHItI7HjvKSs/intPu4aubv+KKvlfwp4//xMEPHsyfPvoTpeHSeOzSGGOavIQnflVdr6oLvJ8LgGXAQfHcZ9d2XXnqvKdYdMMiju1yLJPensRhDx/Gc4ufI6KReO7aGGOaHF/H+EUkBxgAfFrHaxNEJE9E8jZt2hST/fXbvx//uPIfvD36bTq26sjoOaMZNG0Q73z7Tky2b4wxzYFviV9EMoGXgdtVdUft11V1mqoOUtVBnTp1ium+T+t5GnkT8njugufYWrKV4c8O58znzuTzDZ/HdD/GGNMU+ZL4RSQFl/SfV9VX/IghIAGu7Hcly29ezp9O/xOfrfuMAY8PYOyrY1mzfY0fIRljTEL4MatHgCeBZar650Tvv7b0UDo/GfITvrn1GyYdN4lZS2Zx6EOHMvmdyeSX5vsdnjHGxJwfPf6hwGjgFBFZ5D3O9iGOGtq3as99w+/jy5u/5NIjL+W+D+/j4AcPJveTXMrCZX6HZ4wxMSOq6ncMezVo0CDNy8tL6D4Xrl/IHe/cwTvfvkOPrB7cfcrdjOozioC06GvejDEtiIjMV9VBtZe38Cy2HFgANLzHPqDzAN4e/TZvXvUmbdLacMUrV3DMX45h3nfzYh6lMcYkUgtP/PcDPwLaAAOBa4FHcbNHS+q1hdMPPp0FExYw4/wZbCzayCnPnMLIF0ayZOOSeAVtjDFx1cKHelYBnwHzcT3/+cBW77UgcASuQfiR9+9RuEaibiUVJTz02UP87oPfUVBewDX9r+HXJ/+ag9rG9fozY0ySUlXcfJjG2d1QTwtP/LUpsIbqhqCqMfjBe12AXtRsDAYAWTW2sqV4C3d/cDcPf/YwoUCIiYMncsfQO2iX3i4GMRpjkl1ZuIzn//s8939yPy9f+jK9OvZq1HYs8e/Remo2BgtwDUSVntRsDAYC2Xy37Tt+8e4vmLlkJtmts/nlib/k+kHXkxpMjWOsxpiWKr80n8fzHueBTx9gfeF6jtr/KB4b+RiDuwxu1PYs8TfYJmo2BAuAb6Ne70pVY7BiSxvunPt/vLzsIw5ufzD3nHoPF/e+eJ8O0YwxyWPN9jXkfpLLXxb8hYLyAk7reRp3HHcHp/U8zYZ6/LcNWEjNxuAr3BASlIbb89m6Ct5bWUhh+cEckNmHoLQhFGhHKNCO1GAWacEOpKdkkZGSSWZqJhmpGWSkZNT4ORgI+vYJjTGJs/iHxfzxoz8yc8lMVJVRfUYxacgkBnQeEJPtW+KPmwJgEVUNgeoClKUEZPffa0ShuAKKyr1/a/1cFg5QVplCRWUKlZpGOJJGRFuh2gqlNUImAckkIG0IBdoSCrQjJdiOtGAHr2FpT2ZqGzJSMshI9RqVlAzSQ+l2FGKMz1SVeSvncd+H9/HmN2+SkZLBtQOvZeLgiXTP6h7Tfe0u8Ydiupek1AY4wXuACAjFuGrT+UAxkUgBZZX5lFdupSKynXBkB5WR7US0gKAU0Sa1iLZpxQQoIRAoJShlpATLSQ2WkxIoJi3U8NLRReWuESmugB8KoxuVIOWVIcorU6nUVMKRNCoj6SitUG0NZBCQTEQyqxuVQBYpwXakhzqSFmxP65RsMryGpepIJRSw/0rG7Ek4EublL17mvo/uY8H6BeyfsT93n3I3Nwy6gQ6tOiQ0FvtrjYvWuBPBTiAArQLQKqWx26vEXXdQ5D2KgSJUiwhHtlNWuZWy8DYqKvMJq2tYIpECIhSiWkRaqIj0UAnZrUsJBsoIBcpICZSTGiwgLbSN9EY0LMVeo5JfCusKoKRCKK0MUh4OUV6ZQkUklcpIKpWavvNoBTIQySAgbQjQhpRguxpHK+mhjqSHOngNS1syUjJondLajlJMs1ZUXsT0hdP58yd/ZmX+Snp17MW0kdMYfdRo0kPpvsRkib9ZCAKZ3qOaCKQE3SNznyYSRahuWFyjEtECysLbKA1vobwyn/LKbVREtlMZ2UGl7iCiBai6hkgoISO1hLZSSjBQ7jUqxaQGd5AeqqRVSsMblhKvYdlSAqVhoaQiSFlliIoaRyvpRDR9L0NgWaQF25Ma7LCzUWmd0omM1LY2+8rE1caijTz82cNM/c9UtpZsZWjXoeSekcs5h53je+kXS/wGdwF3hvfwlog7Qmn8UUo0JbphqajMpzS8lZLwZsrD2yiP5LujFW8YrKpRUYoQqR4Cy0gpIyW9nJRgGamBItJDlV7DogQaeFBQFoatJd6RSjhIaThIRcQ7WqlMo1JrD4G13tmoBANtCQXakhLIIjXYnrRQe9KCrlFp5TUsAbFGJVmt2LKCP338J2Z8PoOycBnnHX4ePzvuZxzX9Ti/Q9vJEr9JAMENf7UGICXYnZQgtEmL1fYVKEW1iNLwFkoqNlMS3kJZ5VbKw/mUR7YRjmynMlJAZWQH6g2BIUUIpQSlhGCglFCgnMzUclICO0gLhV2jEorQOgWCDeyglVdCcYVQGg5QGg5SFg5REXFDYOHKNCLqnbCnFarV51WC3tFKSjCLlIA7WkkLuWGw1inZpAbbI5IBWMPS1Hyy9hPu+/A+Xl3+KqnBVK4+6mp+MuQnHJZ9mN+h7cISv2kBBGiFSCtapWTTKiXWf2hKOFJEcflmisObKK3Y6obAItsor6w6WnFHKhEtQCkCdUcrIqWEok7YpwSKyEzbTnrQDYG1CikZqRBqYMNSUQkl4QBl4QCl3hBYRWUqFZE0KmvPApMMAmQSCLQhKO1I8RqWtFB7UoPtSQ91pFWoI8FAW9xRX2tcw2LnVvYmohFe/+p1/vDRH/j36n/TPr09/3PC/3DLMbewf+b+DdzadtyFo7UfP8eVl4kdS/zG7JUQCmTSNj2TtuTEdMuqSlllKfml27wjlc2UhrdSFt7qGpVIPuHK7VRqAZW6Y+d5FSgmICUEvIYlFCgnNVhGSrCI9FCYjFB1o5KR4s4DNUQ4AqXhAGXhkHduJYVwpOq8ShoRbQ1UnbB351ZC0o5goC0pwXakBjuQFswiPdQx6iilqlHJANJozg1LWbiM5xY/xx8//iPLNy+ne7vuPHDmA4wbMI7M1Mw63lFEzWS+ll0TfEGt9wSAA4ExWOI3pgUREdJDrUgPtcL9kcdOZaSS4opitpQUUVjuGpbS8FZvCMydWwlHthOu3EGEgp3nVkSKEYoJSO1ZYKWkBrfSKqWSViF2NiqtUyCtgZmkMgJllVFDYJXe1OKqITDvvIprVDIISlvvQsi2pATbkxZsT3qog3eUUtWYRDcs6cSjYckvzeexvMd44NMH2FC4gQEHDGDWRTO4qPexhALrgTnU3WvfVsfW9sdVADgMOM37OfrRmXilaEv8xrRQwUCQNmltaJPWBjggptsuryynsLyQwvIifigqoqg8n5KKLZSGt7ohsLB3tOINgVXqDqpnjbmjlWCglJCUeUcrRaQG80kPRchIdY1JRgo7f05vYKaKKJRXhigLhwhHUr3pxbVmgUkGQhuCgcwaQ2CpwfakBrMQyaSqMdlQuJq3vpnOV1veYb+McmZfsh999+9Fm9R1iFxdRwQdccm7O3A8uyb1A3FHPf6wxG+MabDUYCodWnWI+YVHEY1QUlFCYXkhRRVFrNtRRGF5IcUVOyiNml4cPQQW0QIiFIAWe+dViglQRihYSkjKSQmWkhYsIN0b+opuVFp5P+9t9toBmTDmKPdzZSSTYKATuybzqkcXqiYyNFWW+I0xTUZAAq5mVWrG3lduoIrKCooqiigqd43J5uLqn4sqdlAWzqcsXHV1vXtUagFKIVlp2Zx96PV0bnOMN7zUvPmS+EXkTOAB3JVJT6jqvX7EYYxJHinBFLKCWWSlZ+195RYu4ZePiUgQmAqcBfQGLheR3omOwxhjkpUf1w0fA3ytqt+qajkwCzjPhziMMSYp+ZH4D6Lm7a3WestqEJEJIpInInmbNm1KWHDGGNPS+ZH465pcu0vxelWdpqqDVHVQp06dEhCWMcYkBz8S/1rcnKcqXYDvfYjDGGOSkh+J/z/AoSLSQ0RSgcuA13yIwxhjklLCp3OqalhEbgbexE3nnK6qSxMdhzHGJCtf5vGr6t+Bv/uxb2OMSXbN4mbrIrIJWNXIt2cDm2MYTnNgnzk52GdODvvymbur6i6zY5pF4t8XIpJX113mWzL7zMnBPnNyiMdn9vfGj8YYYxLOEr8xxiSZZEj80/wOwAf2mZODfebkEPPP3OLH+I0xxtSUDD1+Y4wxUSzxG2NMkmmxiV9EuorIPBFZJiJLReQ2v2NKBBEJishCEXnd71gSQUSyRGS2iCz3ftdD/I4p3kRkovd/eomIzBSRdL9jijURmS4iG0VkSdSyDiLytois8P5t72eMsbabz/wH7//2YhGZIyIxuYtMi038QBj4qaoeAQwGfpwkN3y5DVjmdxAJ9ADwT1U9HDiKFv7ZReQg4FZgkKr2wZU9uczfqOLiaeDMWssmA3NV9VBgrve8JXmaXT/z20AfVe0HfAXcGYsdtdjEr6rrVXWB93MBLiHsUve/JRGRLsAI4Am/Y0kEEWkLnAg8CaCq5aqa729UCRECWolICHdX7xZX3VZV3we21lp8HjDD+3kGcH5Cg4qzuj6zqr6lqmHv6Se4asb7rMUm/mgikgMMAD71N5K4ywXuACJ+B5IgPYFNwFPe8NYTIhL7u3Q3Iaq6DvgjsBpYD2xX1bf8jSph9lfV9eA6dsB+PseTaOOAf8RiQy0+8YtIJvAycLuq7vA7nngRkZHARlWd73csCRQCBgKPquoAoIiWd/hfgzeufR7QAzgQyBCRq/yNysSbiPwCN3z9fCy216ITv4ik4JL+86r6it/xxNlQ4FwRWYm7j/EpIvKcvyHF3VpgrapWHcnNxjUELdlpwHequklVK4BXgON8jilRfhCRzgDevxt9jichRORqYCRwpcbowqsWm/hFRHBjv8tU9c9+xxNvqnqnqnZR1Rzcyb53VbVF9wRVdQOwRkQO8xadCnzhY0iJsBoYLCKtvf/jp9LCT2hHeQ242vv5auCvPsaSECJyJvBz4FxVLY7Vdlts4sf1gEfjer6LvMfZfgdlYu4W4HkRWQz0B37nczxx5R3dzAYWAP/F/Q23uDIGIjIT+Bg4TETWish44F5guIisAIZ7z1uM3Xzmh4E2wNteDnssJvuykg3GGJNcWnKP3xhjTB0s8RtjTJKxxG+MMUnGEr8xxiQZS/zGGJNkLPEbA4iIisizUc9DIrKpsVVOvaqhN0U9PzlZKqaaps8SvzFOEdBHRFp5z4cD6/Zhe1nATXtdyxgfWOI3pto/cNVNAS4HZla94NWCf9Wri/6JiPTzlk/x6qi/JyLfisit3lvuBQ72Lrr5g7csM+reAc97V94ak3CW+I2pNgu4zLuxST9qVnP9NbDQq4v+P8AzUa8dDpwBHAP8yqsRNRn4RlX7q+rPvPUGALcDvXGVRYfG88MYszuW+I3xqOpiIAfX2/97rZePB5711nsX6Cgi7bzX3lDVMlXdjCsctv9udvGZqq5V1QiwyNuXMQkX8jsAY5qY13D17k8GOkYtr2tYpqreSVnUskp2/3dV3/WMiSvr8RtT03TgLlX9b63l7wNXgpuhA2zey/0dCnDFtYxpcqzHYUwUVV2Lu49vbVNwd/paDBRTXR54d9vZIiIfejfO/gfwRqxjNaaxrDqnMcYkGRvqMcaYJGOJ3xhjkowlfmOMSTKW+I0xJslY4jfGmCRjid8YY5KMJX5jjEky/w/eyq4ZGswEcgAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Myles Turner will have 13 points, 4 rebounds, 1 assists, 0 steals against OKC.\n"
