Skip to content
Snippets Groups Projects
user avatar
Aaron Staple authored
[SPARK-2314][SQL] Override collect and take in python library, and count in java library, with optimized versions.

SchemaRDD overrides RDD functions, including collect, count, and take, with optimized versions making use of the query optimizer.  The java and python interface classes wrapping SchemaRDD need to ensure the optimized versions are called as well.  This patch overrides relevant calls in the python and java interfaces with optimized versions.

Adds a new Row serialization pathway between python and java, based on JList[Array[Byte]] versus the existing RDD[Array[Byte]]. I wasn’t overjoyed about doing this, but I noticed that some QueryPlans implement optimizations in executeCollect(), which outputs an Array[Row] rather than the typical RDD[Row] that can be shipped to python using the existing serialization code. To me it made sense to ship the Array[Row] over to python directly instead of converting it back to an RDD[Row] just for the purpose of sending the Rows to python using the existing serialization code.

Author: Aaron Staple <aaron.staple@gmail.com>

Closes #1592 from staple/SPARK-2314 and squashes the following commits:

89ff550 [Aaron Staple] Merge with master.
6bb7b6c [Aaron Staple] Fix typo.
b56d0ac [Aaron Staple] [SPARK-2314][SQL] Override count in JavaSchemaRDD, forwarding to SchemaRDD's count.
0fc9d40 [Aaron Staple] Fix comment typos.
f03cdfa [Aaron Staple] [SPARK-2314][SQL] Override collect and take in sql.py, forwarding to SchemaRDD's collect.
8e7ae477
History
Name Last commit Last update
..
catalyst
core
hive-thriftserver
hive
README.md

Spark SQL

This module provides support for executing relational queries expressed in either SQL or a LINQ-like Scala DSL.

Spark SQL is broken up into four subprojects:

  • Catalyst (sql/catalyst) - An implementation-agnostic framework for manipulating trees of relational operators and expressions.
  • Execution (sql/core) - A query planner / execution engine for translating Catalyst’s logical query plans into Spark RDDs. This component also includes a new public interface, SQLContext, that allows users to execute SQL or LINQ statements against existing RDDs and Parquet files.
  • Hive Support (sql/hive) - Includes an extension of SQLContext called HiveContext that allows users to write queries using a subset of HiveQL and access data from a Hive Metastore using Hive SerDes. There are also wrappers that allows users to run queries that include Hive UDFs, UDAFs, and UDTFs.
  • HiveServer and CLI support (sql/hive-thriftserver) - Includes support for the SQL CLI (bin/spark-sql) and a HiveServer2 (for JDBC/ODBC) compatible server.

Other dependencies for developers

In order to create new hive test cases , you will need to set several environmental variables.

export HIVE_HOME="<path to>/hive/build/dist"
export HIVE_DEV_HOME="<path to>/hive/"
export HADOOP_HOME="<path to>/hadoop-1.0.4"

Using the console

An interactive scala console can be invoked by running sbt/sbt hive/console. From here you can execute queries and inspect the various stages of query optimization.

catalyst$ sbt/sbt hive/console

[info] Starting scala interpreter...
import org.apache.spark.sql.catalyst.analysis._
import org.apache.spark.sql.catalyst.dsl._
import org.apache.spark.sql.catalyst.errors._
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.plans.logical._
import org.apache.spark.sql.catalyst.rules._
import org.apache.spark.sql.catalyst.types._
import org.apache.spark.sql.catalyst.util._
import org.apache.spark.sql.execution
import org.apache.spark.sql.hive._
import org.apache.spark.sql.hive.TestHive._
Welcome to Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_45).
Type in expressions to have them evaluated.
Type :help for more information.

scala> val query = sql("SELECT * FROM (SELECT * FROM src) a")
query: org.apache.spark.sql.ExecutedQuery =
SELECT * FROM (SELECT * FROM src) a
=== Query Plan ===
Project [key#6:0.0,value#7:0.1]
 HiveTableScan [key#6,value#7], (MetastoreRelation default, src, None), None

Query results are RDDs and can be operated as such.

scala> query.collect()
res8: Array[org.apache.spark.sql.execution.Row] = Array([238,val_238], [86,val_86], [311,val_311]...

You can also build further queries on top of these RDDs using the query DSL.

scala> query.where('key === 100).toRdd.collect()
res11: Array[org.apache.spark.sql.execution.Row] = Array([100,val_100], [100,val_100])

From the console you can even write rules that transform query plans. For example, the above query has redundant project operators that aren't doing anything. This redundancy can be eliminated using the transform function that is available on all TreeNode objects.

scala> query.logicalPlan
res1: catalyst.plans.logical.LogicalPlan = 
Project {key#0,value#1}
 Project {key#0,value#1}
  MetastoreRelation default, src, None


scala> query.logicalPlan transform {
     |   case Project(projectList, child) if projectList == child.output => child
     | }
res2: catalyst.plans.logical.LogicalPlan = 
Project {key#0,value#1}
 MetastoreRelation default, src, None