Skip to content
Snippets Groups Projects
user avatar
Bryan Cutler authored
## What changes were proposed in this pull request?
Integrate Apache Arrow with Spark to increase performance of `DataFrame.toPandas`.  This has been done by using Arrow to convert data partitions on the executor JVM to Arrow payload byte arrays where they are then served to the Python process.  The Python DataFrame can then collect the Arrow payloads where they are combined and converted to a Pandas DataFrame.  All non-complex data types are currently supported, otherwise an `UnsupportedOperation` exception is thrown.

Additions to Spark include a Scala package private method `Dataset.toArrowPayloadBytes` that will convert data partitions in the executor JVM to `ArrowPayload`s as byte arrays so they can be easily served.  A package private class/object `ArrowConverters` that provide data type mappings and conversion routines.  In Python, a public method `DataFrame.collectAsArrow` is added to collect Arrow payloads and an optional flag in `toPandas(useArrow=False)` to enable using Arrow (uses the old conversion by default).

## How was this patch tested?
Added a new test suite `ArrowConvertersSuite` that will run tests on conversion of Datasets to Arrow payloads for supported types.  The suite will generate a Dataset and matching Arrow JSON data, then the dataset is converted to an Arrow payload and finally validated against the JSON data.  This will ensure that the schema and data has been converted correctly.

Added PySpark tests to verify the `toPandas` method is producing equal DataFrames with and without pyarrow.  A roundtrip test to ensure the pandas DataFrame produced by pyspark is equal to a one made directly with pandas.

Author: Bryan Cutler <cutlerb@gmail.com>
Author: Li Jin <ice.xelloss@gmail.com>
Author: Li Jin <li.jin@twosigma.com>
Author: Wes McKinney <wes.mckinney@twosigma.com>

Closes #15821 from BryanCutler/wip-toPandas_with_arrow-SPARK-13534.
e4469760
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page

Python Packaging

This README file only contains basic information related to pip installed PySpark. This packaging is currently experimental and may change in future versions (although we will do our best to keep compatibility). Using PySpark requires the Spark JARs, and if you are building this from source please see the builder instructions at "Building Spark".

The Python packaging for Spark is not intended to replace all of the other use cases. This Python packaged version of Spark is suitable for interacting with an existing cluster (be it Spark standalone, YARN, or Mesos) - but does not contain the tools required to setup your own standalone Spark cluster. You can download the full version of Spark from the Apache Spark downloads page.

NOTE: If you are using this with a Spark standalone cluster you must ensure that the version (including minor version) matches or you may experience odd errors.

Python Requirements

At its core PySpark depends on Py4J (currently version 0.10.4), but additional sub-packages have their own requirements (including numpy and pandas).