     ]
    }
   ],
   "source": [
    "stat_predictor(\"Myles Turner\", \"OKC\", 'Dec')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXxU5b348c83CSFAEiAkYQ2yg5ZAQBYVZLEuSK22aqvWDUtF6y1q29tbe/1Vqdarbb1qqbbqveJaoK2KF1txqWARxAUQEWQJKkuQfQkJCYEk398fz5lkMswkk2Qmk2S+79frvGbOMuc8Z5L5Ps95nuc8R1QVY4wx8SMh1gkwxhjTtCzwG2NMnLHAb4wxccYCvzHGxBkL/MYYE2cs8BtjTJyxwG+MMXHGAr+JOBF5RkR+7b0/W0Q2NXA/j4vILyObutjy/26aExGZJCIFfvNbReTcWKbJRI8F/hgSkfEi8p6IFIrIQRFZLiKjvXXTRGRZPfbVR0RURJLC2HaaiFSISLGIHBGRNSJyUWPOJRRVfVdVB4eZphrnq6o3q+q90UhXwLFnicgLfvM9RWSjiMwWEYn28RtCRM70/naJfsv+J8Syx2OTyujxMioVkZcDlg/3lr/jt0xFZEDAdtO85d9toiQ3Kxb4Y0RE0oG/A38AMoCewK+AsiZKwgpVTQU6AU8BfxWRjCDprDMjaU1E5BRgKbBQVW/V5ntr+0ogERjpt+xs4KuAZRNw5xMTUf7/2QecJSJd/JZdD2wO47PXAwe917hjgT92BgGo6jxVrVDVUlV9U1XXisipwOPAmV6p/DCAiHxDRD72SnU7RGSW3/58P+7D3mfODCcRqloJzAHaAf18l/wi8nMR2Q087R37Iu/K4LB3lTLMtw8RGSEiq0WkSET+AqT4rQusQsgRkZdFZJ+IHBCRR2s53xrVIiJyo4hs8a6OFopID791KiI3i0i+iBwSkcfqW1oXkf7e9zhXVf/Db3lHEXlKRHaJyE4R+bWvVO2VHJeLyMPed/OFiJzlLd8hIntFJDC4ZIrIW9739S8vs/Ed6/fe546IyCoROTtYWlX1BPA+LrAjItlAMvCXgGWDvHNCRG4QkQ3ecb8QkZvC/F6GiMiXInKlN99DRF7y/oZfisitftvOEpEXReQFETkCTAvY1xkisjvgquTbIrLWez9GRFZ6579HRB6qJWnHgVcAX7oSge8Cf67jfE4BJgIzgAtEpGs430NrYoE/djYDFSLyrIhcKCKdfStUdQNwM16pXFU7eauOAtfhSunfAH4oIt/y1k3wXjt5n1kRTiK8EtkPgGIg31vcDXcVcgowQ0RG4jKHm4AuwBPAQhFpKyLJuB/f895n/gZcFuJYibirnG1AH9xVzvxaztf/s+cA9+N+2N29fcwP2OwiYDQw3NvuAu+zvb2g3LuWr6IfLkA+oaqB7QrPAuXAAGAEcD7uO/MZC6z1vpu5XrpGe9tfAzwqIql+218N3AtkAmuoGag+AvJw3+Vc4G8ikkJwS6n+u08AlnmT/7IvVdWX8e7FfUfpwA3Aw97fNiRv/ZvATFWdLyIJwKvAJ7i/39eB20XkAr+PXQK8iPs/rRGEVfV93P/xOX6Lv+edK8Dvgd+rajrQH/hrbekDnsP9JsD9vdfjrnpqcx2wUlVfAjbg/h7xRVVtitEEnAo8AxTgAstCoKu3bhqwrI7PPwI87L3vAyiQFMZxp3nHOwzsx5Ucz/XWTcKVpFL8tv8TcG/APjbhSk0TcD808Vv3HvBrv/0VeO/PxF2en5TGYOfrfTe+/TwF/NZvXSpwAujjzSsw3m/9X4E7wvw7zAKOeN9H/4B1XXHVb+38ll0FLPFLd77fulwvLV39lh0A8vzOaX7AeVQAOSHSdggYHmLdJG/fgguYN3r72+O37OlazvsV4LbAv5M3vxVX9VgATPZbPhbYHrCfX/iO432XS+v4vn8NzPHep+EyglO8+aXecTPr2If//1U+MBiX4V6Ny5Tf8dtWgQF+8/nA7X5p/6Qxv+OWOFmJP4ZUdYOqTlPVXsBQoAcumAclImNFZIl3iV2IKyVnNvDw76tqJ1XNVNUzVPWffuv2qeoxv/lTgJ96pebDXlVMjpfeHsBO9X5Fnm0hjpkDbFPV8gakt4f/flW1GBf0evpts9vvfQkuCIZrIe6qZrF/1Qvu3NsAu/zO/Qkg22+bPX7vS730BS7zT8uOgPM4iDs/ROSnXnVMoXesjoT+G7/v7XcoLgN+19vfDr9lVfX73pXl+15V2WFgai37Bvf/9Z6qLgn4PnoE/C/8Jy6DPOn8QpgLXCoibYFLgdWq6vvbTsdVT20UkY8kvE4HzwM/AiYDC2rbUETGAX2pvlqcC+SKSF4Yx2k1LPA3E6q6EVcaHOpbFGSzubgAlaOqHXH14lLL9g1OTsD8DuA+L6PwTe1VdR6wC+gZUJ8eqkplB9Bbgjf41ZX+r3BBBwAR6YCrWtlZx+fCpqo/wVVFLRYRX4ayA1fiz/Q793RV/VojDpXje+NVAWUAX3n1+T/HVVN1VlflVUj13zgwvcdwVUMXAd29/yGAd71lw6iu328LvAQ8iLsa6QS8Fmrfnptxf6+H/ZbtwFUf+f8vpKnqVP+k1XbyqvoZLhO/kJrVPKhqvqpehctYfwO86P2ta/M8cAvwmqqW1LHt9bhzXiOuDesDb/l1oT/S+ljgjxGvweynItLLm8/BVSG8722yB+jl1aH7pAEHVfWYiIzB/Wh89gGVuLrqSPsf4GbvikNEpIO4huY0YAWu2uhWEUkSkUuBMSH28yEuo3jA20eKVwKD4Ofrby5wg4jkeUHsv4APVHVrhM7R50fAYuBtEemqqrtwddz/LSLpIpIgIv1FZGIjjjFVXFfeZFxd/wequgP39y3Hqw4Tkbtw9fG1WQrcjqte81nmLdutqp97y5KBtt6+y0XkQlxbRW2KgCnABBF5wFv2IXBEXON/OxFJFJGh4nVDroe5wK24q5K/+RaKyDUikqWu08Fhb3FFbTtS1S9x1Y531rad11byXVyjbp7fNBO4OkSBpFWywB87Rbj60g9E5Cgu4K8DfuqtX4xrqNotIvu9ZbcA94hIEXAXfg1fXknnPmC5dwl+RqQSqqorcfXHj+LqnLfg9dZQ1eO4y/Vp3rorgJdD7KcC+Cau0XM7rv74Cm91sPP1/+zbwC9xpdZduIa/K8NJv9e4W1xH467vOIprxP4Q+KeIZOJKg8nAZ945vohrYG6oucDduCqe06luXHwDWIRr+N8GHKPuapN/4UrH/vdALPOWVVXzqGoRLtD+1TuH7+GuHmulqoeB84ALReRev79hHvAlro3of3FVUvUxD1dPv1hV/f/eU4D1IlKMa6O4MqDaMVQ6l6lqXY2638JVuz2nqrt9E679KNE7dlyQmlWzxhhjWjsr8RtjTJyxwN9KiRvnpjjI1Opu3zfG1I9V9RhjTJxpEa3YmZmZ2qdPn1gnwxhjWpRVq1btV9WswOUtIvD36dOHlStXxjoZxhjToohI0JsprY7fGGPijAV+Y4yJMxb4jTEmzrSIOn5jTOtx4sQJCgoKOHaszhtyTZhSUlLo1asXbdq0CWt7C/zGmCZVUFBAWloaffr0QZrnky1bFFXlwIEDFBQU0Ldv37A+Y1U9xpgmdezYMbp06WJBP0JEhC5dutTrCsoCvzGmyVnQj6z6fp+tOvAvXgy//z2UN+SxH8YY00q16sD/0ktw++0wYgS8806sU2OMaS4SExPJy8tj6NChfOc736GkpPbnt5x11ll17vORRx6pcz/NRasO/I8+CgsWQFERTJ4MV14JBQV1f84Y07q1a9eONWvWsG7dOpKTk3n88drHLnzvvfdqXQ8W+JsNEfjWt2DDBrj7bnjlFRg8GB54AMrKYp06Y0xzcPbZZ7NlyxYAHnroIYYOHcrQoUN55JHqx1+nprpHJr/zzjtMmjSJyy+/nCFDhnD11VejqsyePZuvvvqKyZMnM3nyZCoqKpg2bRpDhw4lNzeXhx9+OOixYyUuunO2awezZsF118FPfgK/+AXMmQOzZ8OUuHnmjjHNz+23w5o1kd1nXh74xexalZeXs2jRIqZMmcKqVat4+umn+eCDD1BVxo4dy8SJExkxYkSNz3z88cesX7+eHj16MG7cOJYvX86tt97KQw89xJIlS8jMzGTVqlXs3LmTdevWAXD48OFgh4+ZVl3iD9Svnyv1L1rk5i+80F0RfPllbNNljGlapaWl5OXlMWrUKHr37s306dNZtmwZ3/72t+nQoQOpqalceumlvPvuuyd9dsyYMfTq1YuEhATy8vLYunXrSdv069ePL774gpkzZ/L666+Tnl7Xo5ODi9ao+XFR4g80ZQp8+qkrFdx7L5x6Kvz8525q3z7WqTMmfoRbMo80Xx2/v3CfTdK2bduq94mJiZQH6TbYuXNnPvnkE9544w0ee+wx/vrXvzJnzpyw06cKBw7AV1/BgAGRj0txVeL317atC/SbNsGll8I998Bpp7nGYHs2jTHxZ8KECbzyyiuUlJRw9OhRFixYwNlnnx3259PS0igqKgJg//79VFZWctlll3HvvfeyevXqsPdz5Ah89hls3QphjsBQb3Eb+H169oS5c2HJEkhLc5nAlCkuQzDGxI+RI0cybdo0xowZw9ixY/nBD35wUv1+bWbMmMGFF17I5MmT2blzJ5MmTSIvL49p06Zx//331/n50lLYvNlNlZWuanrIkOjUQrSIRy+OGjVKm+JBLOXl8Mc/wl13QUmJa3j65S9dhmCMiYwNGzZw6qmnxjoZzcaJE7BzJ+zfD4mJ0L07ZGdDQj2L5cG+VxFZpaqjAreN+xK/v6QkuPVWl+Necw387neu++fcuVb9Y4yJrIoKV4f/6aeuPr9rV8jNhW7d6h/068sCfxDZ2a6754oV0KMHXH01TJoEa9fGOmXGmJZO1ZXu161zgb9jR/ja1yAnxxU+m4IF/lqccQZ88AE8+SSsX++Gfrj1VmhmXXKNMS2Ef8NtcrKrw+/fH1JSmjYdFvjrkJgIN97oqn9uvhkeewwGDXJXBJWVsU6dMaYlKC2F/HwXRyoqqhtuvRuCm5wF/jBlZLigv2qVC/zTp8OZZ8JHH8U6ZcaY5urECVe6X78eiouhVy8YOtTFk1iOTG2Bv57y8uDdd+H552H7dhg71l0R7NsX65QZY5qLwIbb7Oyma7gNRzNIQssj4nr9bNrkxv555hl3FfDoozb2vzEtgf+wzN/85jfrHEtn69atDB06tM79hmq47d27/g23s2bN4sEHH6zfh8Jkgb8R0tPhwQddb5/TT4eZM93dv3PmwPHjsU6dMSYU/2GZMzIyeOyxxxq9z8CG28GDY9NwGw4L/BFw6qnw1ltuALi0NFf/37+/G/2zhQzPbUzcOvPMM9m5c2fV/O9+9ztGjx7NsGHDuPvuu6uWl5eXc/311zNs2DAuv/zyqrH3X3vtbU47bQQjR+Zy553fp2fPMoYMgdzcPuzfvx+AlStXMmnSJMCV5L///e8zadIk+vXrx+zZs6uOcd999zF48GDOPfdcNvkNHzB79mxOO+00hg0bxpVXXtnoc47LQdqiQQQuuQQuvhjefBP+67/gttvg17+GH/8YbrnFXfYZY/zEeFzmiooK3n77baZPnw7Am2++SX5+Ph9++CGqysUXX8zSpUvp3bs3mzZt4qmnnmLcuHF8//vf5w9/+CPf+taPuOGGaTzxxNucccYgfvaz6/jLX/7E7bffXutxN27cyJIlSygqKmLw4MH88Ic/ZO3atcyfP5+PP/6Y8vJyRo4cyemnnw7AAw88wJdffknbtm0jMsSzlfgjTAQuuAD+9S/XCDxqFPznf8Ipp8D/+3+u/s8YE1u+YZm7dOnCwYMHOe+88wAX+N98801GjBjByJEj2bhxI/n5+QDk5OQwbtw4KipgypRrWLRoGatXb6JPn75cdNEgunWDadOuZ+nSpXUe/xvf+AZt27YlMzOT7Oxs9uzZw7vvvsu3v/1t2rdvT3p6OhdffHHV9sOGDePqq6/mhRdeICkCd3lFrcQvIjnAc0A3oBJ4UlV/LyIZwF+APsBW4Luqeiha6Yil8ePhtddg9Wq4/353FfDwwzBjBvz0p65rlzFxLUbjMvvq+AsLC7nooot47LHHuPXWW1FVfvGLX3DTTTfV2H7r1q2ICPv2uUbbAwcgOVno109p2zZ4w21SUhKV3s0+x44dq7Eu1NDOEqKP5z/+8Q+WLl3KwoULuffee1m/fn2jMoBolvjLgZ+q6qnAGcC/ichpwB3A26o6EHjbm2/VRo6Ev/3NNfx85zvwhz+4GzhmzADviW/GmBjo2LEjs2fP5sEHH+TEiRNccMEFzJkzh+LiYgB27tzJzp172bMHtm/fzquvriA5GT74YB4XXDCe4cOHsHXr1qpHNz7//PNMnDgRgD59+rBq1SoAXnrppTrTMmHCBBYsWEBpaSlFRUW8+uqrAFRWVrJjxw4mT57Mb3/7Ww4fPlyVvoaKWuBX1V2qutp7XwRsAHoClwDPeps9C3wrWmloboYMcV0/t2xxff+fe861/F99tevva4xpeiNGjGD48OHMnz+f888/n+9973uceeaZfO1ruXzzm5ezcmURe/ZA//6nsmzZs1xxxTCKig7ywx/+kJSUFJ5++mm+853vkJubS0JCAjfffDMAd999N7fddhtnn302iYmJdaZj5MiRXHHFFeTl5XHZZZdVPQugoqKCa665htzcXEaMGMGPf/xjOnXq1KhzbpJhmUWkD7AUGApsV9VOfusOqWrnIJ+ZAcwA6N279+nbtm2Lejqb2u7d8NBD8Kc/ubv6Lr4Y7rwTxoyJdcqMiZ7mPCyzKhQWwp49UFTkbrbq0sWNnNkcu2X6a1bDMotIKvAScLuqHgn3c6r6pKqOUtVRWVlZ0UtgDHXrBr/9LWzbBr/6FSxb5u4EPvdc92AYGwramKZRUQF797qhFbZsgWPH3EOahg1zHTOae9Cvr6gGfhFpgwv6f1bVl73Fe0Sku7e+O7A3mmloCTIy3MNftm1zN4StXw/nnANnnQWvvmoZgDHRcvw4FBS4mzC3b3cl/L593fAK3bs33TDJTS1qgV9c8/RTwAZVfchv1ULgeu/99cD/RSsNLU1qquvt8+WXrvpn925X/ZOXB/Pnu1KJMabxjh6FL75wbWu7d7sbLwcPdjdjdunSPMbTiaZont444FrgHBFZ401TgQeA80QkHzjPmzd+UlLcENCbN7sG4BMn4KqrXOPwU0/ZcBDGNIQqHDoEGzfChg3uuRq+wdMGDHDBP5YjZjalaPbqWaaqoqrDVDXPm15T1QOq+nVVHei9HoxWGlq6Nm3g2mvdgE8vveTu/P3BD2w4CGPqo6LCNdZ++il8/rkrSOXkwPDh7tWvS33caOUXNK1DQgJceqkb+//11909ALfd5hqdfvIT+PhjawcwJlBZGezYAZ984l6Tk12haehQ10snjB6WrZYF/hYkcDiICRPcw2FGjnSXq7/5jWuoMiZeqbpumFu2uBL+3r3QqZOrux8yBDp3rq7OWbBgASLCxo0b632cu+66i3/+858h17/yyit89tlnDT2NqLPA30KNH++qf3btgscfd//cd9zhxv3++tfdjWJHwu48a0zLVlnphlHYsME9J6O42HWXzs11V8gdOpz8mXnz5jF+/Hjmz59f7+Pdc889nHvuuSHXW+A3UZWRATfd5O4B2LIF7r7bdQu94Qb3j3/VVW68IHtAjGlNVF0nh6NHXeHn009db7jKSlf4yc11Y2ElJwf/fHFxMcuXL+epp56qCvy7du1iwoQJVQ9oeffdd6moqGDatGkMHTqU3NxcHn74YQCmTZvGiy++CMAdd9xRNWTyv//7v/Pee++xcOFCfvazn5GXl8fnn38e8WGVG6uV9lKNT/37u8B/113w/vvu8ZB/+YvrCpqd7TKBa691VUPx0nvBNG+3v347a3ZXD8usWnOqrAw97y8pyXWGSEqCvG55PDKl9sHfXnnlFaZMmcKgQYPIyMhg9erVLFmyhAsuuIA777yTiooKSkpKWLNmDTt37mTdunUAJw2JfPDgQRYsWMDGjRsREQ4fPkynTp24+OKLueiii7j88suByA+r3FhW4m+FRNyD4P/4R1caWrDAVQ396U9umOivfc2NFrp9e6xTauJBZaV7JvXatfDGG64aZtcu9/9XWOh6px096pYXF7v3JSVQWuoaaI8fdz1zVF1Hh6Qk1xMnJQXatXPVOO3a1e9mq3nz5lWVvK+88krmzZvH6NGjefrpp5k1axaffvopaWlp9OvXjy+++IKZM2fy+uuvk56eXmM/6enppKSk8IMf/ICXX36Z9u3bBz1epIdVbqwmGaunsUaNGqUrV66MdTJavEOH4K9/dVcCy5e7DGLiRHcVcPnl7lGSxoSrrMzd/LRrV/VrsPd79tSsaly0aAOZmaeSkOCqYnwl9VDvk5Iie4V64MABevXqRXZ2NiJCRUUFIsK2bdvYtWsX//jHP5g9ezY/+9nPuO666yguLuaNN97gmWeeISsrizlz5jBt2rSqEn1ZWRlvv/028+fPp6CggMWLF9dYD26gNd+wyq+99lqjh1UOpj5j9cQ+6zFNpnNn1x5w003ursUXXnCZwPTp8G//5p4gdu21cP757kdn4o9vkLJQwdx/2aEgT9EQcdWK3bu7NqZhw9xr9+7Vy9LT3VVnrLpTvvjii1x33XU88cQTVcsmTpzI0qVLGTduHDfeeCNHjx5l9erVTJ06leTkZC677DL69+/PtGnTauyruLiYkpISpk6dyhlnnMGAAQMASEtLo6ioCKg5rPL48eOZO3cuxcXFjR5hszEs8Mepfv1cW8AvfwkffOAygPnzXZtAVlZ1e8Dpp1t7QGtQXu66NoZTQg94ZgjgqlZ8wXvIEJg0qWYw973Pyqq7ymXDhtj2oZ83bx533FHzMSCXXXYZ06ZNo0OHDrRp04bU1FSee+45du7cyQ033FD1QJX777+/xueKioq45JJLOHbsGKpa1fh75ZVXcuONNzJ79mzmz5/P9OnTKSwsRFUjMqxyY1lVj6ly/DgsWuQygVdfdfNDhrgM4Oqr3Q1jpnkpKQkdwP3f790b/Ca/zp2DB3Dfe99rx46RKwA052GZWzKr6jENkpzsqnsuucRdxv/tby4TuPNON511lhs1dOJE9z5EO5ZpJFXXJ72uYL5rl7tZKVBiogvY3bq5IQnGjAkd1ONxuAJjJX4Thi+/dO0Bf/87rFrleli0aQOjR7tL/kmTXEYQ7CYZU+34cRew66o737PHjScTKDU1eAAPfN/cR5e0En901KfEb4Hf1EtRkesR9M47buiIjz5yGUFSkssIJk50GcG4cS5QtXaq7g7pcOrODxwIvo+srNoDue99a/k+LfBHh1X1mKhJS4MpU9wErt/18uUuE3jnHfcgmQcecNUNo0a5TGDiRHcfQVpaLFNePxUVru95ONUtpaUnfz45uTpoDxzoxlUKFsyzs60HlWl6FvhNo6SmuoHjLrjAzR89Cu+9V31F8NBDbvC4xER3x7Cvamj8+NjcN1BaGl4w37vX3XgUqFOn6qA9dmzoErr/YGDGNDcW+E1EdegA553nJnAZwYoV1VcEjzwCv/udq4MeObK6amj8eBdUG0IVDh6sO5jv3u36qAdKSHDD9PoC98iRwYN5t27uDlFjWjoL/CaqOnRwD4/3DWRYUuLGEfJlBH/4A/z3f7vgm5dXXTV09tnuamLPntobQn2NpcGeSta+fXXQzs11N6YFdlPs3h0yM+N7bPZ4dd999zF37lwSExNJSEjgiSeeYMWKFcyYMSPk0At1Cbxjt7mywG+aVPv2rkvoOee4+dJSdwPZO++46bHHXPWQSOiHy3TpUh20Bw8OXd0ST4/SM/WzYsUK/v73v7N69Wratm