Skip to content
Snippets Groups Projects
user avatar
Li Pu authored
After running some more tests on large matrix, found that the BV axpy (breeze/linalg/Vector.scala, axpy) is slower than the BSV axpy (breeze/linalg/operators/SparseVectorOps.scala, sv_dv_axpy), 8s v.s. 2s for each multiplication. The BV axpy operates on an iterator while BSV axpy directly operates on the underlying array. I think the overhead comes from creating the iterator (with a zip) and advancing the pointers.

Author: Li Pu <lpu@twitter.com>
Author: Xiangrui Meng <meng@databricks.com>
Author: Li Pu <li.pu@outlook.com>

Closes #1378 from vrilleup/master and squashes the following commits:

6fb01a3 [Li Pu] use specialized axpy in RowMatrix
5255f2a [Li Pu] Merge remote-tracking branch 'upstream/master'
7312ec1 [Li Pu] very minor comment fix
4c618e9 [Li Pu] Merge pull request #1 from mengxr/vrilleup-master
a461082 [Xiangrui Meng] make superscript show up correctly in doc
861ec48 [Xiangrui Meng] simplify axpy
62969fa [Xiangrui Meng] use BDV directly in symmetricEigs change the computation mode to local-svd, local-eigs, and dist-eigs update tests and docs
c273771 [Li Pu] automatically determine SVD compute mode and parameters
7148426 [Li Pu] improve RowMatrix multiply
5543cce [Li Pu] improve svd api
819824b [Li Pu] add flag for dense svd or sparse svd
eb15100 [Li Pu] fix binary compatibility
4c7aec3 [Li Pu] improve comments
e7850ed [Li Pu] use aggregate and axpy
827411b [Li Pu] fix EOF new line
9c80515 [Li Pu] use non-sparse implementation when k = n
fe983b0 [Li Pu] improve scala style
96d2ecb [Li Pu] improve eigenvalue sorting
e1db950 [Li Pu] SPARK-1782: svd for sparse matrix using ARPACK
d38887b8
History

Apache Spark

Lightning-Fast Cluster Computing - http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project webpage at http://spark.apache.org/documentation.html. This README file only contains basic setup instructions.

Building Spark

Spark is built on Scala 2.10. To build Spark and its example programs, run:

./sbt/sbt assembly

(You do not need to do this if you downloaded a pre-built package.)

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./sbt/sbt test

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs. You can change the version by setting -Dhadoop.version when building Spark.

For Apache Hadoop versions 1.x, Cloudera CDH MRv1, and other Hadoop versions without YARN, use:

# Apache Hadoop 1.2.1
$ sbt/sbt -Dhadoop.version=1.2.1 assembly

# Cloudera CDH 4.2.0 with MapReduce v1
$ sbt/sbt -Dhadoop.version=2.0.0-mr1-cdh4.2.0 assembly

For Apache Hadoop 2.2.X, 2.1.X, 2.0.X, 0.23.x, Cloudera CDH MRv2, and other Hadoop versions with YARN, also set -Pyarn:

# Apache Hadoop 2.0.5-alpha
$ sbt/sbt -Dhadoop.version=2.0.5-alpha -Pyarn assembly

# Cloudera CDH 4.2.0 with MapReduce v2
$ sbt/sbt -Dhadoop.version=2.0.0-cdh4.2.0 -Pyarn assembly

# Apache Hadoop 2.2.X and newer
$ sbt/sbt -Dhadoop.version=2.2.0 -Pyarn assembly

When developing a Spark application, specify the Hadoop version by adding the "hadoop-client" artifact to your project's dependencies. For example, if you're using Hadoop 1.2.1 and build your application using SBT, add this entry to libraryDependencies:

"org.apache.hadoop" % "hadoop-client" % "1.2.1"

If your project is built with Maven, add this to your POM file's <dependencies> section:

<dependency>
  <groupId>org.apache.hadoop</groupId>
  <artifactId>hadoop-client</artifactId>
  <version>1.2.1</version>
</dependency>

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.

Contributing to Spark

Contributions via GitHub pull requests are gladly accepted from their original author. Along with any pull requests, please state that the contribution is your original work and that you license the work to the project under the project's open source license. Whether or not you state this explicitly, by submitting any copyrighted material via pull request, email, or other means you agree to license the material under the project's open source license and warrant that you have the legal authority to do so.