Skip to content
Snippets Groups Projects
user avatar
Tom Magrino authored
## What changes were proposed in this pull request?

This moves over old PR https://github.com/apache/spark/pull/13664 to target master rather than branch-1.6.

Added links to logs (or an indication that there are no logs) for entries which list an executor in the stage details page of the UI.

This helps streamline the workflow where a user views a stage details page and determines that they would like to see the associated executor log for further examination.  Previously, a user would have to cross reference the executor id listed on the stage details page with the corresponding entry on the executors tab.

Link to the JIRA: https://issues.apache.org/jira/browse/SPARK-15885

## How was this patch tested?

Ran existing unit tests.
Ran test queries on a platform which did not record executor logs and again on a platform which did record executor logs and verified that the new table column was empty and links to the logs (which were verified as linking to the appropriate files), respectively.

Attached is a screenshot of the UI page with no links, with the new columns highlighted.  Additional screenshot of these columns with the populated links.

Without links:
![updated without logs](https://cloud.githubusercontent.com/assets/1450821/16059721/2b69dbaa-3239-11e6-9eed-e539764ca159.png)

With links:
![updated with logs](https://cloud.githubusercontent.com/assets/1450821/16059725/32c6e316-3239-11e6-90bd-2553f43f7779.png)

This contribution is my original work and I license the work to the project under the Apache Spark project's open source license.

Author: Tom Magrino <tmagrino@fb.com>

Closes #13861 from tmagrino/uilogstweak.
ce3ea969
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.)

You can build Spark using more than one thread by using the -T option with Maven, see "Parallel builds in Maven 3". More detailed documentation is available from the project site, at "Building Spark". For developing Spark using an IDE, see Eclipse and IntelliJ.

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.

Configuration

Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.