Skip to content
Snippets Groups Projects
Commit 043672f4 authored by Andreas Hansson's avatar Andreas Hansson
Browse files

mem: Modernise PhysicalMemory with C++11 features

Bring the PhysicalMemory up-to-date by making use of range-based for
loops and vector intialisation where possible.
parent 1d1e44e5
No related branches found
No related tags found
No related merge requests found
/*
* Copyright (c) 2012 ARM Limited
* Copyright (c) 2012, 2014 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
......@@ -64,34 +64,37 @@ PhysicalMemory::PhysicalMemory(const string& _name,
{
// add the memories from the system to the address map as
// appropriate
for (vector<AbstractMemory*>::const_iterator m = _memories.begin();
m != _memories.end(); ++m) {
for (const auto& m : _memories) {
// only add the memory if it is part of the global address map
if ((*m)->isInAddrMap()) {
memories.push_back(*m);
if (m->isInAddrMap()) {
memories.push_back(m);
// calculate the total size once and for all
size += (*m)->size();
size += m->size();
// add the range to our interval tree and make sure it does not
// intersect an existing range
if (addrMap.insert((*m)->getAddrRange(), *m) == addrMap.end())
fatal("Memory address range for %s is overlapping\n",
(*m)->name());
fatal_if(addrMap.insert(m->getAddrRange(), m) == addrMap.end(),
"Memory address range for %s is overlapping\n",
m->name());
} else {
DPRINTF(AddrRanges,
"Skipping memory %s that is not in global address map\n",
(*m)->name());
// this type of memory is used e.g. as reference memory by
// Ruby, and they also needs a backing store, but should
// not be part of the global address map
DPRINTF(AddrRanges,
"Skipping memory %s that is not in global address map\n",
m->name());
// sanity check
fatal_if(m->getAddrRange().interleaved(),
"Memory %s that is not in the global address map cannot "
"be interleaved\n", m->name());
// simply do it independently, also note that this kind of
// memories are allowed to overlap in the logic address
// map
vector<AbstractMemory*> unmapped_mems;
unmapped_mems.push_back(*m);
createBackingStore((*m)->getAddrRange(), unmapped_mems);
vector<AbstractMemory*> unmapped_mems{m};
createBackingStore(m->getAddrRange(), unmapped_mems);
}
}
......@@ -100,29 +103,27 @@ PhysicalMemory::PhysicalMemory(const string& _name,
// memories
vector<AddrRange> intlv_ranges;
vector<AbstractMemory*> curr_memories;
for (AddrRangeMap<AbstractMemory*>::const_iterator r = addrMap.begin();
r != addrMap.end(); ++r) {
for (const auto& r : addrMap) {
// simply skip past all memories that are null and hence do
// not need any backing store
if (!r->second->isNull()) {
if (!r.second->isNull()) {
// if the range is interleaved then save it for now
if (r->first.interleaved()) {
if (r.first.interleaved()) {
// if we already got interleaved ranges that are not
// part of the same range, then first do a merge
// before we add the new one
if (!intlv_ranges.empty() &&
!intlv_ranges.back().mergesWith(r->first)) {
!intlv_ranges.back().mergesWith(r.first)) {
AddrRange merged_range(intlv_ranges);
createBackingStore(merged_range, curr_memories);
intlv_ranges.clear();
curr_memories.clear();
}
intlv_ranges.push_back(r->first);
curr_memories.push_back(r->second);
intlv_ranges.push_back(r.first);
curr_memories.push_back(r.second);
} else {
vector<AbstractMemory*> single_memory;
single_memory.push_back(r->second);
createBackingStore(r->first, single_memory);
vector<AbstractMemory*> single_memory{r.second};
createBackingStore(r.first, single_memory);
}
}
}
......@@ -139,8 +140,8 @@ void
PhysicalMemory::createBackingStore(AddrRange range,
const vector<AbstractMemory*>& _memories)
{
if (range.interleaved())
panic("Cannot create backing store for interleaved range %s\n",
panic_if(range.interleaved(),
"Cannot create backing store for interleaved range %s\n",
range.to_string());
// perform the actual mmap
......@@ -162,20 +163,18 @@ PhysicalMemory::createBackingStore(AddrRange range,
backingStore.push_back(make_pair(range, pmem));
// point the memories to their backing store
for (vector<AbstractMemory*>::const_iterator m = _memories.begin();
m != _memories.end(); ++m) {
for (const auto& m : _memories) {
DPRINTF(AddrRanges, "Mapping memory %s to backing store\n",
(*m)->name());
(*m)->setBackingStore(pmem);
m->name());
m->setBackingStore(pmem);
}
}
PhysicalMemory::~PhysicalMemory()
{
// unmap the backing store
for (vector<pair<AddrRange, uint8_t*> >::iterator s = backingStore.begin();
s != backingStore.end(); ++s)
munmap((char*)s->second, s->first.size());
for (auto& s : backingStore)
munmap((char*)s.second, s.first.size());
}
bool
......@@ -184,7 +183,7 @@ PhysicalMemory::isMemAddr(Addr addr) const
// see if the address is within the last matched range
if (!rangeCache.contains(addr)) {
// lookup in the interval tree
AddrRangeMap<AbstractMemory*>::const_iterator r = addrMap.find(addr);
