Skip to content
Snippets Groups Projects
user avatar
jerryshao authored
## What changes were proposed in this pull request?

Add a configurable token manager for Spark on running on yarn.

### Current Problems ###

1. Supported token provider is hard-coded, currently only hdfs, hbase and hive are supported and it is impossible for user to add new token provider without code changes.
2. Also this problem exits in timely token renewer and updater.

### Changes In This Proposal ###

In this proposal, to address the problems mentioned above and make the current code more cleaner and easier to understand, mainly has 3 changes:

1. Abstract a `ServiceTokenProvider` as well as `ServiceTokenRenewable` interface for token provider. Each service wants to communicate with Spark through token way needs to implement this interface.
2. Provide a `ConfigurableTokenManager` to manage all the register token providers, also token renewer and updater. Also this class offers the API for other modules to obtain tokens, get renewal interval and so on.
3. Implement 3 built-in token providers `HDFSTokenProvider`, `HiveTokenProvider` and `HBaseTokenProvider` to keep the same semantics as supported today. Whether to load in these built-in token providers is controlled by configuration "spark.yarn.security.tokens.${service}.enabled", by default for all the built-in token providers are loaded.

### Behavior Changes ###

For the end user there's no behavior change, we still use the same configuration `spark.yarn.security.tokens.${service}.enabled` to decide which token provider is enabled (hbase or hive).

For user implemented token provider (assume the name of token provider is "test") needs to add into this class should have two configurations:

1. `spark.yarn.security.tokens.test.enabled` to true
2. `spark.yarn.security.tokens.test.class` to the full qualified class name.

So we still keep the same semantics as current code while add one new configuration.

### Current Status ###

- [x] token provider interface and management framework.
- [x] implement built-in token providers (hdfs, hbase, hive).
- [x] Coverage of unit test.
- [x] Integrated test with security cluster.

## How was this patch tested?

Unit test and integrated test.

Please suggest and review, any comment is greatly appreciated.

Author: jerryshao <sshao@hortonworks.com>

Closes #14065 from jerryshao/SPARK-16342.
ab648c00
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.)

You can build Spark using more than one thread by using the -T option with Maven, see "Parallel builds in Maven 3". More detailed documentation is available from the project site, at "Building Spark". For developing Spark using an IDE, see Eclipse and IntelliJ.

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.

Configuration

Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.