Skip to content
Snippets Groups Projects
user avatar
Dmitry Parfenchik authored
## What changes were proposed in this pull request?

As described in JIRA ticket, History page is taking ~1min to load for cases when amount of jobs is 10k+.
Most of the time is currently being spent on DOM manipulations and all additional costs implied by this (browser repaints and reflows).
PR's goal is not to change any behavior but to optimize time of History UI rendering:

1. The most costly operation is setting `innerHTML` for `duration` column within a loop, which is [extremely unperformant](https://jsperf.com/jquery-append-vs-html-list-performance/24). [Refactoring ](https://github.com/criteo-forks/spark/commit/114943b21a730092aa3249b7a905b240bd46e531) this helped to get page load time **down to 10-15s**

2. Second big gain bringing page load time **down to 4s** was [was achieved](https://github.com/criteo-forks/spark/commit/f35fdcd5f129339fce75996e9242c88085a9b8ab) by detaching table's DOM before parsing it with DataTables jQuery plugin.

3. Another chunk of improvements ([1](https://github.com/criteo-forks/spark/commit/332b398db7eb3052484d436919185cb0b62b2385), [2](https://github.com/criteo-forks/spark/commit/0af596a547e3a1f2b594a83cbda1f6ef559de86b), [3](https://github.com/criteo-forks/spark/commit/235f164178a09e22306f05090ee1ff5f314a6710)) was focused on removing unnecessary DOM manipulations that in  total contributed ~250ms to page load time.

## How was this patch tested?

Tested by existing Selenium tests in `org.apache.spark.deploy.history.HistoryServerSuite`.

Changes were also tested on Criteo's spark-2.1 fork with 20k+ number of rows in the table, reducing load time to 4s.

Author: Dmitry Parfenchik <d.parfenchik@criteo.com>
Author: Anna Savarin <a.savarin@criteo.com>

Closes #18783 from 2ooom/history-ui-perf-fix-upstream-master.
e3967dc5
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.)

You can build Spark using more than one thread by using the -T option with Maven, see "Parallel builds in Maven 3". More detailed documentation is available from the project site, at "Building Spark".

For general development tips, including info on developing Spark using an IDE, see "Useful Developer Tools".

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.

Configuration

Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.

Contributing

Please review the Contribution to Spark guide for information on how to get started contributing to the project.