const auto& r = addrMap.find(addr);
if (r == addrMap.end()) {
// not in the cache, and not in the tree
return false;
......@@ -206,23 +205,22 @@ PhysicalMemory::getConfAddrRanges() const
// be called more than once the iteration should not be a problem
AddrRangeList ranges;
vector<AddrRange> intlv_ranges;
for (AddrRangeMap<AbstractMemory*>::const_iterator r = addrMap.begin();
r != addrMap.end(); ++r) {
if (r->second->isConfReported()) {
for (const auto& r : addrMap) {
if (r.second->isConfReported()) {
// if the range is interleaved then save it for now
if (r->first.interleaved()) {
if (r.first.interleaved()) {
// if we already got interleaved ranges that are not
// part of the same range, then first do a merge
// before we add the new one
if (!intlv_ranges.empty() &&
!intlv_ranges.back().mergesWith(r->first)) {
!intlv_ranges.back().mergesWith(r.first)) {
ranges.push_back(AddrRange(intlv_ranges));
intlv_ranges.clear();
}
intlv_ranges.push_back(r->first);
intlv_ranges.push_back(r.first);
} else {
// keep the current range
ranges.push_back(r->first);
ranges.push_back(r.first);
}
}
}
......@@ -241,7 +239,7 @@ PhysicalMemory::access(PacketPtr pkt)
{
assert(pkt->isRequest());
Addr addr = pkt->getAddr();
AddrRangeMap<AbstractMemory*>::const_iterator m = addrMap.find(addr);
const auto& m = addrMap.find(addr);
assert(m != addrMap.end());
m->second->access(pkt);
}
......@@ -251,7 +249,7 @@ PhysicalMemory::functionalAccess(PacketPtr pkt)
{
assert(pkt->isRequest());
Addr addr = pkt->getAddr();
AddrRangeMap<AbstractMemory*>::const_iterator m = addrMap.find(addr);
const auto& m = addrMap.find(addr);
assert(m != addrMap.end());
m->second->functionalAccess(pkt);
}
......@@ -263,13 +261,11 @@ PhysicalMemory::serialize(ostream& os)
vector<Addr> lal_addr;
vector<int> lal_cid;
for (vector<AbstractMemory*>::iterator m = memories.begin();
m != memories.end(); ++m) {
const list<LockedAddr>& locked_addrs = (*m)->getLockedAddrList();
for (list<LockedAddr>::const_iterator l = locked_addrs.begin();
l != locked_addrs.end(); ++l) {
lal_addr.push_back(l->addr);
lal_cid.push_back(l->contextId);
for (auto& m : memories) {
const list<LockedAddr>& locked_addrs = m->getLockedAddrList();
for (const auto& l : locked_addrs) {
lal_addr.push_back(l.addr);
lal_cid.push_back(l.contextId);
}
}
......@@ -282,10 +278,9 @@ PhysicalMemory::serialize(ostream& os)
unsigned int store_id = 0;
// store each backing store memory segment in a file
for (vector<pair<AddrRange, uint8_t*> >::iterator s = backingStore.begin();
s != backingStore.end(); ++s) {
for (auto& s : backingStore) {
nameOut(os, csprintf("%s.store%d", name(), store_id));
serializeStore(os, store_id++, s->first, s->second);
serializeStore(os, store_id++, s.first, s.second);
}
}
......@@ -345,8 +340,7 @@ PhysicalMemory::unserialize(Checkpoint* cp, const string& section)
arrayParamIn(cp, section, "lal_addr", lal_addr);
arrayParamIn(cp, section, "lal_cid", lal_cid);
for(size_t i = 0; i < lal_addr.size(); ++i) {
AddrRangeMap<AbstractMemory*>::const_iterator m =
addrMap.find(lal_addr[i]);
const auto& m = addrMap.find(lal_addr[i]);
m->second->addLockedAddr(LockedAddr(lal_addr[i], lal_cid[i]));
}
......
......@@ -37,11 +37,11 @@
* Authors: Andreas Hansson
*/
#ifndef __PHYSICAL_MEMORY_HH__
#define __PHYSICAL_MEMORY_HH__
#ifndef __MEM_PHYSICAL_HH__
#define __MEM_PHYSICAL_HH__
#include "base/addr_range_map.hh"
#include "mem/port.hh"
#include "mem/packet.hh"
/**
* Forward declaration to avoid header dependencies.
......@@ -57,7 +57,7 @@ class AbstractMemory;
* system backingstore used by the memories in the simulated guest
* system. When the system is created, the physical memory allocates
* the backing store based on the address ranges that are populated in
* the system, and does so indepentent of how those map to actual
* the system, and does so independent of how those map to actual
* memory controllers. Thus, the physical memory completely abstracts
* the mapping of the backing store of the host system and the address
* mapping in the guest system. This enables us to arbitrarily change
......@@ -86,7 +86,7 @@ class PhysicalMemory : public Serializable
// The physical memory used to provide the memory in the simulated
// system
std::vector<std::pair<AddrRange, uint8_t*> > backingStore;
std::vector<std::pair<AddrRange, uint8_t*>> backingStore;
// Prevent copying
PhysicalMemory(const PhysicalMemory&);
......@@ -162,7 +162,7 @@ class PhysicalMemory : public Serializable
*
* @return Pointers to the memory backing store
*/
std::vector<std::pair<AddrRange, uint8_t*> > getBackingStore() const
std::vector<std::pair<AddrRange, uint8_t*>> getBackingStore() const
{ return backingStore; }
/**
......@@ -218,4 +218,4 @@ class PhysicalMemory : public Serializable
};
#endif //__PHYSICAL_MEMORY_HH__
#endif //__MEM_PHYSICAL_HH__
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment