Skip to content
Snippets Groups Projects
Commit 1ac3082d authored by David Sullivan's avatar David Sullivan
Browse files

adding project source code

parent 73e20d17
Branches main
No related tags found
No related merge requests found
.pio
.vscode/.browse.c_cpp.db*
.vscode/c_cpp_properties.json
.vscode/launch.json
.vscode/ipch
.vscode/extensions.json
# Microcontroller Code to Run the Project
- This is the source code for the project
- the src/ directory contains all of the logic for reading, storing and verifying RFID cards, along with locking and unlocking the door by communicating with the servo motor
This directory is intended for project header files.
A header file is a file containing C declarations and macro definitions
to be shared between several project source files. You request the use of a
header file in your project source file (C, C++, etc) located in `src` folder
by including it, with the C preprocessing directive `#include'.
```src/main.c
#include "header.h"
int main (void)
{
...
}
```
Including a header file produces the same results as copying the header file
into each source file that needs it. Such copying would be time-consuming
and error-prone. With a header file, the related declarations appear
in only one place. If they need to be changed, they can be changed in one
place, and programs that include the header file will automatically use the
new version when next recompiled. The header file eliminates the labor of
finding and changing all the copies as well as the risk that a failure to
find one copy will result in inconsistencies within a program.
In C, the usual convention is to give header files names that end with `.h'.
It is most portable to use only letters, digits, dashes, and underscores in
header file names, and at most one dot.
Read more about using header files in official GCC documentation:
* Include Syntax
* Include Operation
* Once-Only Headers
* Computed Includes
https://gcc.gnu.org/onlinedocs/cpp/Header-Files.html
#include <Servo.h>
#include <Arduino.h>
#define DOOR_MAX_POS 180
#define DOOR_MIN_POS 0
#define DOOR_PIN D3
void unlockDoor(void);
void lockDoor(void);
\ No newline at end of file
//include arduino libraries and util functions
#include "utils.h"
// include NFC libraries
// #include "nfc_utils.h"
#include "rfal_nfc.h"
#include "rfal_rfst25r95.h"
#include "ndef_class.h"
// define pins used by system
#define SPI_MOSI D11
#define SPI_MISO D12
#define SPI_SCK D13
#define CS_PIN D10
#define IRQ_IN_PIN D8
#define IRQ_OUT_PIN D2
#define INTERFACE_PIN D9
// define read states
#define DEMO_ST_NOTINIT 0
#define DEMO_ST_START_DISCOVERY 1
#define DEMO_ST_DISCOVERY 2
// define read feature
#define NDEF_DEMO_READ 0U
// maximum amount of features (only using read, set to 1)
#define NDEF_DEMO_MAX_FEATURES 1U
#define NDEF_LED_BLINK_DURATION 250U
#define DEMO_ST_MANUFACTURER_ID 0x02U
typedef struct {
char *tag_type;
char *nfcUID;
} reader_response_t;
reader_response_t readNFCUID(void);
void initDevice(void);
#pragma once
#include <Arduino.h>
#include <SPI.h>
#define LED_A_PIN D7
#define LED_B_PIN D6
#define LED_F_PIN D5
#define LED_V_PIN D4
#define MAX_HEX_STR 4
#define MAX_HEX_STR_LENGTH 128
void ledsOn(void);
void ledsOff(void);
char *hex2str(unsigned char *data, size_t dataLen);
\ No newline at end of file
This directory is intended for project specific (private) libraries.
PlatformIO will compile them to static libraries and link into executable file.
The source code of each library should be placed in a an own separate directory
("lib/your_library_name/[here are source files]").
For example, see a structure of the following two libraries `Foo` and `Bar`:
|--lib
| |
| |--Bar
| | |--docs
| | |--examples
| | |--src
| | |- Bar.c
| | |- Bar.h
| | |- library.json (optional, custom build options, etc) https://docs.platformio.org/page/librarymanager/config.html
| |
| |--Foo
| | |- Foo.c
| | |- Foo.h
| |
| |- README --> THIS FILE
|
|- platformio.ini
|--src
|- main.c
and a contents of `src/main.c`:
```
#include <Foo.h>
#include <Bar.h>
int main (void)
{
...