3L/v37OX78OFdccQXXXHNNgwN/S2GB38RUu3bV9f7g7hr94AP3oJmKipODedeuoYfaNSZcu3btIjMzk7bejQyZmZnMnj2br776ismTJ5OZmcmSJUt48803ufvuuykrK6N///48/fTTpKamcs899/Dqq69SWlrKWWedxRNPPIEElDLuuOMOFi5cSFJSEueffz4PPvhgLE41KOvOaYxpUjW7Hd4OrKlt8wbIA2oflrm4uJjx48dTUlLCueeeyxVXXMHEiRPp06cPK1euJDMzk/3793PppZeyaNEiOnTowG9+8xvKysq46667OHjwIBkZGQBce+21fPe73+Wb3/xmVVXPOeecw5lnnnnScM3RVJ/unM34Ng9jjImO1NRUVq1axZNPPklWVhZXXHEFzzzzTI1t3n//fT777DPGjRtHXl4ezz77LNu2bQNgyZIljB07ltzcXBYvXsz69etrfDbc4Zpjxap6jDExVHvJPJoSExOZNGkSkyZNIjc3l2effbbGelXlvPPOY968eTWWHzt2jFtuuYWVK1eSk5PDrFmzOBYwsl1SUhIffvhh1XDNjz76KIsXL476OYXLSvzGmLizadMm8vPzq+bXrFnDKaecUmM45TPOOIPly5ezZcsWAEpKSti8eXNVkM/MzKS4uLjqEYz+iouLKSwsZOrUqTzyyCOsWRPp6qzGsRK/MSbuFBcXM3PmTA4fPkxSUhIDBgzgySefZN68eVx44YV0796dJUuW8Mwzz3DVVVdRVlYGwK9//WsGDRrEjTfeSG5uLn369GH06NEn7T/UcM3NhTXuGmOalI3VEx3WuGuMMSYkC/zGGBNnLPAbY5pcS6hibknq+31a4DfGNKmUlBQOHDhgwT9CVJUDBw6QkpIS9mesV48xpkn16tWLgoIC9u3bF+uktBopKSn06tUr7O0t8BtjmlSbNm3o27dvrJMR16yqxxhj4owFfmOMiTMW+I0xJs5Y4DfGmDhjgd8YY+KMBX5jjIkzUQv8IjJHRPaKyDq/ZbNEZKeIrPGmqdE6vjHGmOCiWeJ/BpgSZPnDqprnTa9F8fjGGGOCiFrgV9WlwMFo7d8YY0zDxKKO/0cistarCuocaiMRmSEiK0Vkpd3abYwxkdPUgf9PQH8gD9gF/HeoDVX1SVUdpc3xsnEAABb+SURBVKqjsrKymip9xhjT6jVp4FfVPapaoaqVwP8AY5ry+MYYY5o48ItId7/ZbwPrQm1rjDEmOqI2OqeIzAMmAZkiUgDcDUwSkTxAga3ATdE6vjHGmOCiFvhV9aogi5+K1vGMMcaEx+7cNcaYOGOB3xhj4owFfmOMiTMW+I0xJs5Y4DfGmDhjgd8YY+KMBX5jjIkzFviNMSbOWOA3xpg4Y4HfGGPijAV+Y4yJMxb4jTEmzljgN8aYOGOB3xhj4owFfmOMiTNhBX4RuU1E0sV5SkRWi8j50U6cMcaYyAu3xP99VT0CnA9kATcAD0QtVcYYY6Im3MAv3utU4GlV/cRvmTHGmBYk3MC/SkTexAX+N0QkDaiMXrKMMcZES7jP3J0O5AFfqGqJiHTBVfcYY4xpYcIt8b+lqqtV9TCAqh4AHo5esowxxkRLrSV+EUkB2gOZItKZ6nr9dKBHlNNmjDEmCuqq6rkJuB0X5FdRHfiPAI9FMV3GGGOipNbAr6q/B34vIjNV9Q9NlCZjjDFRFFbjrqr+QUSGAqcBKX7Ln4tWwowxxkRHWIFfRO4GJuEC/2vAhcAywAK/Mca0MOH26rkc+DqwW1VvAIYDbaOWKmOMMVETbuAvVdVKoFxE0oG9QL/oJcsYY0y0hHsD10oR6QT8D653TzHwYdRSZYwxJmrCbdy9xXv7uIi8DqSr6troJcsYY0y0hDss89u+96q6VVXX+i8zxhjTctidu8YYE2fqe+euTxF2564xxrRIdVX1vAecBfy7qvYDfgWsA/4FzI1y2owxxkRBXYH/CaDMu3N3AnA/8CxQCDwZ7cQZY4yJvLqqehJV9aD3/grgSVV9CXhJRNZEN2nGGGOioa4Sf6KI+DKHrwOL/daFew+AMcaYZqSuwD8P+JeI/B9QCrwLICIDcNU9IYnIHBHZKyLr/JZliMhbIpLvvXZuZPqNMcbUU62BX1XvA34KPAOMV1X1+9zMOvb9DDAlYNkdwNuqOhB425s3xhjThOqsrlHV94Ms2xzG55aKSJ+AxZfgRvkE10j8DvDzuvZljDEmcsIdpC1SuqrqLgDvNTvUhiIyQ0RWisjKffv2NVkCjTGmtWvqwB82VX1SVUep6qisrKxYJ8cYY1qNpg78e0SkO4D3ureJj2+MMXGvqQP/QuB67/31wP818fGNMSbuRS3wi8g8YAUwWEQKRGQ68ABwnojkA+d588YYY5pQ1G7CUtWrQqz6erSOaYwxpm7NtnHXGGNMdFjgN8aYOGOB3xhj4owFfmOMiTMW+I0xJs5Y4DfGmDhjgd8YY+KMBX5jjIkzFviNMSbOWOA3xpg4Y4HfGGPijAV+Y4yJMxb4jTEmzljgN8aYOGOB3xhj4owFfmOMiTMW+I0xJs5Y4DfGmDhjgd8YY+KMBX5jjIkzFviNMSbOWOA3xpg4Y4HfGGPijAV+Y4yJMxb4jTEmzljgN8aYOGOB3xhj4owFfmOMiTMW+I0xJs5Y4DfGmDhjgd8YY+KMBX5jjIkzFviNMSbOJMU6AcYcKz/GkbIjFB4r5EjZkaoJICUppc4pOTEZEYnxWRjTcljgNw12ouKEC9hl1QHbF7xPWna8ZmD3X3+84nij0xIqU2iX1C6szKOhU7ukdiQlJFnGY1oUC/wGgNITpew9urfGtK9kX435A6UHagTv0vLSOveblJBEx7YdSW+bTscU99orvRentT3NLQtY51uW1jYNQThWfqz+U4V7LT1RWrVsf8n+kNufqDzRqO8uQRLql2Ek1iNjaVN3xpWUYD9jUz/2H9NKnag4wf6S/SGDeODy4uPFQffTLqkdXVO7ktU+i6z2WQzIGEB6cnqNYO0L3sGWpSSlNPvScEVlBWUVZWFlKv6ZSV0Zj/90pOxIyP1VaEWj0p8oiY2+amnM5xMTEiP0lzBNJSaBX0S2AkVABVCuqqNikY6WRlU5WHqQHUd2sKNwBzuO7AhZQj9YejDoPpISksjukE1W+yyyO2QzIGMA2R2yqybfct/UIblDE59l00tMSKR9Qnvat2kfk+OXV5Y37MomVOZUXnrS/KFjh0JmPIo2Kv1JCUlRzVjqmhLE+qjUVyxL/JNVdX8Mj9/sHD1+lB1HdrC9cHtVYN9euL1GoC85UVLjM4KQ0S6jKlDnZueGDOLZHbLplNKp2ZfA401SQhKpyamkJqc2+bFVtc6MJzAjqe9UfLz4pKo2/302VmpyKjnpOZzS6RR6p/d2rx17c0pH99ozvadVhwWwb6OJnKg4wc6inSGD+vbC7Rw6dqjGZwShe1p3ctJzyO2ay9SBU+ndsTc56TnkdMwhJz2HrA5Z9k9tGkxEaJPYhjaJbUhrm9bkx1dVjlccb1TG4rsK3la4jZVfrWR/Sc3yZIIk0DOt50kZQtVrp1NikunWqrAQli6FJUvgxz+GnJyI7l5UG3eZ16CDinwJHAIUeEJVnwyyzQxgBkDv3r1P37ZtW9Mmsp4KjxWSfzCfbYe3BQ3qu4t3n3RJndEuoyqI907vXRXMe3d073uk9SA5MTlGZ2RMy+R/5bzt8Db3Wlj9WnCkgPLK8hqf6ZzSudaMIbtDdnSrlI4ehWXLYPFiF+xXrYLKSmjbFl5+GaZObdBuRWRVsKr0WAX+Hqr6lYhkA28BM1V1aajtR40apStXrmy6BIZwpOwIWw5uIf9APvkHvelAPlsObmFfyb4a27ZLalcVwKuCuS/Ie+/jof7cmOamorKCXcW72F64PWTm4LuPxKdtYtuq327/zv0Z1GVQ1dSvc7/6F9BKS2HFChfkFy+GDz+E8nJo0wbGjoVzzoHJk+GMMyAlpcHn2qwCf40EiMwCilX1wVDbNDjwr10LRUUwapTLOcNQVFbkgvvB/KpXX6Dfe3RvjW17pvVkYJeBDMwYyICMAQzMGEjfzn3JSc8ho12G1aUb00IVHiusygiqMocj7jWwoJcgCfTt1JdBXQYxMGNgjUwhp2OOu1I4ftwFd1+gX7ECysogMdHFp8mT3TRuHHSIXIGw2QR+EekAJKhqkff+LeAeVX091GcaHPinT4c5c1zQHz0axo+H8eM5Ono4WyoP1AjqviC/u3h3jV30SOtRFdQHZgxkYBcX5Pt37m8ldmPi1KHSQ1XxY/OBzWw+uNm9Hthco2t0CkkMOJrCoIJSBu2tYNBBGJQxkEEjziVz4lRkwgRIT49aOptT4O8HLPBmk4C5qnpfbZ9paOD/fMuHfLLsJfI3ryB/70byK/eRnwG7AtqwurXLYmDWkOqSu18p3oK7MaZOlZXwySfo4sXsXraIzZveY3O7UjZ3gc1909icncTnbYo4odVtC51SOlVdGfhfKQzMGBixhvZQgb/Ju4Oo6hfA8KY41oMbn+bxbY9DW8geks3ATmdyQUVHBu4tZ+DG/Qz4IJ8BO46Sdnwf9EyG8T1gfBqMHwBZQ91lmDHGBFKFzz6rbox95x04dAgBug8aRPfJ1zHxnHNg0iTIzgbc/RrbDm+rujLwXSks3baUF9a+UGP33VO7V2UEM8fMJLdrbkSTH/M6/nA0tMS/af8mjp446u42bRvkcqqiAtatc63py5bBu+/Czp1uXVoanHVWVfUQY8ZA+9jc4GOMibGyMtdm+NFH1d0s93ptfn37VtfRT54MPXvWe/elJ0rZcnALmw9sJv9gfo3M4aXvvsTZp5zdoGQ3m6qehmiyXj2qsH17dUawbJnLGACSkuD0010mMG6cm7yc3BjTilRUwIYNLsj7prVrXQMtuMA+eXJ1z5s+faKaHFVtcEcRC/wNdeiQa4H3ZQQffuhyf4BBg6qvCMaPhwEDwHryGNNyqMLnn9cM8qtXQ4l3h3x6uivwjR5dPfXu3WJ+5xb4I6WszN1c4csIli+Hg964ONnZ7h8jLw+GD3ev/ftDgo0lYkzMqbqqXP8gv3IlHD7s1qekwIgRNYP8wIEt+vdrgT9aKith48bqjGD1ajdf4Y242KED5ObWzAxycyPaV9cYE8T+/dXB3Rfod3vdtZOS3O9w9GjXj370aPja19wNVK2IBf6mdOyYa/FfswY++aT6tbDQrRdx1UL+mcHw4a7usIVcQhrTrBQVuStx/9L81q1unQgMHlyzJD98OLRrF9MkNwUL/LHmazgOzAy++KJ6m4yMkzODU0+FZBuvx8SJyko4csQVkgoLXTWM733gvO/9tm2waZP7jYFrbPUP8iNHRvUmqebMAn9zdeSI6zHgnxl8+qm7agB36XnaaTUzg+HDoUuX2KbbmECqbrCx2oJ1XfNHjtR9nLZtoWNH6NTJvXbrVl1dM2oUZGVF/1xbCAv8LUl5OeTnu0zAP0PYtat6m169XAYwcCD06+cakfv3d6WdMMclMqaKqits1FW6rm3+yJHqtq1QkpJcsPZNvuAdbD7UOvv/DpsF/tZg796amcGnn8KWLdVdz8DVZ+bkVGcE/plC//7ux2NanxMn6l+6Dlx3vI6H3ou4KpPagnVd8+3bWztWE7LA31qpwp49ri/yF1+4V/9pb80RRcnICJ0p9OjRoruutVgVFeHXa4cK3qV1P/ie1NSGBWvffGqq/X+0MM1mrB4TYSKujrNbN3c3caCiIpchBGYKH34If/tbzUvzlBR3+3mwTKFvX7vEDkYViovrX7r2ny8qqvs4KSknB+PevcMP3unprprFGCzwt35padUNwoFOnHA9jYJdLSxZ4hrqfHwZTNeu7ka1wFf/91lZLSOTUHUl5YY2RPrqtSsraz9OmzYnB+NBg+pX8raeXSaCLPDHszZtqkv0gVRdNZF/prB9u1u2d6/rPrdnT3Xvo0CdOp2cIYTKMDp2bFi97/HjDW+I9L0/caL2YyQknFyvfcop9asmadfO6rVNs2KB3wQn4oJz165ulNJgfN339uypzhCCvd+wwQ1be+BA8P0kJwfPJCoraw/eoTIdf2lpNQNy166utB1uSTs11YK2aXUs8JuGE3GBMTU1+FVDoPJydxu9f+YQLLNYv969JiTUDMidO7vuquGWtNPT7ZkKxgRhgd80naSk6oZoY0zMWN8sY4yJMxb4jTEmzljgN8aYZqcM+BJYBhyK+N6tjt8YY5pUMbATKPAm//e+ef877hcBUyKaAgv8xhgTEYorndcW0AuAwiCfzQB6edNooKff/EkjLjSaBX5jjKnTMWCPN31F6OAeeG+JAN1wAXwQMJnqgN7T77VpHwpjgd8YE6eOUh3M65qCPSegDdXB+3TgEk4O6t287ZqXVh74FZfjGmNaP8XVnwcG7d1Blu3BBf5gOuMCdldgpPfqP/XABfVMWmr/mFYe+H8MPA10CTJl1LI8HcswjImGcqDUbyoJmA811bbdEaqDeajhqTOpDtxjOTmY+6ZsoPUPiNfKA/9EXCnggN+U770Ga2DxSeLkjKG2jML3vgWMSGlMDSeITPANd7vyBqZTcPXgwaY0YAAnB3FfqT2LVh/q6qmVfxvf9qZgynEt8AdCTAf93n8BfOS9L6vleB2ATrgrho7eq/8UzrI0Wurlo2ksBY4T/eDrP9XxqMSQEqgOvO05ORh3DrIs1LahJv9tk7Gr8Mhp5YG/Nkm4kkB9HsysuB+Uf6YQOBXiLj2PeO93+L0vDvM4aYSXYaThfhy+H0htr82vgan5U1xG35CA2tAg3dAn4iVRewDtQsODbrCpDRaIW644DvwNIbhSfQcgpwGfr8AF/yPUzByOBJkClxf4LQ/jiU0nSSR4hhBOpuF7TcH9y7SpZaprvW+bROofOBTXXS7awdc3HaPhgbgNoQNpGq4uuaFBN9i29lM24bP/liaViCupd2zkfiqpzkB8Aas+r4HLCnE9HwKXhzHefaPUlTkENgQ2Jj1tCR08O+LqgxtTFRE42XDQpvmywN8iJVBd5RNNlZxcwi7HNQiGmiK5vq7qi3ADdDus3cSYahb4TS0SqK4OMsa0FlYMMsaYOGOB3xhj4owFfmOMiTMW+I0xJs7EJPCLyBQR2SQiW0TkjlikwRhj4lWTB34RSQQeAy4ETgOuEpHTmjodxhgTr2JR4h8DbFHVL1T1ODAfN5C1McaYJhCLwN8TN4CNT4G3rAYRmSEiK0Vk5b59+5osccYY09rF4gauYAO0nDQgiqo+CTwJICL7RGRbtBMWIZnA/lgnIkpa87lB6z4/O7eWqzHnd0qwhbEI/AXUHOGsF+4hliGpan2G0IwpEVmpqpF/OnIz0JrPDVr3+dm5tVzROL9YVPV8BAwUkb4ikgxcCSyMQTqMMSYuNXmJX1XLReRHwBu4IQznqOr6pk6HMcbEq5gM0qaqrwGvxeLYTeDJWCcgilrzuUHrPj87t5Yr4ucnqg190IQxxpiWyIZsMMaYOGOB3xhj4owF/ggQkRwRWSIiG0RkvYjcFus0RZqIJIrIxyLy91inJdJEpJOIvCgiG72/4ZmxTlOkiMiPvf/JdSIyT0RSYp2mxhCROSKyV0TW+S3LEJG3RCTfe+0cyzQ2VIhz+533f7lWRBaISKdIHMsCf2SUAz9V1VOBM4B/a4XjD90GbIh1IqLk98DrqjoEGE4rOU8R6QncCoxS1aG4XnRXxjZVjfYMMCVg2R3A26o6EHjbm2+JnuHkc3sLGKqqw4DNwC8icSAL/BGgqrtUdbX3vggXOE4ahqKlEpFewDeA/411WiJNRNKBCcBTAKp6XFUPxzZVEZUEtBORJNwzNGu9WbK5U9WlwMGAxZcAz3rvnwW+1aSJipBg56aqb6pquTf7Pu6G10azwB9hItIHGAF8ENuURNQjwH/gnr7e2vQD9gFPe1VZ/ysiHWKdqEhQ1Z3Ag8B2YBdQqKpvxjZVUdFVVXeBK4QB2TFOT7R8H1gUiR1Z4I8gEUkFXgJuV9UjsU5PJIjIRcBeVV0V67RESRIwEviTqo4AjtJyqwpq8Oq6LwH6Aj2ADiJyTWxTZRpCRO7EVSn/ORL7s8AfISLSBhf0/6yqL8c6PRE0DrhYRLbihtA+R0ReiG2SIqoAKFBV3xXai7iMoDU4F/hSVfep6gngZeCsGKcpGvaISHcA73VvjNMTUSJyPXARcLVG6MYrC/wRICKCqyPeoKoPxTo9kaSqv1DVXqraB9cwuFhVW02pUVV3AztEZLC36OvAZzFMUiRtB84Qkfbe/+jXaSUN1wEWAtd7768H/i+GaYkoEZkC/By4WFVLIrVfC/yRMQ64FlcaXuNNU2OdKBO2mcCfRWQtkAf8V4zTExHeVcyLwGrgU9zvvUUPbyAi84AVwGARKRCR6cADwHkikg+c5823OCHO7VEgDXjLiyuPR+RYNmSDMcbEFyvxG2NMnLHAb4wxccYCvzHGxBkL/MYYE2cs8BtjTJyxwG8MICIqIs/7zSeJyL6Gjkbqjfh5i9/8pNY4sqlpmSzwG+McBYaKSDtv/jxgZyP21wm4pc6tjIkBC/zGVFuEG4UU4Cpgnm+FN+b7K9646O+LyDBv+SxvHPV3ROQLEbnV+8gDQH/vppvfectS/cb9/7N3N60xTc4CvzHV5gNXeg8rGUbNEVZ/BXzsjYv+n8BzfuuGABcAY4C7vXGb7gA+V9U8Vf2Zt90I4HbgNNyooOOieTLGhGKB3xiPqq4F+uBK+68FrB4PPO9ttxjoIiIdvXX/UNUyVd2PGyCsa4hDfKiqBapaCazxjmVMk0uKdQKMaWYW4sawnwR08VserFrGN95Jmd+yCkL/rsLdzpioshK/MTXNAe5R1U8Dli8FrgbXQwfYX8czF4pwg2sZ0+xYicMYP6pagHsGb6BZuKd0rQVKqB4GONR+DojIcu/B2YuAf0Q6rcY0lI3OaYwxccaqeowxJs5Y4DfGmDhjgd8YY+KMBX5jjIkzFviNMSbOWOA3xpg4Y4HfGGPizP8H/wOnR0/jD7AAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Kemba Walker will have 21 points, 5 rebounds, 4 assists, 2 steals against MIA.\n"
     ]
    }
   ],
   "source": [
    "stat_predictor(\"Kemba Walker\", \"MIA\", 'Dec')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXwV5d3//9eHBBIIIEIQEVAERaCAAUFBXMCFVkWtVYutG2rV1rta1Por7X230NZdW6nVqvQWxQ2quN5aWyziF+sOiBQFXEFZZJUl7Ek+vz+uSXISspwk5+QkOe/n4zGPnDMzZ+aak+Qz13yua64xd0dERNJHs1QXQERE6pcCv4hImlHgFxFJMwr8IiJpRoFfRCTNKPCLiKQZBX5JCjN72MxujF4fa2ZLa7md+83s14ktnUh6U+BPMTM7xszeNLPNZrbRzN4wsyHRsrFm9u8abKu7mbmZZcax7lgzKzSzfDPbYmYLzGx0XY6lMu7+ursfFmeZyhyvu//Y3X+fjHKV2/dEM3uslp/bE32P+Wa22MzOTkYZK9l/jf5GGisze83MflRu3ggzW2FmB8Z8//nR/8C2mPfHxnxmYrT8yPo/ioZDgT+FzKwt8CLwZ6A90AX4LbCrnorwlru3BtoBDwJPmln7CspZ7Ykkzf3N3VtH3+U44DEz61TRivouE8/dvyz+/qPfAcDhMfNeBzAzAy4ENgIXp6q8DYECf2r1AnD3ae5e6O473H2muy80sz7A/cCwqNayCcDMTjOz96Na+ldmNjFme3Oin5uizwyLpxDuXgRMAVoCPWJqUr8ws6+Bh6J9j46uDDZFVykDirdhZgPNbL6ZbTWzvwHZMctGmNmKmPfdzOwZM1tnZhvM7J4qjrckZRS9v9zMPo2ujl4wswNilrmZ/djMPjGzb8zs3uifvU7M7AAzezoq7xdmdk0V3+U/ga1Az9hjr+C7TMpxmNl4M/ss+j18ZGZnxSwbG11R3hX9Dj83s6Oj+V+Z2Vozuzhm/Swzu9PMvjSzNRbSbi2jZblm9mK0nY1m9rqZ7RVPos/cWW7e82Z2XfT6F2a2MirvUjM7MZ7jrKVjgQOAnwHnmVmLJO6rQVPgT62PgUIzm2pmp5jZvsUL3H0x8GOiWrm7t4sWbQMuItTSTwN+YmbfjZYdF/1sF33mrXgKEdVCfwTkA59Es/cnXIUcBFxhZoMIJ4crgQ7AA8ALUXBoATwHPBp95imgwnSHmWUQrnKWA90JVznTqzje2M+eANwCfB/oHG1jernVRgNDgMOj9b4dffbAKEgdGM93ErPPZsD/AR9EZT0RGGdm365gXTOz04AWwEcxi8p/l7U+jjh8Rghw+xCuHh8zs84xy48CFhJ+h09E+x0CHAJcANxjZsW15tsIlZO8aHkX4DfRsuuBFUBHoBPwK6Ci8V+eAMYUn7iiv/FRwHQzOwz4KTDE3dtEx7gszuOsjYsJv8u/Re+TktpsDBT4U8jdtwDHEP5h/gqsi2p/FaYJos+85u7/cfcid18ITAOOr2URhkY166+BHwBnufvmaFkRMMHdd7n7DuBy4AF3fye6OplKSEkNjabmwCR33+PuM4D3KtnnkYRa1w3uvs3dd7p7vDnq84Ep7j7f3XcBvyRcIXSPWedWd9/k7l8CswlBqzgd0C6aXxNDgI7u/jt33+3unxN+V+fFrPP96HvcBrwA3Ozum2KWl/8ua30c1XH3p9x9VfT38TfCiTw2n/2Fuz/k7oWEANgN+F1UtpnAbuCQKFBfDlzr7hvdfStwc8xx7yGctA6Kfueve8UDf71O+PsuzrOfQzi5rwIKgSygr5k1d/dl7v5ZPMdZU2bWCjgXeMLd9wAzSON0jwJ/irn7Yncf6+5dgX6EoDipsvXN7Cgzmx2lHTYTasm5tdz921EwzHX3oe7+r5hl69x9Z8z7g4Dro1rzpijQdYvKewCwstw//vJK9tkNWO7uBbUo7wGx23X3fGADoSZa7OuY19uB1tTNQcAB5Y77V4RabrEno++xFSHFc5GZXRmzvPx3mbTjMLOLrDQdt4nwNxX797Em5vWOaP/l57Um1ORbAfNitvWPaD7AHcCnwMwoZTS+ovJEfxPTCRULgB8Cj0fLPiW0iUwE1prZ9NiUVzkFhMpFrOaEE1A8zoq28ffo/ePAKWbWsfKPNF0K/A2Iuy8BHib8s0Lll84vAN3cfR9CXtyqWL/WxSn3/ivgpijAFU+t3H0asBroUi4PXVlK5SvgQKu4kbO68q8iBGIAzCyHkLJYWc3n6uIrQi059rjbuPupFa3s7suAl4HTY2eXWy0px2FmBxGuRn4KdIjSZYso/fuoifWEk8C3Yo57n+LGU3ff6u7Xu3sPwrFeV0V+fhpwTlS+o4Cnixe4+xPufgzh+3BCeqkiXxJSg7EOpvIKRnkXE05oX0ZtLU8RThw/qPJTTZQCfwqZWW8zu97MukbvuxH+EN+OVlkDdC3XCNUG2OjuOy10SfthzLJ1hLRCjyQU96/Aj6MrDjOzHAsNzW2Atwi1qWvMLNPMvkfZ9EKsdwknilujbWSb2fBoWUXHG+sJ4BIzyzOzLELq4Z0o2CZCs6g8xVNWVN4tUSNkSzPLMLN+FnW5LS/6XX4H+LCK/STrOHIIwXNdVJZLKK1E1EjU4P9X4C4z2y/aXpfitg0LDf3FKaEthLRNYSXbej8q0/8C/yxOg5nZYWZ2QvQd7CScaCrcBiEtdYmZHRn9/fUCrmXvtpG9mFlx28xoQsosj9B2chtpmu5R4E+trYQa0Dtmto0Q8BcRGs4AXiUEkK/NbH007yrgd2a2ldDQ9mTxxtx9O3AT8EZ0eT40UQV197mEnO89wDeEy/yx0bLdwPei998AY4BnKtlOIaGGeAihFrciWh8qPt7Yz84Cfk2oMa4mpFXOK79eRay0r3dVjbs/IASf4umzmPLmAV8QasL/S2g8LTYm2nY+oW3jDULDaoXqchyVbTLa7kfAHwgn4jVA/6gstfULwu/5bTPbAvwLKL4f49DofX60v7+4+2tVbGsacBLhpFcsC7iV8J1+DexHSKPtJeotNZ7QK2ozIWUzFZgcx3FcCCzw0GPu6+IJuBsYYGa1Ojk2ZlZxe4yINAYWupae4O7frXZlkYhq/CKNlJllA2cCc1NdFmlcFPibMAs3z+RXMN2f6rJJ3ZhZf0J6ZAsh/SYSN6V6RETSjGr8IiJpplEMGJWbm+vdu3dPdTFERBqVefPmrXf3vW5SaxSBv3v37sydq/YrEZGaMLMKb3BTqkdEJM0o8IuIpBkFfhGRNNMocvwi0nTs2bOHFStWsHPnzupXlrhkZ2fTtWtXmjcvP4BpxRT4RaRerVixgjZt2tC9e3es7g9IS3vuzoYNG1ixYgUHH3xwXJ9RqkdE6tXOnTvp0KGDgn6CmBkdOnSo0RWUAr+I1DsF/cSq6fepVI+ISANSUAA7d4Zp1y7IzYWsrMTuQ4FfRNJORkYG/fv3p6CggD59+jB16lRatWpV6fpHH300b775ZpXbnDRpEldccUWV2ylWWFga2GOD/M6dYVms1q0V+EVE6qxly5YsWLAAgPPPP5/777+f6667rtL1qwv6EAL/BRdcUBL4i4rKBvTYn3vKPSm4RYsQ3Nu3Dz+zs8PUogU0S0JCvknn+LduDV+yiEhljj32WD799FMA/vjHP9KvXz/69evHpEmTStZp3To86/61115jxIgRnHPOOfTu3Zsf/vB8tm93brvtblatWsUxx4zkqKNG8v77hZxxxlj69+/HkCH9ueOOu9i8OWxrn32gSxfo2RP69oWBA2HAADjsMDjoINh/f2jXLgT+ZAR9aOI1/v/5H7j7bujUCbp2rXzq0gVatkx1aUXSz7hxEFW8EyYvD2JiNgDuoQbuHiYIte89ewp48cWXOemk7zBnzjwefPAhXnnlHQoLnZNPPorDDz+efv0G4g5r1sDGjTB//vu8+OKH7LPPAVx44XCeeOINTjzxGv70pz/yl7/MpnPnXD7+eB5btqzkvfcWkZUFO3duokOHxB5nXTTpwH/mmaFhZMWKMH3+OcyZA998s/e6ublVnxy6doWcnPo/BpGGzj00SO7aBbt3h6mq1x06hP9Bd9ixozTtEftokLq8XrcunExig315O3bsYMCAPAAGDjyWo466jBkz7mPYsLNYtSr8ow8f/j1eeul12rQJgf+rr8K2+/Y9ktzcrmRlQV5eHnv2LKN372No0SLU3HNzYf/9e3DddZ8zYcLVnHbaaYwaNaq2X29SNOnAf8IJYSpv2zZYubL0hFA8ffVV+Pn227B+r0d9w777Vn9yaNs2+ccl6aWoKATHygJqvAE3UZ+raBs18fLL4ZgALr+88vWaNQOzMMW+ru59PJ/Lzm7Jm28uKLO8Y0cnMxN69w7rdewYpv79w/u8PNi8GXJzs+jbN5SxbdsMWrYsIMoEldh333354IMP+Oc//8m9997Lk08+yZQpU2r2RSVRkw78lcnJgV69wlSZnTurPjnMnx8u/cpr0wa6dav65NCuXfhDk4ahsDBxATAZnyvfEJgImZmlDYqxP8u/zskJFZ7K1qnsc1W9bt06/O9VF6iTySzUzGONGnUcY8eOZcKE8bg7L774LI8++mhJj5rMTMjIqHybbdq0YevWreTm5rJ+/XpatGjB2WefTc+ePRk7dmzSjqU20jLwxyM7OzS+9OxZ+Tq7d8OqVRWfGFasgEWLYPXqvS81c3Kqv3Lo0KFpnBzcQ2Ctz9pnTV+X7z6XCPEGw7ZtExdQ4103WT1F4rV4McTR47HeDRo0iLFjx3LkkUcC8KMf/YiBAwfG/fkrrriCU045hc6dOzNp0iQuueQSiqJLm1tuuSUpZa6tRvHM3cGDB3tjfRDLnj3w9deVnxxWrAgnj/LBJzu7+pNDx47h5FA+DdAQLv1jXyf6T8ws8cEwkZ9r3rxpnLSTZfHixfTp0yfVxWhyKvpezWyeuw8uv65q/EnWvHlI/XTrVvk6hYUhbVTZieHf/w5pp/KX/M2aleZKEykjI74A17Jl6JpWXwG1+GdGhgKrSF0o8DcAGRlwwAFhiq4y91JUFHoUxJ4cvv66NEgnqmZbHFhFpOlS4G8kmjUL9yN06gRHHJHq0ohIY9ak79wVEZG9KfCLiKQZBX4RkTSjwC8iaScjI4O8vDz69evH6aefzqZNm6pcf9myZfTr16+eShdMnDiRO++8MynbVuAXkbRTPCzzokWLaN++Pffee2+qi1SvFPhFJK0NGzaMlStXlry/4447GDJkCAMGDGDChAkl8wsKCrj44osZMGAA55xzDtu3bwdg1qxZDBw4kP79+3PppZeyKxoLvnv37qyPBv2aO3cuI0aMAEJN/tJLL2XEiBH06NGDu+++u2QfN910E4cddhgnnXQSS5cuLZl/991307dvXwYMGMB5551X52NWd04RSZ36Gpe5EoWFhcyaNYvLLrsMgJkzZ/LJJ5/w7rvv4u6cccYZzJkzhwMPPJClS5fy4IMPMnz4cC699FL+8pe/8NOf/pSxY8cya9YsevXqxUUXXcR9993HuHHjqtzvkiVLmD17Nlu3buWwww7jJz/5CQsXLmT69Om8//77FBQUMGjQII6I+m7feuutfPHFF2RlZVWbloqHavwiknZ27NhBXl4eHTp0YOPGjZx88slACPwzZ85k4MCBDBo0iCVLlvDJJ58A0K1bN4YPHw7ABRdcwL///W+WLl3KwQcfTK9oxMeLL76YOXPmVLv/0047jaysLHJzc9lvv/1Ys2YNr7/+OmeddRatWrWibdu2nHHGGSXrDxgwgPPPP5/HHnuMzMy619dV4xeR1ImzZp5oxTn+zZs3M3r0aO69916uueYa3J1f/vKXXHnllWXWX7ZsGVZunBAzo6qxzjIzM0sGadu5c2eZZVkxD9HNyMigoKCgZJsVeemll5gzZw4vvPACv//97/nwww/rdAJQjV9E0tY+++zD3XffzZ133smePXv49re/zZQpU8jPzwdg5cqVrF27FoAvv/ySt956C4Bp06ZxzDHH0Lt3b5YtW1by6MZHH32U448/Hgg5/nnz5gHw9NNPV1uW4447jmeffZYdO3awdetW/u///g+AoqIivvrqK0aOHMntt9/Opk2bSspXW6rxi0haGzhwIIcffjjTp0/nwgsvZPHixQwbNgwIz9p97LHHyMjIoE+fPkydOpUrr7ySQw89lJ/85CdkZ2fz0EMPce6551JQUMCQIUP48Y9/DMCECRO47LLLuPnmmznqqKOqLcegQYMYM2YMeXl5HHTQQRx77LFAaIe44IIL2Lx5M+7OtddeS7t27ep0zEkbltnMugGPAPsDRcBkd/+TmU0ELgfWRav+yt3/XtW2GvOwzCJSloZlTo6GMixzAXC9u883szbAPDN7JVp2l7sn584EERGpUtICv7uvBlZHr7ea2WKgS7L2JyIi8amXxl0z6w4MBN6JZv3UzBaa2RQz27eSz1xhZnPNbO66desqWkVERGoh6YHfzFoDTwPj3H0LcB/QE8gjXBH8oaLPuftkdx/s7oM7duyY7GKKiKSNpAZ+M2tOCPqPu/szAO6+xt0L3b0I+CtQyTOnREQkGZIW+C3cifAgsNjd/xgzv3PMamcBi5JVBhER2Vsya/zDgQuBE8xsQTSdCtxuZv8xs4XASODaJJZBRKRCzz77LGbGkiVLavzZ3/zmN/zrX/+qdPlzzz3HRx99VJfiJVUye/X8G6jo/uMq++yLiNSH4rtvp0+fzsSJE2v02d/97ndVLn/uuecYPXo0ffv2rUMJk0dDNohI2snPz+eNN97gwQcfZPr06QCsXr2a4447ruQBLa+//jqFhYWMHTuWfv360b9/f+666y4Axo4dy4wZMwAYP358yZDJP//5z3nzzTd54YUXuOGGG8jLy+Ozzz5L+LDKdaUhG0QkZcb9YxwLvk7ssMx5++cx6TtVD/723HPP8Z3vfIdevXrRvn175s+fz+zZs/n2t7/Nf//3f1NYWMj27dtZsGABK1euZNGi0BRZfkjkjRs38uyzz7JkyRLMjE2bNtGuXTvOOOMMRo8ezTnnnAMkfljlulKNX0TSzrRp00pq3ueddx7Tpk1jyJAhPPTQQ0ycOJH//Oc/tGnThh49evD5559z9dVX849//IO2bduW2U7btm3Jzs7mRz/6Ec888wytWrWqcH+JHla5rlJfAhFJW9XVzJNhw4YNvPrqqyxatAgzo7CwEDPj9ttvZ86cObz00ktceOGF3HDDDVx00UV88MEH/POf/+Tee+/lySefZMqUKSXbyszM5N1332XWrFlMnz6de+65h1dffXWvfSZ6WOW6UuAXkbQyY8YMLrroIh544IGSeccffzxz5sxh+PDhXH755Wzbto358+dz6qmn0qJFC84++2x69uzJ2LFjy2wrPz+f7du3c+qppzJ06FAOOeQQANq0acPWrVuBssMqH3PMMTzxxBPk5+fXeYTNulDgF5G0Mm3aNMaPH19m3tlnn83YsWPJycmhefPmtG7dmkceeYSVK1dyySWXlDxQ5ZZbbinzua1bt3LmmWeyc+dO3L2k8fe8887j8ssv5+6772b69OlcdtllCR1Wua6SNixzImlYZpGmQ8MyJ0dNhmVW466ISJpR4BcRSTMK/CIiaUaBX0QkzSjwi4ikGQV+EZE0o8AvImnppptu4lvf+hYDBgwgLy+Pd955h0mTJrF9+/ZabzN28LaGTDdwiUjaeeutt3jxxReZP38+WVlZrF+/nt27dzNmzBguuOCCSsfcaSpU4xeRtLN69Wpyc3PJysoCIDc3lxkzZrBq1SpGjhzJyJEjAZg5cybDhg1j0KBBnHvuueTn5wNhPP4hQ4bQr18/rrjiCiq6Ebb8cM0Nie7cFZF6VfYO03FAYodlhjyg6sHf8vPzOeaYY9i+fTsnnXQSY8aM4fjjj6d79+7MnTuX3Nxc1q9fz/e+9z1efvllcnJyuO2229i1axe/+c1v2LhxI+3btwfgwgsv5Pvf/z6nn346Y8eOZfTo0ZxwwgkMGzZsr+Gak0l37oqIVKF169bMmzePyZMn07FjR8aMGcPDDz9cZp23336bjz76iOHDh5OXl8fUqVNZvnw5ALNnz+aoo46if//+vPrqq3z44YdlPhvvcM2pohy/iKRQ/Q/LXCwjI4MRI0YwYsQI+vfvz9SpU8ssd3dOPvlkpk2bVmb+zp07ueqqq5g7dy7dunVj4sSJ7Ny5s8w68Q7XnCqq8YtI2lm6dCmffPJJyfsFCxZw0EEHlRlOeejQobzxxht8+umnAGzfvp2PP/64JMjn5uaSn59fYS+e/Px8Nm/ezKmnnsqkSZNYsCDR6ay6UY1fRNJOfn4+V199NZs2bSIzM5NDDjmEyZMnM23aNE455RQ6d+7M7Nmzefjhh/nBD37Arl27ALjxxhvp1asXl19+Of3796d79+4MGTJkr+1XNlxzQ6HGXRGpVxqWOTnUuCsiIpVS4BcRSTMK/CJS7xpDirkxqen3qcAvIvUqOzubDRs2KPgniLuzYcMGsrOz4/6MevWISL3q2rUrK1asYN26dakuSpORnZ1N165d414/aYHfzLoBjwD7A0XAZHf/k5m1B/4GdAeWAd9392+SVQ4RaViaN2/OwQcfnOpipLVkpnoKgOvdvQ8wFPgvM+sLjAdmufuhwKzovYiI1JOkBX53X+3u86PXW4HFQBfgTKD43uipwHeTVQYREdlbvTTumll3YCDwDtDJ3VdDODkA+9VHGUREJEh64Dez1sDTwDh331KDz11hZnPNbK4agUREEiepgd/MmhOC/uPu/kw0e42ZdY6WdwbWVvRZd5/s7oPdfXDHjh2TWUwRkbSStMBvZgY8CCx29z/GLHoBuDh6fTHwfLLKICIie0tmP/7hwIXAf8yseEzSXwG3Ak+a2WXAl8C5SSyDiIiUk7TA7+7/BqySxScma78iIlI1DdkgIpJmFPhFRNKMAr+ISJpR4BcRSTMK/CIiaUaBX0QkzSjwi4ikGQV+EZE0o8AvIpJmFPhFRNKMAr+ISJpR4BcRSTMK/CIiaUaBX0QkzSjwi4ikGQV+EZE0o8AvIpJmFPhFRNKMAr+ISJpR4BcRSTMK/CIiaUaBX0QkzcQV+M3sZ2bW1oIHzWy+mY1KduFERCTx4q3xX+ruW4BRQEfgEuDWpJVKRESSJt7Ab9HPU4GH3P2DmHkiItKIxBv455nZTELg/6eZtQGKklcsERFJlsw417sMyAM+d/ftZtaBkO4REZFGJt4a/yvuPt/dNwG4+wbgruQVS0REkqXKwG9m2WbWHsg1s33NrH00dQcOqOazU8xsrZktipk30cxWmtmCaDo1EQchIiLxqy7VcyUwjhDk51HaoLsFuLeazz4M3AM8Um7+Xe5+Z82KKSIiiVJl4Hf3PwF/MrOr3f3PNdmwu8+JrgxERKQBiatx193/bGb9gL5Adsz88rX5ePzUzC4C5gLXu/s3Fa1kZlcAVwAceOCBtdiNiIhUJN47dycAf46mkcDtwBm12N99QE9CD6HVwB8qW9HdJ7v7YHcf3LFjx1rsSkREKhJvr55zgBOBr939EuBwIKumO3P3Ne5e6O5FwF+BI2u6DRERqZt4A/+OKFgXmFlbYC3Qo6Y7M7POMW/PAhZVtq6IiCRHvDdwzTWzdoRa+jwgH3i3qg+Y2TRgBKEr6ApgAjDCzPIAB5YReg2JiEg9Mnev2QdCT5227r4wGQWqyODBg33u3Ln1tTsRkSbBzOa5++Dy8+Nt3J1V/Nrdl7n7wth5IiLSeFSZ6jGzbKAV0Z27lN7A1ZZq7twVEZGGqaZ37hbbSvV37oqISANUXarnTeBo4Ofu3gP4LaEnzv8Dnkhy2UREJAmqC/wPALuiO3ePA24BpgKbgcnJLpyIiCRedameDHffGL0eA0x296eBp81sQXKLJiIiyVBdjT/DzIpPDicCr8Ysi/ceABERaUCqC97TgP9nZuuBHcDrAGZ2CCHdIyIijUx1wzLfFPXX7wzM9NK7vZoBVye7cCIiknjVpmvc/e0K5n2cnOKIiEiyxTtIm4iINBEK/CIiaUaBX0QkzSjwi4ikGQV+EZE0o8AvIpJmFPhFRNKMAr+ISJpR4BcRSTMK/CIiaUaBX0QkzSjwi4ikGQV+EZE0o8AvIpJmFPgbs5LHI4iIxE+PT2yMVq2CG2+EBx+EjAxo0wbati071XReTg6YpfrIRKQeKPA3Jhs3wm23wZ//DHv2wIUXQm4ubNkSpq1bw88vvyw7b9eu6rfdrFnpSSCek0ZV67RokfzvQkRqTYG/Mdi2Df70J7j99hDMf/hD+O1voWfP+D6/a1fpSSH2BBE7VTRvyxZYsaLsOvGkl7Kyan/lETvl5IQTkogkVNICv5lNAUYDa929XzSvPfA3oDuwDPi+u3+TrDI0ert3w+TJIa2zZg2cfnp4PWBAzbaTlRWm3Ny6laeoCLZvj++kUX7eypWwZEnp+507q9+fGbRuXbcUVvGUlVW3YxdpQpJZ438YuAd4JGbeeGCWu99qZuOj979IYhkap8JCePxxmDABli2D44+HZ56Bo49ObbmaNQuBuHVrOOCAum1r9+5wcoj36iN23urVZecVFVW/vxYtan/SiH3funVoVxFpxJIW+N19jpl1Lzf7TGBE9Hoq8BoK/KXc4fnn4X/+Bz78EAYNgvvvh1Gjml7Da4sW0KFDmOrCvexVSE1OJF9/DR9/XDpvx4749tm6dWIa1LOzm97vVRqF+s7xd3L31QDuvtrM9qtsRTO7ArgC4MADD6yn4qXQ7Nnwy1/CO+9Ar17w5JNw9tnKcVfHLLQF5ORA585121ZBwd4niereF89bu7bsvMLC6veXmZmYtpA2bXQVIjXSYBt33X0yMBlg8ODBTbfD+ty58KtfwSuvQNeu8Ne/wtixIShI/crMhH33DVNduIc2jNq0haxbB59/Xvp+27b49tmqVWLaQlq21FVIGqjv6LLGzDpHtf3OwNp63n/DsXgx/PrX8PTTId3xhz/AVVeFy39p3MxCAG3ZEjp1qtu2Cgtr3xbyxRel8zZvDlc01WnWrO4prOLXzZvX7dglaeo78Nqy2E8AABGPSURBVL8AXAzcGv18vp73n3pffgkTJ8LUqaGWNmECXHdd+GcRKS8jA9q1C1NduIduvbVpC/nmG1i+vHRefn58+2zZUjcXNlDJ7M45jdCQm2tmK4AJhID/pJldBnwJnJus/Tc4a9fCzTfDffeFP+Kf/Szk9Dt2THXJJB2YhavJ7GzYr9KmtfgUFYXgX9M0VvmbC7dsCb27qlPTmwurmqebC4Hk9ur5QSWLTkzWPhukzZtDGueuu0Lvk0suCbX8bt1SXTKR2olNB9VV+ZsL4z2JbN5c95sLq+u6W9m8zp0bfacLtSAmy44d8Je/hFr+xo1w7rnw+9/DYYelumQiDUciby7ctq12bSErV4Y2t+J51d1c2K9fuJP+hBPqVuYUUuBPtIICeOihMKTCypWhD/7NN8MRR6S6ZCJNV3E6qE2bxN1cWNFJY80amDQJTjwRzjoL7rwTevRIzDHUIwX+RCkqgqeeCj11PvkEhg6Fxx6DESNSXTIRqYnqbi688kr44x9Dha5PH7j++tBe16ZN/ZazDhp3oqohcIeXX4bBg+G888Jl6/PPw5tvKuiLNEXZ2eHem6VLYcwYuOWWcNPl1KnxDR/SACjw18Ubb4RxdE49FTZtgkcfhQUL4Iwz1P1MpKnr0gUeeQTefhsOPDDceDl0KLz1VqpLVi0F/tr44AMYPRqOOSakde69N4w8ecEFunVeJN0cdVQI9o88EnoaHX10eFbGypWpLlmlFPhr4tNPw1j4AweG2v4tt4R5V12l/sEi6axZsxDsP/44pIGeeiqkf268