Skip to content
Snippets Groups Projects
user avatar
Patrick Wendell authored
SPARK-998: Support Launching Driver Inside of Standalone Mode

[NOTE: I need to bring the tests up to date with new changes, so for now they will fail]

This patch provides support for launching driver programs inside of a standalone cluster manager. It also supports monitoring and re-launching of driver programs which is useful for long running, recoverable applications such as Spark Streaming jobs. For those jobs, this patch allows a deployment mode which is resilient to the failure of any worker node, failure of a master node (provided a multi-master setup), and even failures of the applicaiton itself, provided they are recoverable on a restart. Driver information, such as the status and logs from a driver, is displayed in the UI

There are a few small TODO's here, but the code is generally feature-complete. They are:
- Bring tests up to date and add test coverage
- Restarting on failure should be optional and maybe off by default.
- See if we can re-use akka connections to facilitate clients behind a firewall

A sensible place to start for review would be to look at the `DriverClient` class which presents users the ability to launch their driver program. I've also added an example program (`DriverSubmissionTest`) that allows you to test this locally and play around with killing workers, etc. Most of the code is devoted to persisting driver state in the cluster manger, exposing it in the UI, and dealing correctly with various types of failures.

Instructions to test locally:
- `sbt/sbt assembly/assembly examples/assembly`
- start a local version of the standalone cluster manager

```
./spark-class org.apache.spark.deploy.client.DriverClient \
  -j -Dspark.test.property=something \
  -e SPARK_TEST_KEY=SOMEVALUE \
  launch spark://10.99.1.14:7077 \
  ../path-to-examples-assembly-jar \
  org.apache.spark.examples.DriverSubmissionTest 1000 some extra options --some-option-here -X 13
```
- Go in the UI and make sure it started correctly, look at the output etc
- Kill workers, the driver program, masters, etc.
d86a85e9
History

Apache Spark

Lightning-Fast Cluster Computing - http://spark.incubator.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project webpage at http://spark.incubator.apache.org/documentation.html. This README file only contains basic setup instructions.

Building

Spark requires Scala 2.10. The project is built using Simple Build Tool (SBT), which can be obtained here. If SBT is installed we will use the system version of sbt otherwise we will attempt to download it automatically. To build Spark and its example programs, run:

./sbt/sbt assembly

Once you've built Spark, the easiest way to start using it is the shell:

./bin/spark-shell

Or, for the Python API, the Python shell (./bin/pyspark).

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> <params>. For example:

./bin/run-example org.apache.spark.examples.SparkLR local[2]

will run the Logistic Regression example locally on 2 CPUs.

Each of the example programs prints usage help if no params are given.

All of the Spark samples take a <master> parameter that is the cluster URL to connect to. This can be a mesos:// or spark:// URL, or "local" to run locally with one thread, or "local[N]" to run locally with N threads.

Running tests

Testing first requires Building Spark. Once Spark is built, tests can be run using:

./sbt/sbt test

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs. You can change the version by setting the SPARK_HADOOP_VERSION environment when building Spark.

For Apache Hadoop versions 1.x, Cloudera CDH MRv1, and other Hadoop versions without YARN, use:

# Apache Hadoop 1.2.1
$ SPARK_HADOOP_VERSION=1.2.1 sbt/sbt assembly

# Cloudera CDH 4.2.0 with MapReduce v1
$ SPARK_HADOOP_VERSION=2.0.0-mr1-cdh4.2.0 sbt/sbt assembly

For Apache Hadoop 2.2.X, 2.1.X, 2.0.X, 0.23.x, Cloudera CDH MRv2, and other Hadoop versions with YARN, also set SPARK_YARN=true:

# Apache Hadoop 2.0.5-alpha
$ SPARK_HADOOP_VERSION=2.0.5-alpha SPARK_YARN=true sbt/sbt assembly

# Cloudera CDH 4.2.0 with MapReduce v2
$ SPARK_HADOOP_VERSION=2.0.0-cdh4.2.0 SPARK_YARN=true sbt/sbt assembly

# Apache Hadoop 2.2.X and newer
$ SPARK_HADOOP_VERSION=2.2.0 SPARK_YARN=true sbt/sbt assembly

When developing a Spark application, specify the Hadoop version by adding the "hadoop-client" artifact to your project's dependencies. For example, if you're using Hadoop 1.2.1 and build your application using SBT, add this entry to libraryDependencies:

"org.apache.hadoop" % "hadoop-client" % "1.2.1"

If your project is built with Maven, add this to your POM file's <dependencies> section:

<dependency>
  <groupId>org.apache.hadoop</groupId>
  <artifactId>hadoop-client</artifactId>
  <version>1.2.1</version>
</dependency>

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.

Apache Incubator Notice

Apache Spark is an effort undergoing incubation at The Apache Software Foundation (ASF), sponsored by the Apache Incubator. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision making process have stabilized in a manner consistent with other successful ASF projects. While incubation status is not necessarily a reflection of the completeness or stability of the code, it does indicate that the project has yet to be fully endorsed by the ASF.

Contributing to Spark

Contributions via GitHub pull requests are gladly accepted from their original author. Along with any pull requests, please state that the contribution is your original work and that you license the work to the project under the project's open source license. Whether or not you state this explicitly, by submitting any copyrighted material via pull request, email, or other means you agree to license the material under the project's open source license and warrant that you have the legal authority to do so.