}
```
PlatformIO Library Dependency Finder will find automatically dependent
libraries scanning project source files.
More information about PlatformIO Library Dependency Finder
- https://docs.platformio.org/page/librarymanager/ldf.html
; PlatformIO Project Configuration File
;
; Build options: build flags, source filter
; Upload options: custom upload port, speed and extra flags
; Library options: dependencies, extra library storages
; Advanced options: extra scripting
;
; Please visit documentation for the other options and examples
; https://docs.platformio.org/page/projectconf.html
[env:nucleo_f401re]
platform = ststm32
board = nucleo_f401re
framework = arduino
monitor_speed = 115200
lib_deps =
stm32duino/STM32duino NFC-RFAL@^1.0.1
stm32duino/STM32duino ST25R95@^1.0.0
khoih-prog/FlashStorage_STM32@^1.2.0
#include "door.h"
static Servo servo;
void unlockDoor(void)
{
servo.attach(DOOR_PIN);
for(int pos = DOOR_MAX_POS; pos >= DOOR_MIN_POS; pos--)
{
servo.write(pos);
}
}
void lockDoor(void)
{
servo.attach(DOOR_PIN);
for(int pos = DOOR_MIN_POS; pos >= DOOR_MAX_POS; pos++)
{
servo.write(pos);
}
}
\ No newline at end of file
#include "nfc_read.h"
#include "door.h"
#include <FlashStorage_STM32.h>
#define PASSIVE_ISO_DEP_LEN 14
#define MAX_NUM_KEYS 10
#define NUM_KEYS_INDEX 200
static bool verifyUID(const char *uid);
static void addKeyToMemory(const char* uid);
static void interruptCallback(void);
/**
* numkeys becomes a global variable held in ram rather than something written to flash memory
* this simplifies the operation of adding keys as fewer writes to flash are required and indexing is simplified
* BENEFITS: fewer writes to flash memory(increased longevity), simplified memory indexing
* COSTS: more refresh cycles necessary for RAM, decrease the life of the ram, also increased
* dependency on global variables reduces encapsulation somewhat
*/
static int numkeys = 0;
void setup() {
// put your setup code here, to run once:
Serial.begin(115200); // setting baudrate
delay(1000);
pinMode(LED_A_PIN, OUTPUT);
pinMode(LED_B_PIN, OUTPUT);
pinMode(LED_F_PIN, OUTPUT);
pinMode(LED_V_PIN, OUTPUT);
pinMode(USER_BTN, INPUT);
attachInterrupt(digitalPinToInterrupt(USER_BTN), interruptCallback, RISING);
// /* check state of the push button when not pressed */
Serial.println("Welcome to X-NUCLEO-NFC03A1");
Serial.print(numkeys);
initDevice();
delay(1000);
reader_response_t readerResponse = readNFCUID();
delay(1000);
if (readerResponse.nfcUID && readerResponse.tag_type)
{
Serial.println("received uid");
delay(1000);
Serial.write(readerResponse.nfcUID);
Serial.write(readerResponse.tag_type);
delay(1000);
addKeyToMemory(readerResponse.nfcUID);
}
else
{
Serial.print("no UID received");
}
// Serial.print("Going to unlock the door");
// Serial.print("\r\n");
// delay(2000);
// unlockDoor();
// Serial.print("Unlocked the Door");
// Serial.print("\r\n");
// delay(3000);
// Serial.print("Locking Door");
// Serial.print("\r\n");
// lockDoor();
// Serial.print("Locked Door, ending execution");
