Skip to content
Snippets Groups Projects
user avatar
Josh Rosen authored
This patch adds support for caching blocks in the executor processes using direct / off-heap memory.

## User-facing changes

**Updated semantics of `OFF_HEAP` storage level**: In Spark 1.x, the `OFF_HEAP` storage level indicated that an RDD should be cached in Tachyon. Spark 2.x removed the external block store API that Tachyon caching was based on (see #10752 / SPARK-12667), so `OFF_HEAP` became an alias for `MEMORY_ONLY_SER`. As of this patch, `OFF_HEAP` means "serialized and cached in off-heap memory or on disk". Via the `StorageLevel` constructor, `useOffHeap` can be set if `serialized == true` and can be used to construct custom storage levels which support replication.

**Storage UI reporting**: the storage UI will now report whether in-memory blocks are stored on- or off-heap.

**Only supported by UnifiedMemoryManager**: for simplicity, this feature is only supported when the default UnifiedMemoryManager is used; applications which use the legacy memory manager (`spark.memory.useLegacyMode=true`) are not currently able to allocate off-heap storage memory, so using off-heap caching will fail with an error when legacy memory management is enabled. Given that we plan to eventually remove the legacy memory manager, this is not a significant restriction.

**Memory management policies:** the policies for dividing available memory between execution and storage are the same for both on- and off-heap memory. For off-heap memory, the total amount of memory available for use by Spark is controlled by `spark.memory.offHeap.size`, which is an absolute size. Off-heap storage memory obeys `spark.memory.storageFraction` in order to control the amount of unevictable storage memory. For example, if `spark.memory.offHeap.size` is 1 gigabyte and Spark uses the default `storageFraction` of 0.5, then up to 500 megabytes of off-heap cached blocks will be protected from eviction due to execution memory pressure. If necessary, we can split `spark.memory.storageFraction` into separate on- and off-heap configurations, but this doesn't seem necessary now and can be done later without any breaking changes.

**Use of off-heap memory does not imply use of off-heap execution (or vice-versa)**: for now, the settings controlling the use of off-heap execution memory (`spark.memory.offHeap.enabled`) and off-heap caching are completely independent, so Spark SQL can be configured to use off-heap memory for execution while continuing to cache blocks on-heap. If desired, we can change this in a followup patch so that `spark.memory.offHeap.enabled` affect the default storage level for cached SQL tables.

## Internal changes

- Rename `ByteArrayChunkOutputStream` to `ChunkedByteBufferOutputStream`
  - It now returns a `ChunkedByteBuffer` instead of an array of byte arrays.
  - Its constructor now accept an `allocator` function which is called to allocate `ByteBuffer`s. This allows us to control whether it allocates regular ByteBuffers or off-heap DirectByteBuffers.
  - Because block serialization is now performed during the unroll process, a `ChunkedByteBufferOutputStream` which is configured with a `DirectByteBuffer` allocator will use off-heap memory for both unroll and storage memory.
- The `MemoryStore`'s MemoryEntries now tracks whether blocks are stored on- or off-heap.
  - `evictBlocksToFreeSpace()` now accepts a `MemoryMode` parameter so that we don't try to evict off-heap blocks in response to on-heap memory pressure (or vice-versa).
- Make sure that off-heap buffers are properly de-allocated during MemoryStore eviction.
- The JVM limits the total size of allocated direct byte buffers using the `-XX:MaxDirectMemorySize` flag and the default tends to be fairly low (< 512 megabytes in some JVMs). To work around this limitation, this patch adds a custom DirectByteBuffer allocator which ignores this memory limit.

Author: Josh Rosen <joshrosen@databricks.com>

Closes #11805 from JoshRosen/off-heap-caching.
e41acb75
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.) More detailed documentation is available from the project site, at "Building Spark". For developing Spark using an IDE, see Eclipse and IntelliJ.

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.

Configuration

Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.