Skip to content
Snippets Groups Projects
user avatar
Tathagata Das authored
Current updateStateByKey provides stateful processing in Spark Streaming. It allows the user to maintain per-key state and manage that state using an updateFunction. The updateFunction is called for each key, and it uses new data and existing state of the key, to generate an updated state. However, based on community feedback, we have learnt the following lessons.
* Need for more optimized state management that does not scan every key
* Need to make it easier to implement common use cases - (a) timeout of idle data, (b) returning items other than state

The high level idea that of this PR
* Introduce a new API trackStateByKey that, allows the user to update per-key state, and emit arbitrary records. The new API is necessary as this will have significantly different semantics than the existing updateStateByKey API. This API will have direct support for timeouts.
* Internally, the system will keep the state data as a map/list within the partitions of the state RDDs. The new data RDDs will be partitioned appropriately, and for all the key-value data, it will lookup the map/list in the state RDD partition and create a new list/map of updated state data. The new state RDD partition will be created based on the update data and if necessary, with old data.
Here is the detailed design doc. Please take a look and provide feedback as comments.
https://docs.google.com/document/d/1NoALLyd83zGs1hNGMm0Pc5YOVgiPpMHugGMk6COqxxE/edit#heading=h.ph3w0clkd4em

This is still WIP. Major things left to be done.
- [x] Implement basic functionality of state tracking, with initial RDD and timeouts
- [x] Unit tests for state tracking
- [x] Unit tests for initial RDD and timeout
- [ ] Unit tests for TrackStateRDD
       - [x] state creating, updating, removing
       - [ ] emitting
       - [ ] checkpointing
- [x] Misc unit tests for State, TrackStateSpec, etc.
- [x] Update docs and experimental tags

Author: Tathagata Das <tathagata.das1565@gmail.com>

Closes #9256 from tdas/trackStateByKey.
99f5f988
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.) More detailed documentation is available from the project site, at "Building Spark".

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.

Configuration

Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.