Skip to content
Snippets Groups Projects
user avatar
Michael Armbrust authored
It is common to want to describe sets of attributes that are in various parts of a query plan.  However, the semantics of putting `AttributeReference` objects into a standard Scala `Set` result in subtle bugs when references differ cosmetically.  For example, with case insensitive resolution it is possible to have two references to the same attribute whose names are not equal.

In this PR I introduce a new abstraction, an `AttributeSet`, which performs all comparisons using the globally unique `ExpressionId` instead of case class equality.  (There is already a related class, [`AttributeMap`](https://github.com/marmbrus/spark/blob/inMemStats/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/AttributeMap.scala#L32))  This new type of set is used to fix a bug in the optimizer where needed attributes were getting projected away underneath join operators.

I also took this opportunity to refactor the expression and query plan base classes.  In all but one instance the logic for computing the `references` of an `Expression` were the same.  Thus, I moved this logic into the base class.

For query plans the semantics of  the `references` method were ill defined (is it the references output? or is it those used by expression evaluation? or what?).  As a result, this method wasn't really used very much.  So, I removed it.

TODO:
 - [x] Finish scala doc for `AttributeSet`
 - [x] Scan the code for other instances of `Set[Attribute]` and refactor them.
 - [x] Finish removing `references` from `QueryPlan`

Author: Michael Armbrust <michael@databricks.com>

Closes #2109 from marmbrus/attributeSets and squashes the following commits:

1c0dae5 [Michael Armbrust] work on serialization bug.
9ba868d [Michael Armbrust] Merge remote-tracking branch 'origin/master' into attributeSets
3ae5288 [Michael Armbrust] review comments
40ce7f6 [Michael Armbrust] style
d577cc7 [Michael Armbrust] Scaladoc
cae5d22 [Michael Armbrust] remove more references implementations
d6e16be [Michael Armbrust] Remove more instances of "def references" and normal sets of attributes.
fc26b49 [Michael Armbrust] Add AttributeSet class, remove references from Expression.
c4787a36
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, and Python, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing, MLLib for machine learning, GraphX for graph processing, and Spark Streaming.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project webpage at http://spark.apache.org/documentation.html. This README file only contains basic setup instructions.

Building Spark

Spark is built on Scala 2.10. To build Spark and its example programs, run:

./sbt/sbt assembly

(You do not need to do this if you downloaded a pre-built package.)

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./sbt/sbt test

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs. You can change the version by setting -Dhadoop.version when building Spark.

For Apache Hadoop versions 1.x, Cloudera CDH MRv1, and other Hadoop versions without YARN, use:

# Apache Hadoop 1.2.1
$ sbt/sbt -Dhadoop.version=1.2.1 assembly

# Cloudera CDH 4.2.0 with MapReduce v1
$ sbt/sbt -Dhadoop.version=2.0.0-mr1-cdh4.2.0 assembly

For Apache Hadoop 2.2.X, 2.1.X, 2.0.X, 0.23.x, Cloudera CDH MRv2, and other Hadoop versions with YARN, also set -Pyarn:

# Apache Hadoop 2.0.5-alpha
$ sbt/sbt -Dhadoop.version=2.0.5-alpha -Pyarn assembly

# Cloudera CDH 4.2.0 with MapReduce v2
$ sbt/sbt -Dhadoop.version=2.0.0-cdh4.2.0 -Pyarn assembly

# Apache Hadoop 2.2.X and newer
$ sbt/sbt -Dhadoop.version=2.2.0 -Pyarn assembly

When developing a Spark application, specify the Hadoop version by adding the "hadoop-client" artifact to your project's dependencies. For example, if you're using Hadoop 1.2.1 and build your application using SBT, add this entry to libraryDependencies:

"org.apache.hadoop" % "hadoop-client" % "1.2.1"

If your project is built with Maven, add this to your POM file's <dependencies> section:

<dependency>
  <groupId>org.apache.hadoop</groupId>
  <artifactId>hadoop-client</artifactId>
  <version>1.2.1</version>
</dependency>

A Note About Thrift JDBC server and CLI for Spark SQL

Spark SQL supports Thrift JDBC server and CLI. See sql-programming-guide.md for more information about using the JDBC server and CLI. You can use those features by setting -Phive when building Spark as follows.

$ sbt/sbt -Phive  assembly

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.

Contributing to Spark

Contributions via GitHub pull requests are gladly accepted from their original author. Along with any pull requests, please state that the contribution is your original work and that you license the work to the project under the project's open source license. Whether or not you state this explicitly, by submitting any copyrighted material via pull request, email, or other means you agree to license the material under the project's open source license and warrant that you have the legal authority to do so.

Please see Contributing to Spark wiki page for more information.