// Serial.print("\r\n");
}
void loop() {
// put your main code here, to run repeatedly:
reader_response_t readerResponse = readNFCUID();
if(readerResponse.nfcUID && readerResponse.tag_type)
{
if (verifyUID(readerResponse.nfcUID) == true)
{
Serial.print("valid uid");
Serial.print("\r\n");
Serial.print("running unlock door");
Serial.print("\r\n");
unlockDoor();
delay(1000);
Serial.print("unlocked door");
Serial.print("\r\n");
delay(6000);
Serial.print("locking door");
Serial.print("\r\n");
lockDoor();
delay(1000);
Serial.print("locked door");
Serial.print("\r\n");
}
else
{
Serial.print("uid not found");
Serial.print("\r\n");
}
}
else
{
Serial.print("no uid received");
Serial.print("\r\n");
}
}
static bool verifyUID(const char *uid)
{
int increaseIndex = PASSIVE_ISO_DEP_LEN * sizeof(char);
for (int i = 0; i < 10 * increaseIndex; i+= increaseIndex)
{
char* eeprom_uid;
Serial.print("Reading from memory");
EEPROM.get(i, eeprom_uid);
delay(1000);
Serial.write(eeprom_uid);
if (strncmp(uid, eeprom_uid, strlen(uid)) == 0)
{
return true;
}
else
{
continue;
}
}
return false;
}
static void addKeyToMemory(const char* uid)
{
delay(500);
Serial.print(numkeys);
if(numkeys < 10){
EEPROM.put(numkeys * PASSIVE_ISO_DEP_LEN * sizeof(char), uid);
delay(500);
numkeys++;
delay(500);
Serial.print("Successfully added keys");
}
else
{
Serial.print("Could not add key");
}
}
static void interruptCallback(void)
{
Serial.write("add a new key to memory\r\n");
reader_response_t readerResponse = readNFCUID();
if(readerResponse.nfcUID && readerResponse.tag_type)
{
Serial.write("writing key to memory\r\n");
addKeyToMemory(readerResponse.nfcUID);
Serial.write("key has been written to memory, returning to normal flow \r\n");
}
else
{
Serial.write("new key could not be read\r\n");
}
}
#include "nfc_read.h"
static uint8_t state = DEMO_ST_NOTINIT;
static uint8_t ndefDemoFeature = NDEF_DEMO_READ;
static uint8_t ndefDemoPrevFeature = 0xFF;
static uint8_t NFCID3[] = {0x01, 0xFE, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A};
static uint8_t GB[] = {0x46, 0x66, 0x6d, 0x01, 0x01, 0x11, 0x02, 0x02, 0x07, 0x80, 0x03, 0x02, 0x00, 0x03, 0x04, 0x01, 0x32, 0x07, 0x01, 0x03};
static rfalNfcDiscoverParam discParam;
static SPIClass dev_spi(SPI_MOSI, SPI_MISO, SPI_SCK);
static RfalRfST25R95Class rfst25r95(&dev_spi, CS_PIN, IRQ_IN_PIN, IRQ_OUT_PIN, INTERFACE_PIN);
static RfalNfcClass rfal_nfc(&rfst25r95);
static NdefClass ndef(&rfal_nfc);
static uint32_t timer;
static uint32_t timerLed;
static bool ledOn;
static const uint8_t *ndefDemoFeatureDescription[] = {
(uint8_t *)"1. Tap a tag to read its content"};
void initDevice(void)
{
dev_spi.begin();
if (rfal_nfc.rfalNfcInitialize() == ERR_NONE)
{
discParam.compMode = RFAL_COMPLIANCE_MODE_NFC;
discParam.devLimit = 1U;
discParam.nfcfBR = RFAL_BR_212;
discParam.ap2pBR = RFAL_BR_424;
ST_MEMCPY(&discParam.nfcid3, NFCID3, sizeof(NFCID3));
ST_MEMCPY(&discParam.GB, GB, sizeof(GB));
discParam.GBLen = sizeof(GB);
discParam.notifyCb = NULL;
discParam.totalDuration = 100U;