Mf7B/+qRAn88Vq2Cn/wkNOQ8/zyMHx/GUxk/PtxVKCICYeTWm24K3UNPOSV09ujTB2bMaFDPyFbgr8rGjfCLX8Ahh4Tn2155JXz2WWjNr+tAXiLSdB18cAj2r74K++wT7uMZOTK0ATYACvwVyc8PZ+0ePeCOO8LwyEuWwD33wP77p7p0ItJYjBwJ8+aFoVoWLQrP2LjyyjAKawop8MfatSs8yLxnz/AwlOOPDw25jz7aKG/SEJEGIDMTfvzj0BHkZz+DKVPg0EPDMC7xjFWUBAr8EIa+nToVeveGa66Bvn1DP/znn4f+/VNdOhFpCvbdNwT7hQtDt8/rrgvx5e9/32vVZZuWMXneZM558hw+3fhpwouS3nfuusNzz4Xa/UcfhWEVHngATj5Z/fBFJDn69Ak3ff7973DttXDaaWwZfRKvjTuLmbs+YuZnM/lk4ycAdG3bleWblnNI+0MSWoT0Dfyvvhpus3733TBw2lNPhVy+Ar6IJFmhFzH38Fxm3v9DZr75CG/v/hcF//4XrTyTEQeP5L+G/Bejeo6id25vLAkxKf0C/3vvhX62//pXGBr5wQfhoov0qEMRSaplm5bxymevMPPzmcz6fBbf7PwGwxjUeRA37H86o2Z+xrAHXiKr3ftw49kwpFfSKqLpE+0WLw4pnWeeCUPA3nVXaHDRow5FJAm27NrCa8teY+ZnM/dK35zV+yxG9RzFiT1OJLdVNCT1GcBl78O4cSE23XdfGAk0CWN+Nf3Av3x5eNThI4+Em61++9uQV2tEI+mJSMNXWFTIvNXzSgL9WyveoqCogFbNWzGi+4j40jcDB8Jrr4V7AH7+89Ad9Kmn4JxzElrWJh34l9x8LTvuv4d+65vR/Nprw522dX3gg4hIZPmm5SHQV5S+OfoGRvUcxbCuw8jKzIp/o2bhhq/Ro0Otf/TohJe7SQf+u7IWMPmyArIzssjr/AaD3/0tQ7oMYcgBQ+jVoRcZzTSgmohUz93ZUbCDLbu28N7K90qC/ccbPgagS5sufLf3d0P65uAT6ZiTgGdpt2wZunwmgXkDGj+iMoMHD/a5c+fW+HPLNy3nrRVv8d7K95i7ei7zVs1j255tALRu0ZojOh/B4AMGM+SAIQzpMoSD2x2clBZ0Eak/uwt3s233NvJ355eZtu3Ze17+7vyw7p6955csi147pbGyOH0zqseopPa+qSszm+fug/ea35QDf3mFRYUsWb+Euavm8t6q93hv1Xss+HoBuwvD3XPtW7YvOREU/+zStkud9ysieyvyojKBtcrAHDtvTyXzo2lP0Z64y9AiowWtW7Qmp3kOrVu03msqPz+nRQ7f6vgtju52dM3SNymiwF+J3YW7WbR2UTgZrAwng0VrF1HohQB0bt257Mmgy5DSVniRNODu7CrcVWGQrSoAVxrIo/nb92yPuwyGVRyYW8QE5uaVzK8kkOe0yKFFRtMeTl2BvwZ27NnBgq8XlLkyWLp+acml3kH7HFTSVjD4gMEc0fkI9snep97KJ1KZgqKChATl8lORx/9IwZaZLasOwM3jC8yxU3ZmdoNMpTR0Cvx1tGXXFuavnl/SXvDeyvf4YtMXJcsP63BYmfaCvP3zaNW8VQpLLA1ZkRexY8+OymvRNQzMxQF+V+GuuMuQ2SyTNi3a1CgIV5oSibaR0zxHnSYaEAX+JNiwfUPJVUHxz1VbVwGQYRl8a79vMbjz4JKrg/6d+jf5S8umxt3ZXbi7RsE3Ng9dWa27uJNBPAyrMDjHm5eurPatv8WmT4G/nqzauqqkvaD4ymDDjg1AaEg6vNPhZdoL+uT2UQ0pQQqKCti2e1v8jYRx1q4LigriLkN2ZnbCAnPx1DKzpdIcUisK/Cni7izbtKxMe8G8VfPYunsrELqFDeo8qExPokPaH9Kk/9GL+0THE5RrkvbYWbAz7jJkWEaFQbYkADePPzAXB/KcFjlkNmvSt8ZII9OgAr+ZLQO2AoVAQUUFi9WYA39FiryIjzd8HK4KohPC+1+/XxK42mW344jOR5S5MujWtltKTgbFaY5ENRIWbye2T3R1KupSV76xMN6eHLFpjqZ8chWBhhn4B7v7+njWb2qBvyIFRQV8uPbDMu0FC9csLEkz7JezX2njcXRC6NS6U8nny/eJjjsfvaeS+btr3ic6KyMrob05clrk0Kp5K5qZnhckUhsK/I3QzoKdLFyzsEx7wUfrPiqpLXfK6RQC/p5tNeoT3cyaVZ7mqGVeOqd5Ds0zmifrqxCRWmhogf8L4BvAgQfcfXIF61wBXAFw4IEHHrF8+fL6LWQDlb87n/dXv897q8JJoNo7DyuoYWdlZCnNIZIGGlrgP8DdV5nZfsArwNXuPqey9dO1xi8iUheVBf6UJE/dfVX0cy3wLHBkKsohIpKO6j3wm1mOmbUpfg2MAhbVdzlERNJVKjoddwKejXLMmcAT7v6PFJRDRCQt1Xvgd/fPgcPre78iIhKog7SISJpR4BcRSTNNPPDfC5wL/BXQfQAiItDEH7YOO4C3gBnR+16ETkSjgBFAm9QUS0QkhZp4jf/nwFfAh8BdQE9gCnAG0B44DrgReJcwXpyISNPXxAM/gAF9gXHA34GNwKuEk8I24NfAUUBHlBYSkXTQxFM9FckCRkbTLcA6YBYwM5pi00InU5oWalvfBRURSYo0DPzldQTOiyYHFhOGD5oJPERoIM4EhhFOAicDgwE9NUtEGqc0SPXURHFa6GfAS5RNC20npIWGUjYttCwVBRURqTXV+KtUVVroFUrTQodStreQ0kIi0nAp8NdI+bTQEkrbBmLTQkMpPREoLSQiDYtSPbVmQB/KpoVmAzcQ7h+YQDgB5ALnAJNRWkhEGgLV+BMmi5DmGQHcDKynbG+hp6P1itNCJxNSSEoLiUhF9gALCBXM1gndsgJ/0uQCY6IpNi30CqVpoQxKewspLSSS3r4hjDTwBvAm4cbS7YT7j05J6J4U+OtFcVqoODW0i/ALLr4amAD8BmgHnEjpiaB7CsoqIsnnwGeEIF8c6D+MlmUAA4HLgaNJxgMKFfhToiZpoeKbyJQWEmm8dgHzCQG+ONCviZbtQ7jyPw8YTgj0OUktjQJ/g1A+LbSU0pPAVOAvlE0LFd9Epl+fSMO0ntK0zRvAe4TgD9CD8H88PJr6Ut/9bMzd63WHtTF48GCfO3duqouRIrspmxaaRzg5tAOOJdQWmkVTRszr6qaGsG4qy2HRJFJXDnxMaZB/g1B5A2gODKI0yB8N7F9vJTOzee4+uPx8VRkbvBbA8dF0E6VpoVcIf2C7gKI4psIqlqUro3GdrBrjCbYhlDnRJ/idwFzK5uc3RMvaE4L7xYRAPwRomeD9150Cf6MTmxZKFCf+k0RNTij1sW6q91+bdQsJXfXquwwN/+o+eRJ1QoFwP87u6PWhwOmU1ugPi1mv4VLgF0KNKAN1JW3qPJoaygmwMey/onXPJAT5YcB+NfoNNBQK/CJpo7hdo+HXSCW59BcgIpJmFPhFRNKMAr+ISJpR4BcRSTMK/CIiaUaBX0QkzSjwi4ikGQV+EZE00ygGaTOzdcDyVJcjTrmEAXWaoqZ8bNC0j0/H1njV5fgOcveO5Wc2isDfmJjZ3IpGw2sKmvKxQdM+Ph1b45WM41OqR0QkzSjwi4ikGQX+xJuc6gIkUVM+Nmjax6dja7wSfnzK8YuIpBnV+EVE0owCv4hImlHgTwAz62Zms81ssZl9aGY/S3WZEs3MMszsfTN7MdVlSTQza2dmM8xsSfQ7HJbqMiWKmV0b/U0uMrNpZpad6jLVhZlNMbO1ZrYoZl57M3vFzD6Jfu6byjLWViXHdkf0d7nQzJ41s3aJ2JcCf2IUANe7ex9gKPBfZtY3xWVKtJ8Bi1NdiCT5E/APd+8NHE4TOU4z6wJcAwx2936EZ2uel9pS1dnDwHfKzRsPzHL3Q4FZ0fvG6GH2PrZXgH7uPgD4GPhlInakwJ8A7r7a3edHr7cSAkeX1JYqccysK3Aa8L+pLkuimVlb4DjgQQB33+3um1JbqoTKBFqaWSbQCliV4vLUibvPATaWm30mMDV6PRX4br0WKkEqOjZ3n+nuBdHbt4GuidiXAn+CmVl3YCDwTmpLklCTgP+P8KTppqYHsA54KEpl/a+Z5aS6UIng7iuBO4EvgdXAZnefmdpSJUUnd18NoRJGY30CevUuBV5OxIYU+BPIzFoDTwPj3H1LqsuTCGY2Gljr7vNSXZYkyQQGAfe5+0BgG403VVBGlOs+EzgYOADIMbMLUlsqqQ0z+29CSvnxRGxPgT9BzKw5Ieg/7u7PpLo8CTQcOMPMlgHTgRPM7LHUFimhVgAr3L34Cm0G4UTQFJwEfOHu69x9D/AMcHSKy5QMa8ysM0D0c22Ky5NQZnYxMBo43xN045UCfwKYmRFyxIvd/Y+pLk8iufsv3b2ru3cnNAy+6u5Nptbo7l8DX5nZYdGsE4GPUlikRPoSGGpmraK/0RNpIg3X5bwAXBy9vhh4PoVlSSgz+w7wC+AMd9+eqO0q8CfGcOBCQm14QTSdmupCSdyuBh43s4VAHnBzisuTENFVzAxgPvAfwv97ox7ewMymAW8Bh5nZCjO7DLgVONnMPgFOjt43OpUc2z1AG+CVKK7cn5B9acgGEZH0ohq/iEiaUeAXEUkzCvwiImlGgV9EJM0o8IuIpBkFfhHAzNzMHo15n2lm62o7Gmk04udVMe9HNMWRTaVxUuAXCbYB/cysZfT+ZGBlHbbXDriq2rVEUkCBX6TUy4RRSAF+AEwrXhCN+f5cNC7622Y2IJo/MRpH/TUz+9zMrok+civQM7rp5o5oXuuYcf8fj+6mFal3CvwipaYD50UPKxlA2RFWfwu8H42L/ivgkZhlvYFvA0cCE6Jxm8YDn7l7nrvfEK03EBgH9CWMCjo8mQcjUhkFfpGIuy8EuhNq+38vt/gY4NFovVeBDma2T7TsJXff5e7rCQOEdapkF++6+wp3LwIWRPsSqXeZqS6ASAPzAmEM+xFAh5j5FaVlisc72RUzr5DK/6/iXU8kqVTjFylrCvA7d/9PuflzgPMh9NAB1lfzzIWthMG1RBoc1ThEYrj7CsIzeMubSHhK10JgO6XDAFe2nQ1m9kb04OyXgZcSXVaR2tLonCIiaUapHhGRNKPALyKSZhT4RUTSjAK/iEiaUeAXEUkzCvwiImlGgV9EJM38/7gPKongVuCjAAAAAElFTkSuQmCC\n",
      "text/plain": [