Skip to content
Snippets Groups Projects
user avatar
Liquan Pei authored
This is a pull request regarding SPARK-2510 at https://issues.apache.org/jira/browse/SPARK-2510. Word2Vec creates vector representation of words in a text corpus. The algorithm first constructs a vocabulary from the corpus and then learns vector representation of words in the vocabulary. The vector representation can be used as features in natural language processing and machine learning algorithms.

To make our implementation more scalable, we train each partition separately and merge the model of each partition after each iteration. To make the model more accurate, multiple iterations may be needed.

To investigate the vector representations is to find the closest words for a query word. For example, the top 20 closest words to "china" are for 1 partition and 1 iteration :

taiwan 0.8077646146334014
korea 0.740913304563621
japan 0.7240667798885471
republic 0.7107151279078352
thailand 0.6953217332072862
tibet 0.6916782118129544
mongolia 0.6800858715972612
macau 0.6794925677480378
singapore 0.6594048695593799
manchuria 0.658989931844148
laos 0.6512978726001666
nepal 0.6380792327845325
mainland 0.6365469459587788
myanmar 0.6358614338840394
macedonia 0.6322366180313249
xinjiang 0.6285291551708028
russia 0.6279951236068411
india 0.6272874944023487
shanghai 0.6234544135576999
macao 0.6220588462925876

The result with 10 partitions and 5 iterations is:
taiwan 0.8310495079388313
india 0.7737171315919039
japan 0.756777901233668
korea 0.7429767187102452
indonesia 0.7407557427278356
pakistan 0.712883426985585
mainland 0.7053379963140822
thailand 0.696298191073948
mongolia 0.693690656871415
laos 0.6913069680735292
macau 0.6903427690029617
republic 0.6766381604813666
malaysia 0.676460699141784
singapore 0.6728790997360923
malaya 0.672345232966194
manchuria 0.6703732292753156
macedonia 0.6637955686322028
myanmar 0.6589462882439646
kazakhstan 0.657017801081494
cambodia 0.6542383836451932

Author: Liquan Pei <lpei@gopivotal.com>
Author: Xiangrui Meng <meng@databricks.com>
Author: Liquan Pei <liquanpei@gmail.com>

Closes #1719 from Ishiihara/master and squashes the following commits:

2ba9483 [Liquan Pei] minor fix for Word2Vec test
e248441 [Liquan Pei] minor style change
26a948d [Liquan Pei] Merge pull request #1 from mengxr/Ishiihara-master
c14da41 [Xiangrui Meng] fix styles
384c771 [Xiangrui Meng] remove minCount and window from constructor change model to use float instead of double
e93e726 [Liquan Pei] use treeAggregate instead of aggregate
1a8fb41 [Liquan Pei] use weighted sum in combOp
7efbb6f [Liquan Pei] use broadcast version of vocab in aggregate
6bcc8be [Liquan Pei] add multiple iteration support
720b5a3 [Liquan Pei] Add test for Word2Vec algorithm, minor fixes
2e92b59 [Liquan Pei] modify according to feedback
57dc50d [Liquan Pei] code formatting
e4a04d3 [Liquan Pei] minor fix
0aafb1b [Liquan Pei] Add comments, minor fixes
8d6befe [Liquan Pei] initial commit
e053c558
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, and Python, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing, MLLib for machine learning, GraphX for graph processing, and Spark Streaming.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project webpage at http://spark.apache.org/documentation.html. This README file only contains basic setup instructions.

Building Spark

Spark is built on Scala 2.10. To build Spark and its example programs, run:

./sbt/sbt assembly

(You do not need to do this if you downloaded a pre-built package.)

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./sbt/sbt test

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs. You can change the version by setting -Dhadoop.version when building Spark.

For Apache Hadoop versions 1.x, Cloudera CDH MRv1, and other Hadoop versions without YARN, use:

# Apache Hadoop 1.2.1
$ sbt/sbt -Dhadoop.version=1.2.1 assembly

# Cloudera CDH 4.2.0 with MapReduce v1
$ sbt/sbt -Dhadoop.version=2.0.0-mr1-cdh4.2.0 assembly

For Apache Hadoop 2.2.X, 2.1.X, 2.0.X, 0.23.x, Cloudera CDH MRv2, and other Hadoop versions with YARN, also set -Pyarn:

# Apache Hadoop 2.0.5-alpha
$ sbt/sbt -Dhadoop.version=2.0.5-alpha -Pyarn assembly

# Cloudera CDH 4.2.0 with MapReduce v2
$ sbt/sbt -Dhadoop.version=2.0.0-cdh4.2.0 -Pyarn assembly

# Apache Hadoop 2.2.X and newer
$ sbt/sbt -Dhadoop.version=2.2.0 -Pyarn assembly

When developing a Spark application, specify the Hadoop version by adding the "hadoop-client" artifact to your project's dependencies. For example, if you're using Hadoop 1.2.1 and build your application using SBT, add this entry to libraryDependencies:

"org.apache.hadoop" % "hadoop-client" % "1.2.1"

If your project is built with Maven, add this to your POM file's <dependencies> section:

<dependency>
  <groupId>org.apache.hadoop</groupId>
  <artifactId>hadoop-client</artifactId>
  <version>1.2.1</version>
</dependency>

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.

Contributing to Spark

Contributions via GitHub pull requests are gladly accepted from their original author. Along with any pull requests, please state that the contribution is your original work and that you license the work to the project under the project's open source license. Whether or not you state this explicitly, by submitting any copyrighted material via pull request, email, or other means you agree to license the material under the project's open source license and warrant that you have the legal authority to do so.