discParam.wakeupEnabled = false;
discParam.wakeupConfigDefault = true;
discParam.techs2Find = (RFAL_NFC_POLL_TECH_A | RFAL_NFC_POLL_TECH_B | RFAL_NFC_POLL_TECH_F | RFAL_NFC_POLL_TECH_V | RFAL_NFC_POLL_TECH_ST25TB);
state = DEMO_ST_START_DISCOVERY;
}
}
reader_response_t readNFCUID(void)
{
while (true)
{
static rfalNfcDevice *nfcDevice;
rfalNfcaSensRes sensRes;
rfalNfcaSelRes selRes;
rfalNfcbSensbRes sensbRes;
uint8_t sensbResLen;
uint8_t devCnt = 0;
rfalFeliCaPollRes cardList[1];
uint8_t collisions = 0U;
rfalNfcfSensfRes *sensfRes;
rfalNfcvInventoryRes invRes;
uint8_t rcvdLen;
char *uidData = nullptr;
rfal_nfc.rfalNfcWorker();
if (ndefDemoFeature != ndefDemoPrevFeature)
{
ndefDemoPrevFeature = ndefDemoFeature;
Serial.print((char *)ndefDemoFeatureDescription[ndefDemoFeature]);
Serial.print("\r\n");
}
switch (state)
{
case DEMO_ST_START_DISCOVERY:
ledsOff();
rfal_nfc.rfalNfcDeactivate(false);
rfal_nfc.rfalNfcDiscover(&discParam);
state = DEMO_ST_DISCOVERY;
break;
case DEMO_ST_DISCOVERY:
if (rfalNfcIsDevActivated(rfal_nfc.rfalNfcGetState()))
{
rfal_nfc.rfalNfcGetActiveDevice(&nfcDevice);
ledsOff();
delay(50);
ndefDemoPrevFeature = 0xFF; /* Force Display of prompt */
reader_response_t readerResponse = {nullptr, nullptr};
switch (nfcDevice->type)
{
case RFAL_NFC_LISTEN_TYPE_NFCA:
digitalWrite(LED_A_PIN, HIGH);
switch (nfcDevice->dev.nfca.type)
{
case RFAL_NFCA_T1T:
{
Serial.print("ISO14443A/Topaz (NFC-A T1T) TAG found. UID: ");
readerResponse.tag_type = "ISO1443A/Topaz (NFC-A T1T)";
Serial.print(hex2str(nfcDevice->nfcid, nfcDevice->nfcidLen));
Serial.print("\r\n");
rfal_nfc.rfalNfcaPollerSleep();
break;
}
case RFAL_NFCA_T4T:
Serial.print("NFCA PASSIVE ISO-DEP device found. UID: ");
readerResponse.tag_type = "NFCA PASSIVE ISO-DEP";
Serial.print(hex2str(nfcDevice->nfcid, nfcDevice->nfcidLen));
Serial.print("\r\n");
// demoNdef(nfcDevice);
rfal_nfc.rfalIsoDepDeselect();
break;
case RFAL_NFCA_T4T_NFCDEP:
case RFAL_NFCA_NFCDEP:
{
Serial.print("NFCA Passive P2P device found. NFCID: ");
char tagType[] = "NFCA Passive P2P";
// readerResponse.tag_type = "NFCA Passive P2P";
readerResponse.tag_type = tagType;
Serial.print(hex2str(nfcDevice->nfcid, nfcDevice->nfcidLen));
Serial.print("\r\n");
// demoP2P();
break;
}
default:
Serial.print("ISO14443A/NFC-A card found. UID: ");
readerResponse.tag_type = "ISO1443A/NFC-A";
Serial.print(hex2str(nfcDevice->nfcid, nfcDevice->nfcidLen));
Serial.print("\r\n");
// demoNdef(nfcDevice);
rfal_nfc.rfalNfcaPollerSleep();
break;
}
Serial.print("Operation completed\r\nTag can be removed from the field\r\n");
uidData = hex2str(nfcDevice->nfcid, nfcDevice->nfcidLen);
rfal_nfc.rfalNfcDeactivate(true);
// return uidData;
readerResponse.nfcUID = uidData;
return readerResponse;
rfal_nfc.rfalNfcaPollerInitialize();
while (rfal_nfc.rfalNfcaPollerCheckPresence(RFAL_14443A_SHORTFRAME_CMD_WUPA, &sensRes) == ERR_NONE)
{
if (((nfcDevice->dev.nfca.type == RFAL_NFCA_T1T) &&
(!rfalNfcaIsSensResT1T(&sensRes))) ||
((nfcDevice->dev.nfca.type != RFAL_NFCA_T1T) &&
