Skip to content
Snippets Groups Projects
user avatar
Josh Rosen authored
## What changes were proposed in this pull request?

The behavior of `SparkContext.addFile()` changed slightly with the introduction of the Netty-RPC-based file server, which was introduced in Spark 1.6 (where it was disabled by default) and became the default / only file server in Spark 2.0.0.

Prior to 2.0, calling `SparkContext.addFile()` with files that have the same name and identical contents would succeed. This behavior was never explicitly documented but Spark has behaved this way since very early 1.x versions.

In 2.0 (or 1.6 with the Netty file server enabled), the second `addFile()` call will fail with a requirement error because NettyStreamManager tries to guard against duplicate file registration.

This problem also affects `addJar()` in a more subtle way: the `fileServer.addJar()` call will also fail with an exception but that exception is logged and ignored; I believe that the problematic exception-catching path was mistakenly copied from some old code which was only relevant to very old versions of Spark and YARN mode.

I believe that this change of behavior was unintentional, so this patch weakens the `require` check so that adding the same filename at the same path will succeed.

At file download time, Spark tasks will fail with exceptions if an executor already has a local copy of a file and that file's contents do not match the contents of the file being downloaded / added. As a result, it's important that we prevent files with the same name and different contents from being served because allowing that can effectively brick an executor by preventing it from successfully launching any new tasks. Before this patch's change, this was prevented by forbidding `addFile()` from being called twice on files with the same name. Because Spark does not defensively copy local files that are passed to `addFile` it is vulnerable to files' contents changing, so I think it's okay to rely on an implicit assumption that these files are intended to be immutable (since if they _are_ mutable then this can lead to either explicit task failures or implicit incorrectness (in case new executors silently get newer copies of the file while old executors continue to use an older version)). To guard against this, I have decided to only update the file addition timestamps on the first call to `addFile()`; duplicate calls will succeed but will not update the timestamp. This behavior is fine as long as we assume files are immutable, which seems reasonable given the behaviors described above.

As part of this change, I also improved the thread-safety of the `addedJars` and `addedFiles` maps; this is important because these maps may be concurrently read by a task launching thread and written by a driver thread in case the user's driver code is multi-threaded.

## How was this patch tested?

I added regression tests in `SparkContextSuite`.

Author: Josh Rosen <joshrosen@databricks.com>

Closes #14396 from JoshRosen/SPARK-16787.
e9fc0b6a
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.)

You can build Spark using more than one thread by using the -T option with Maven, see "Parallel builds in Maven 3". More detailed documentation is available from the project site, at "Building Spark". For developing Spark using an IDE, see Eclipse and IntelliJ.

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.

Configuration

Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.