(rfal_nfc.rfalNfcaPollerSelect(nfcDevice->dev.nfca.nfcId1,
nfcDevice->dev.nfca.nfcId1Len, &selRes) != ERR_NONE)))
{
break;
}
rfal_nfc.rfalNfcaPollerSleep();
delay(130);
}
break;
case RFAL_NFC_LISTEN_TYPE_NFCB:
Serial.print("ISO14443B/NFC-B card found. UID: ");
readerResponse.tag_type = "ISO14443B/NFC-B";
Serial.print(hex2str(nfcDevice->nfcid, nfcDevice->nfcidLen));
Serial.print("\r\n");
// uidData = hex2str(nfcDevice->nfcid, nfcDevice->nfcidLen);
digitalWrite(LED_B_PIN, HIGH);
// rfal_nfc.rfalNfcDeactivate(true);
// return uidData;
if (rfalNfcbIsIsoDepSupported(&nfcDevice->dev.nfcb))
{
// demoNdef(nfcDevice);
rfal_nfc.rfalIsoDepDeselect();
}
else
{
rfal_nfc.rfalNfcbPollerSleep(nfcDevice->dev.nfcb.sensbRes.nfcid0);
}
/* Loop until tag is removed from the field */
Serial.print("Operation completed\r\nTag can be removed from the field\r\n");
uidData = hex2str(nfcDevice->nfcid, nfcDevice->nfcidLen);
rfal_nfc.rfalNfcDeactivate(true);
// return uidData;
readerResponse.nfcUID = uidData;
return readerResponse;
rfal_nfc.rfalNfcbPollerInitialize();
while (rfal_nfc.rfalNfcbPollerCheckPresence(RFAL_NFCB_SENS_CMD_ALLB_REQ, RFAL_NFCB_SLOT_NUM_1, &sensbRes, &sensbResLen) == ERR_NONE)
{
if (ST_BYTECMP(sensbRes.nfcid0, nfcDevice->dev.nfcb.sensbRes.nfcid0, RFAL_NFCB_NFCID0_LEN) != 0)
{
break;
}
rfal_nfc.rfalNfcbPollerSleep(nfcDevice->dev.nfcb.sensbRes.nfcid0);
delay(130);
}
break;
case RFAL_NFC_LISTEN_TYPE_NFCF:
if (rfalNfcfIsNfcDepSupported(&nfcDevice->dev.nfcf))
{
Serial.print("NFCF Passive P2P device found. NFCID: ");
readerResponse.tag_type = "NFCF Passive P2P device";
Serial.print(hex2str(nfcDevice->nfcid, nfcDevice->nfcidLen));
Serial.print("\r\n");
// demoP2P();
}
else
{
Serial.print("Felica/NFC-F card found. UID: ");
Serial.print(hex2str(nfcDevice->nfcid, nfcDevice->nfcidLen));
Serial.print("\r\n");
// demoNdef(nfcDevice);
}
digitalWrite(LED_F_PIN, HIGH);
/* Loop until tag is removed from the field */
Serial.print("Operation completed\r\nTag can be removed from the field\r\n");
uidData = hex2str(nfcDevice->nfcid, nfcDevice->nfcidLen);
rfal_nfc.rfalNfcDeactivate(true);
// return uidData;
readerResponse.nfcUID = uidData;
return readerResponse;
devCnt = 1;
rfal_nfc.rfalNfcfPollerInitialize(RFAL_BR_212);
while (rfal_nfc.rfalNfcfPollerPoll(RFAL_FELICA_1_SLOT, RFAL_NFCF_SYSTEMCODE, RFAL_FELICA_POLL_RC_NO_REQUEST, cardList, &devCnt, &collisions) == ERR_NONE)
{
/* Skip the length field byte */
sensfRes = (rfalNfcfSensfRes *)&((uint8_t *)cardList)[1];
if (ST_BYTECMP(sensfRes->NFCID2, nfcDevice->dev.nfcf.sensfRes.NFCID2, RFAL_NFCF_NFCID2_LEN) != 0)
{
break;
}
delay(130);
}
break;
case RFAL_NFC_LISTEN_TYPE_NFCV:
{
uint8_t devUID[RFAL_NFCV_UID_LEN];
ST_MEMCPY(devUID, nfcDevice->nfcid, nfcDevice->nfcidLen); /* Copy the UID into local var */
REVERSE_BYTES(devUID, RFAL_NFCV_UID_LEN); /* Reverse the UID for display purposes */
Serial.print("ISO15693/NFC-V card found. UID: ");
readerResponse.tag_type = "ISO15693/NFC-V";
Serial.print(hex2str(devUID, RFAL_NFCV_UID_LEN));
Serial.print("\r\n");
uidData = hex2str(devUID, RFAL_NFCV_UID_LEN);
digitalWrite(LED_V_PIN, HIGH);
// demoNdef(nfcDevice);
/* Loop until tag is removed from the field */
Serial.print("Operation completed\r\nTag can be removed from the field\r\n");
// uidData = nfcDevice->nfcid;
rfal_nfc.rfalNfcDeactivate(true);
readerResponse.nfcUID = uidData;
// return uidData;
return readerResponse;
rfal_nfc.rfalNfcvPollerInitialize();
while (rfal_nfc.rfalNfcvPollerInventory(RFAL_NFCV_NUM_SLOTS_1, RFAL_NFCV_UID_LEN * 8U, nfcDevice->dev.nfcv.InvRes.UID, &invRes, (uint16_t *)&rcvdLen) == ERR_NONE)
{
delay(130);
}
}
break;
case RFAL_NFC_LISTEN_TYPE_ST25TB:
Serial.print("ST25TB card found. UID: ");
readerResponse.tag_type = "ST25TB";
Serial.print(hex2str(nfcDevice->nfcid, nfcDevice->nfcidLen));
Serial.print("\r\n");
readerResponse.nfcUID = hex2str(nfcDevice->nfcid, nfcDevice->nfcidLen);
return readerResponse;
digitalWrite(LED_B_PIN, HIGH);
break;
case RFAL_NFC_LISTEN_TYPE_AP2P:
Serial.print("NFC Active P2P device found. NFCID3: ");
readerResponse.tag_type = "NFC Active P2P";
Serial.print(hex2str(nfcDevice->nfcid, nfcDevice->nfcidLen));
Serial.print("\r\n");
readerResponse.nfcUID = hex2str(nfcDevice->nfcid, nfcDevice->nfcidLen);
return readerResponse;
// demoP2P();
break;
default:
break;
}
rfal_nfc.rfalNfcDeactivate(true);
delay(500);
state = DEMO_ST_START_DISCOVERY;
}
break;
case DEMO_ST_NOTINIT:
default:
break;
}
}
}
\ No newline at end of file
#include "utils.h"
#include "nfc_utils.h"
char hexStr[MAX_HEX_STR][MAX_HEX_STR_LENGTH];
uint8_t hexStrIdx = 0;
void ledsOn(void)
{
digitalWrite(LED_A_PIN, HIGH);
digitalWrite(LED_B_PIN, HIGH);
digitalWrite(LED_F_PIN, HIGH);
digitalWrite(LED_V_PIN, HIGH);
}
void ledsOff(void)
{
digitalWrite(LED_A_PIN, LOW);
digitalWrite(LED_B_PIN, LOW);
digitalWrite(LED_F_PIN, LOW);
digitalWrite(LED_V_PIN, LOW);
}
char *hex2str(unsigned char *data, size_t dataLen)
{
unsigned char *pin = data;
const char *hex = "0123456789ABCDEF";
char *pout = hexStr[hexStrIdx];
uint8_t i = 0;
uint8_t idx = hexStrIdx;
size_t len;
if (dataLen == 0)
{
pout[0] = 0;
}
else
{
/* Trim data taht doesn't fit in buffer */
len = MIN(dataLen, (MAX_HEX_STR_LENGTH / 2));
for(; i < (len - 1); ++i)
{
*pout++ = hex[(*pin >> 4) & 0xF];
*pout++ = hex[(*pin++) & 0xF];
*pout = 0;
}
*pout++ = hex[(*pin >> 4) & 0xF];
*pout++ = hex[(*pin) & 0xF];
*pout = 0;
}
hexStrIdx++;
hexStrIdx %= MAX_HEX_STR;
return hexStr[idx];
}
\ No newline at end of file
This directory is intended for PlatformIO Test Runner and project tests.
Unit Testing is a software testing method by which individual units of
source code, sets of one or more MCU program modules together with associated
control data, usage procedures, and operating procedures, are tested to
determine whether they are fit for use. Unit testing finds problems early
in the development cycle.
More information about PlatformIO Unit Testing:
- https://docs.platformio.org/en/latest/advanced/unit-testing/index.html
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment